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Abstract. To address the issue of inaccurate extraction of key emotional features 

in Mongolian audio and video data, which leads to suboptimal sentiment classi-

fication performance, this paper proposes a Mongolian Audio-Visual Sentiment 

Analysis model based on Deep Residual Shrinkage Network and Improved 3D-

DenseNet (MAVSA-DI). Specifically, the audio branch adopts a Deep Residual 

Shrinkage Network (DRSN) to suppress noise interference through a soft-thresh-

olding mechanism and enhance the extraction of emotion-relevant acoustic fea-

tures. The video branch employs an Improved 3D-DenseNet (I3DD) by integrat-

ing the SPD-Conv module, which combines the deep feature extraction capability 

of SPD-Conv with the dense connectivity of 3D-DenseNet to improve spatiotem-

poral feature learning from low-resolution facial expressions. Furthermore, Intra-

Modal Attention (IMA) mechanisms are applied to both branches to highlight 

intra-modal key information, followed by Cross-Modal Attention (CMA) to fa-

cilitate effective feature fusion. Experimental results demonstrate that the pro-

posed model significantly outperforms several advanced baselines in terms of 

classification accuracy for Mongolian Audio-Visual Sentiment Analysis 

(MAVSA). 

Keywords: Deep Residual Shrinkage Network, Improved 3D-DenseNet, SPD-

Conv, Feature Fusion, Mongolian Audio-Visual Sentiment Analysis. 

1 Introduction 

With the rapid development of the Internet and artificial intelligence, sentiment analysis 

has emerged as an increasingly prominent research focus. Although substantial pro-

gress has been made in unimodal sentiment analysis based on either audio or visual 

data, single-modal information often fails to fully and accurately capture the complex-

ity of human emotional states. This limitation becomes particularly pronounced when 
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dealing with diverse languages, cultures, and expression styles, where accuracy and 

adaptability remain challenging. In contrast, multimodal sentiment analysis, by lever-

aging complementary cues from multiple data sources, has demonstrated significant 

potential in enhancing the accurate interpretation and understanding of affective 

tendencies [1].  

Current research in sentiment analysis predominantly focuses on high-resource lan-

guages such as English and Chinese, while studies involving low-resource languages 

remain relatively scarce. In particular, Mongolian, as an agglutinative language [2], 

exhibits complex morphological variations and distinctive prosodic characteristics, 

which substantially increase the difficulty of extracting emotionally relevant represen-

tations from both audio and visual modalities. These challenges have significantly lim-

ited the applicability and performance of conventional sentiment analysis models in 

Mongolian language scenarios. To address these issues, this paper proposes a Mongo-

lian Audio-Visual Sentiment Analysis model based on Deep Residual Shrinkage Net-

work and Improved 3D-DenseNet (MAVSA-DI). The major contributions of this work 

can be summarized as follows: 

• A novel audio-visual feature extraction approach is proposed. For the audio modal-

ity, a Deep Residual Shrinkage Network (DRSN) is employed to suppress noise 

through a soft-thresholding mechanism, thereby enhancing the extraction of emo-

tionally salient acoustic features. For the visual modality, an Improved 3D-DenseNet 

(I3DD) is employed, where an SPD-Conv is embedded to boost the model’s capacity 

for capturing deep and subtle emotional cues from low-resolution facial images. 

• An audio-visual feature fusion strategy is proposed. First, Intra-Modal Attention 

(IMA) mechanisms are applied to enhance salient features within each modality. 

Then, Cross-Modal Attention (CMA) is employed to facilitate effective integration 

of audio and visual representations. 

• MAVSA-DI is proposed. Experimental results demonstrate that the proposed model 

significantly enhances the accuracy of Mongolian Audio-Visual Sentiment Analysis 

(MAVSA). 

2 Related Work 

MAVSA is a subfield of multimodal sentiment analysis, which aims to integrate infor-

mation from multiple modalities to achieve more accurate and comprehensive under-

standing of emotions. Multimodal sentiment analysis has shown great potential in a 

variety of application domains, including intelligent human-computer interaction [3] 

and medical diagnosis [4]. At its core, multimodal sentiment analysis relies on two fun-

damental components: the extraction of unimodal features and their effective fusion. 

In terms of audio sentiment analysis, Sun et al. [5] proposed a hybrid framework that 

combines Complementary Mode-Optimized Empirical Mode Decomposition (CM-

OMEMD) with wavelet scattering networks. This approach enhances the extraction of 

emotion-related acoustic patterns through multi-scale signal decomposition and learn-

ing of geometrically invariant features. Li et al. [6] introduced a multi-scale 
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Transformer for speech emotion recognition, which strengthens the model's ability to 

learn localized emotional representations across different temporal resolutions. 

For visual sentiment analysis, Liang et al. [7] developed a Deep Metric Network 

with Heterogeneous Semantics (DMN-HS), which innovatively incorporates image 

captions into the sentiment analysis process to provide a more holistic semantic inter-

pretation of visual content. In addition, Alzamzami et al. [8] proposed a Transformer-

based real-time sentiment analysis system that specifically targets the challenges of data 

heterogeneity and few-shot learning in open-domain social media contexts. Their work 

provides a comprehensive technical framework for imbalanced and low-resource sen-

timent analysis. 

In the field of multimodal sentiment analysis, Mocanu et al. [9] proposed an end-to-

end multimodal emotion recognition framework that focuses on audio-visual fusion. 

Their method incorporates spatial, channel, and temporal attention mechanisms within 

a 3D-CNN for visual data and a 2D-CNN for audio data, enabling precise capture of 

intra-modal features. CMA is then employed to integrate complementary information 

between the audio and visual modalities. Praveen et al. [10] introduced a novel Incon-

gruity-Aware Cross-Modal Attention (IACA) model, which manages modality mis-

matches by leveraging complementary relationships. Their approach employs a two-

stage gating mechanism to adaptively select semantic features, thereby enhancing mo-

dality alignment and mitigating the impact of inconsistent signals. 

Regarding Mongolian sentiment analysis, Zhao [11] addressed the challenges of lim-

ited Mongolian resources, including the scarcity of labeled corpora and the difficulty 

of transferring Chinese sentiment analysis models. By constructing a Mongolian-Chi-

nese bilingual knowledge alignment using Chinese corpora and applying cross-lingual 

sentiment analysis techniques, her work effectively mitigates data scarcity and enriches 

research in Mongolian sentiment analysis. Yang et al. [12], in response to the insuffi-

cient extraction and fusion of multimodal features in Mongolian, proposed a cross-

modal hierarchical fusion strategy to enhance the integration of audio-visual features, 

thereby improving the accuracy and robustness of sentiment classification in Mongo-

lian-language settings. 

3 Methods 

3.1 Overview 

The overall architecture of the proposed MAVSA-DI is illustrated in Fig. 1. The model 

integrates both audio and visual modalities, and consists of four key components: audio 

feature extraction, visual feature extraction, feature fusion, and sentiment classification. 

For audio feature extraction, the input signal is first segmented into short-time frames 

using Librosa, and transformed into the frequency domain via the Short-Time Fourier 

Transform (STFT) to capture frequency variations over time. Subsequently, Mel-spec-

trograms and chroma features are extracted to represent pitch and harmonic content. 

These time-frequency representations are then passed into a DRSN for hierarchical fea-

ture extraction, yielding the audio feature representation 𝐹𝑎.  For visual feature extrac-

tion, facial regions are localized using OpenCV to detect key facial landmarks, from 



which geometric features are derived. The facial images are then processed using an 

I3DD enhanced with SPD-Conv modules, enabling deep extraction of spatial-temporal 

emotional cues, particularly from low-resolution facial inputs. This process generates 

the visual feature representation 𝐹𝑣.  Next, IMA mechanisms are applied separately to 

𝐹𝑎 and 𝐹𝑣 to emphasize modality-specific salient information. Following this, a CMA 

mechanism is employed to enable interaction and fusion between the audio and visual 

modalities, resulting in the final fused representation 𝐹𝑓𝑢𝑠𝑖𝑜𝑛. Finally, the fused features 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 are passed through a fully connected layer followed by a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function to 

perform sentiment classification and output the predicted emotion label. 

 

Fig. 1. The overall structure of MAVSA-DI model.  

3.2 Audio Feature Extraction 

First, the original Mongolian audio data are preprocessed using Librosa. During this 

process, the audio signals are initially transformed from the time domain to the fre-

quency domain via the STFT, which enables the preliminary capture of time-varying 

frequency patterns and provides a clear representation of the spectral composition at 
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each time frame—thus laying the foundation for subsequent feature extraction. Next, 

the frequency-domain signals are mapped onto the Mel frequency scale to better align 

with human auditory perception, and chroma features are further extracted to more ac-

curately reflect the pitch, prosody, and their temporal variations in Mongolian speech. 

 

Fig. 2. Deep Residual Shrinkage Network. 

Subsequently, the extracted time–frequency features are fed into a DRSN for deep-level 

feature modeling. As illustrated in Fig. 2, the DRSN consists of multiple convolutional 

layers, each equipped with a set of kernels designed to capture local patterns in the 

audio signal. 

The output of the 𝑙 − 𝑡ℎ convolutional layer can be formulated as: 

𝑌𝑙 = ∑ 𝐾𝑖
𝑙 ∗ 𝑋𝑙𝑛𝑙

𝑖=1 (1) 

Where 𝑋𝑙 , 𝐾𝑖
𝑙 , and 𝑌𝑙  denote the input, convolution kernel, and output of the 𝑙 − 𝑡ℎ 

convolutional layer, respectively. 𝑛𝑙 represents the number of convolution kernels in 

the 𝑙 − 𝑡ℎ layer, and the ∗ indicates the convolution operation. 

During the training of deep neural networks, issues such as vanishing or exploding 

gradients often arise. To address this, the DRSN introduces a residual connection mech-

anism, in which the input of a previous layer is added directly to the output of a later 

layer, bypassing intermediate layers. This design effectively mitigates gradient degra-

dation and enables the construction of deeper architectures for capturing complex emo-

tional patterns in audio data. The output of the 𝑚 − 𝑡ℎ residual block can be expressed 

as: 

𝐶𝑚 = 𝐴𝑚 + 𝐵𝑚 (2) 

Where 𝐴𝑚 denotes the input to the 𝑚 − 𝑡ℎ residual block, and 𝐵𝑚 represents the out-

put obtained after processing through its intermediate layers. 

In practice, raw audio data often contain a significant amount of noise and redundant 

information that is irrelevant to sentiment analysis, which can interfere with model 



training and reduce classification accuracy. To address this, the DRSN incorporates a 

shrinkage mechanism within its residual blocks. Specifically, it employs techniques 

such as soft thresholding to suppress low-importance or irrelevant features while em-

phasizing emotionally salient information. This design enhances both the robustness 

and generalization capability of the model. Finally, a pooling layer is applied to 

downsample the extracted features, further improving computational efficiency and 

yielding high-quality audio representations for subsequent sentiment classification. 

3.3 Visual Feature Extraction 

OpenCV is employed to extract low-level visual features, laying the groundwork for 

subsequent facial emotion representation. During the face detection stage, Haar cascade 

classifiers provided by OpenCV are used to accurately locate facial regions. Subse-

quently, facial landmark detection is applied to identify key points within the detected 

face areas. By computing geometric parameters such as the distances and angles be-

tween these landmarks, a set of facial geometric features is derived. 

 

Fig. 3. Improved 3D-DenseNet structure diagram. 

Subsequently, the cropped facial images are processed using an I3DD.This improved 

version integrates an SPD-Conv module, which enhances the model’s ability to capture 

spatial–temporal features of facial expressions, particularly in low-resolution scenarios, 

thereby addressing limitations of traditional models in handling facial imagery. As il-

lustrated in Fig. 3, the input image passes through multiple dense blocks. Each dense 

block consists of several stacked DenseLayers, where each layer is densely connected 

to all preceding layers. The input data are first normalized using Batch Normalization 

(BN) to achieve zero mean and unit variance, followed by learnable affine transfor-

mations to scale and shift the normalized data. Then, a Rectified Linear Unit (ReLU) 

activation function is applied to introduce non-linearity by zeroing out negative values 

and retaining positive ones. 

The SPD-Conv is capable of capturing the symmetric positive definite structure em-

bedded in data, offering more precise representation of deep features compared to 
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conventional convolution operations. In the context of complex facial image data, SPD-

Conv exhibits a stronger capacity to capture subtle variations in facial expressions and 

to extract underlying structural information. Let 𝐾 denote the convolutional kernel of 

the layer; the convolution operation can be formulated as: 

(𝐹 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐹(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)𝑛𝑚 (3) 

Where 𝐹 denotes the input feature map, and (𝑖, 𝑗) represents the spatial index of the 

output feature map. Through this convolution operation, the kernel 𝐾 slides over the 

input feature map and performs a weighted summation at each position, thereby ena-

bling the extraction of more informative and discriminative features. 

Transition modules are employed between dense blocks to maintain consistency in 

feature map dimensionality. Upon completion of all dense block operations, the net-

work outputs the visual sentiment feature 𝐹𝑣, which encapsulates rich emotional infor-

mation embedded in facial images and serves as a strong foundation for subsequent 

sentiment classification tasks. 

By integrating the SPD-Conv into specific layers of the 3D-DenseNet architecture, 

the model effectively combines the complementary strengths of both components. The 

powerful deep feature extraction capability of SPD-Conv, when combined with the 

densely connected structure of 3D-DenseNet, significantly enhances the precision and 

accuracy of spatiotemporal feature learning. This integration not only enriches the 

model’s feature representation but also substantially improves its performance in sen-

timent classification tasks, enabling more accurate recognition of facial emotions under 

complex real-world conditions. 

3.4 Feature Fusion 

In the feature fusion stage, an IMA mechanism is introduced to emphasize salient in-

formation within both the audio and visual features. 

For the audio modality, the audio features 𝐹𝑎 extracted by the DRSN are first linearly 

transformed to generate the query 𝑄𝑎 , key 𝐾𝑎 , and value 𝑉𝑎  vectors. The attention 

weights 𝛼𝑎 in the audio modality reflect the relative importance of each feature in con-

tributing to emotion representation. The computation is defined as follows: 

𝛼𝑎 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑎𝐾𝑎

𝑇

√𝑑𝑘
) (4) 

Where 𝑑𝑘 denotes the dimensionality of the key vectors. Subsequently, the enhanced 

audio feature is obtained through a weighted summation as follows: 

𝐹𝑎
′ = 𝛼𝑎𝑉𝑎  (5) 

This mechanism enables the model to more effectively focus on the segments of the 

audio that are highly relevant to emotional expression, thereby enhancing the represen-

tation quality of the audio features. 

In the visual modality, a similar approach is applied to enhance the attention on the 

visual features 𝐹𝑣 extracted by the I3DD. Query vectors 𝑄𝑣 , key vectors 𝐾𝑣, and value 



vectors 𝑉𝑣  are obtained through linear transformations. The attention weights are com-

puted as follows: 

𝛼𝑣 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑣𝐾𝑣

𝑇

√𝑑𝑘
) (6) 

The attention-weighted visual features are then obtained accordingly: 

𝐹𝑣
′ = 𝛼𝑣𝑉𝑣 (7) 

Through this approach, the key information within the visual features is enhanced, 

which contributes to improving their representational capacity in sentiment analysis. 

After completing the IMA enhancement, the enhanced audio features 𝐹𝑎
′ and visual 

features 𝐹𝑣
′ undergo CMA interaction to facilitate information sharing and complemen-

tarity between the two modalities. First, linear transformations are applied to 𝐹𝑎
′ and 𝐹𝑣

′ 

to obtain the cross-modal query vectors 𝑄𝑎𝑣  , key vectors 𝐾𝑎𝑣  , and value vectors 𝑉𝑎𝑣 . 

Then, the CMA weights are computed as follows: 

𝛽𝑎𝑣 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑎𝑣𝐾𝑎𝑣

𝑇

√𝑑𝑘
) (8) 

The final audio-visual fused feature 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 is obtained through a weighted summation. 

3.5 Sentiment Analysis 

The 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 is fed into a fully connected layer to produce the raw score vector for emo-

tion categories, 𝑦𝑝𝑟𝑒 ∈ 𝑅7. Subsequently, the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function is applied to normal-

ize 𝑦𝑝𝑟𝑒, which is defined as follows: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑝𝑟𝑒,𝑖) =
𝑒

𝑦𝑝𝑟𝑒,𝑖

∑ 𝑒
𝑦𝑝𝑟𝑒,𝑗7

𝑗−1

(9) 

Here, 𝑦𝑝𝑟𝑒,𝑖 denotes the raw score corresponding to the 𝑖 − 𝑡ℎ emotion category. 

The final emotion classification result is then obtained as follows: 

𝑦𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑝𝑟𝑒) (10) 

4 Experiment 

4.1 Dataset 

The dataset used in this study is a Mongolian multimodal emotion dataset recorded by 

the Artificial Intelligence Laboratory of Inner Mongolia University of Technology. It 

contains seven emotion categories: sad, angry, surprise, fear, happy, disgusted, and neu-

tral. Each category includes 300 samples, resulting in a total of 2100 video clips. 

The audio tracks were extracted from the video dataset and saved as .wav files. The 

duration of audio samples for each emotion category is summarized in Table 1. 
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Table 1. Audio duration of different emotional categories. 

Emotions The shortest duration 

(seconds) 

The longest duration 

(seconds) 

Total duration 

(hours) 

Sad 2.90 9.71 0.43 

Angry 1.93 5.67 0.24 

Surprise 1.88 5.50 0.26 

Fear 1.84 8.52 0.29 

Happy 2.46 9.52 0.37 

Disgusted 2.02 5.85 0.28 

Neutral 2.90 8.17 0.37 

The videos were processed into frame sequences through frame-by-frame extraction. 

Due to variations in video duration and content complexity across different emotion 

categories, the number of extracted frames differs accordingly. The number of frames 

extracted for each emotion category is presented in Table 2. 

Table 2. The number of framed images of different emotional categories. 

Emotions Number of framed images (sheet) 

Sad 23359 

Angry 7977 

Surprise 9111 

Fear 13402 

Happy 15652 

Disgusted 10305 

Neutral 16173 

4.2 Experimental Environment and Evaluation Index 

Experimental Environment. As shown in Table 3: 

Table 3. Experimental environment configuration. 

Experimental environment Related configuration 

Operating System Ubuntu 18.04.5 LTS 

GPU Nvidia Tesla P100 

CPU Intel® Xeon® Gold 6310 CPU @ 2.10GHz 

Memory 64G 

Python 3.9 

Optimizer Adam 

CUDA 11.2 



Evaluation Index. To evaluate the performance of the proposed MAVSA-DI model, 

this study adopts Accuracy, Recall, and F1-score as evaluation metrics. 

4.3 MAVSA-DI Model Experiment 

 

Fig. 4. Experimental results of MAVSA-DI model. 

The experimental results presented in Fig. 4 indicate that the MAVSA-DI model ex-

hibits varying recognition performance across different emotion categories. Specifi-

cally, the model achieves higher accuracy in recognizing emotions such as ‘happy’ and 

‘surprise’, suggesting its effectiveness in identifying emotions with distinct expressive 

cues. In contrast, the accuracy for the ‘neutral’ emotion is the lowest, which can be 

attributed to the lack of strong emotional signals, making it more challenging for the 

model to distinguish relevant features. The performance on other emotion categories 

remains relatively balanced, demonstrating the model’s ability to effectively learn and 

classify emotions with clear affective tendencies. Overall, the MAVSA-DI model 

shows promising sentiment recognition capabilities.  

4.4 Contrast Experiment 

To validate the effectiveness of the proposed MAVSA-DI model, several representative 

sentiment analysis models were selected for comparative experiments. The baseline 

models include RNN [13], 3D-DenseNet [14], VCAN [15], and CMAVF-AD [9]. 
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Table 4. The experimental results of different models on the constructed dataset. 

Model Modality Accuracy Recall F1  

RNN Audio 67.24 66.07 66.52 

3D-DenseNet Visual 74.13 73.70 72.50 

VCAN Audio+ Visual 77.10 76.02 76.54 

CMAVF-AD Audio+ Visual 79.42 77.28 78.34 

MAVSA-DI (ours) Audio+ Visual 85.47 82.06 83.24 

Table 4 shows that the MAVSA-DI model achieves superior performance compared to 

all baseline models in terms of accuracy (85.47%), recall (82.06%), and F1 (83.24%), 

highlighting its effectiveness in MAVSA tasks.  

In contrast, the traditional RNN model performs the worst under the audio modality, 

indicating its limited ability to capture emotional features from speech signals. The 3D-

DenseNet model yields better results in the visual modality than RNN but still performs 

significantly worse than models utilizing multimodal fusion. Although both VCAN and 

CMAVF-AD benefit from integrating audio and visual modalities and exhibit some 

performance improvement, they fail to sufficiently extract the critical emotional fea-

tures across modalities. In comparison, MAVSA-DI demonstrates enhanced represen-

tational capacity by accurately capturing salient emotional cues, thereby significantly 

improving classification performance and validating the effectiveness of the proposed 

model in MAVSA. 

4.5 Ablation Experiment 

Table 5. Performance comparison of ablation experiments. 

Model Accuracy Recall F1 

w/o DRSN 71.82 71.06 70.36 

w/o I3DD 66.05 63.38 62.74 

w/o IMA 76.37 73.84 74.65 

w/o CMA 80.29 78.26 79.57 

MAVSA-DI (ours) 85.47 82.06 83.24 

As shown in Table 5, an ablation study was conducted to evaluate the contribution of 

each component within the proposed model. The experimental results demonstrate that 

the complete model (MAVSA-DI) achieves the best overall performance across all 

evaluation metrics.  

When the DRSN module in the audio branch is removed, the model's performance 

drops significantly, with the F1 decreasing to 70.36%. This indicates that DRSN plays 

a crucial role in suppressing redundant features and enhancing emotionally salient au-

dio representations. The exclusion of the I3DD module in the visual branch leads to the 

most substantial performance degradation, with the accuracy reduced to 66.05% and 



the F1 to 62.74%, confirming the module's effectiveness in capturing spatiotemporal 

facial cues, especially in low-resolution settings. Additionally, removing either the 

IMA mechanism or the CMA mechanism results in noticeable declines in performance, 

which further validates the importance of attention mechanisms in enhancing modality-

specific representations and enabling effective cross-modal interaction. Overall, each 

component positively contributes to the model’s performance, verifying the effective-

ness and necessity of the design choices in MAVSA-DI. 

5 Conclusion 

This study proposes a Mongolian Audio-Visual Sentiment Analysis model based on 

Deep Residual Shrinkage Network and Improved 3D-DenseNet (MAVSA-DI), which 

effectively enhances the accuracy of MAVSA. To address the challenge of inaccurate 

extraction of key emotional features in Mongolian audio-visual data, the model em-

ploys DRSN and I3DD to perform deep modeling of audio and visual features, respec-

tively, enabling precise emotional representation. Furthermore, IMA mechanisms are 

introduced to emphasize salient emotional cues within each modality, and a CMA 

mechanism is used to achieve effective fusion of audio and visual information for final 

sentiment classification. In future work, we plan to explore cross-lingual model transfer 

strategies and incorporate a conflict-aware feature disentanglement module to mitigate 

inter-modal interference and enhance the complementarity of modalities, particularly 

for emotion categories with low recognition rates. 
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