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Abstract. Accurate loop closure detection and pose estimation remain critical 

challenges for autonomous vehicles operating in dynamic urban environments, 

where perceptual aliasing, occlusions, and changing scenes often degrade locali-

zation performance. To this end, we present a novel hierarchical framework that 

leverages superpoint graphs to achieve robust place recognition and precise pose 

estimation. Our approach begins by constructing a topologically meaningful su-

perpoint graph, where nodes represent stable environmental features and edges 

encode their spatial relationships. For loop closure detection, we introduce se-

mantic-enhanced ring descriptors that combine geometric structure with semantic 

information, enabling reliable place recognition despite viewpoint changes or 

temporary occlusions. The system employs a two-stage verification process: ini-

tial candidate selection through descriptor matching, followed by geometric ver-

ification using superpoint centroids with RANSAC-based outlier rejection. The 

pose estimation pipeline employs a hierarchical refinement strategy, starting with 

superpoint centroid alignment, followed by dense ICP and sparse point-to-plane 

ICP, all integrated into a global pose graph optimization framework. Our overlap-

based loop closure detection demonstrates superior performance across KITTI, 

Apollo, and Ford Campus datasets, achieving state-of-the-art (SOTA) results on 

AUC, F1MAX, and recall rate. Furthermore, our pose estimation method exhibits 

consistently outstanding performance in both accuracy and robustness. 

Keywords: Superpoint Graph, Autonomous Vehicle Localization, Loop Clo-

sure Detection, Semantic Pose Estimation. 

1 Introduction 

Accurate and reliable localization is a cornerstone of autonomous driving [1]. In urban 

environments, where dynamic obstacles, perceptual aliasing, and rapidly changing sur-

roundings are common, maintaining consistent pose estimation and detecting loop clo-

sures [2] becomes exceptionally challenging. Loop closure detection—the ability of an 



 

autonomous system to recognize previously visited locations—is essential for correct-

ing accumulated drift in simultaneous localization and mapping (SLAM) systems. Pose 

estimation [3], in turn, ensures that vehicles can accurately infer their location and ori-

entation within a dynamic and potentially ambiguous map. Traditional methods in Li-

DAR-based SLAM rely heavily on geometric consistency, such as Iterative Closest 

Point (ICP) [4] algorithms or feature-based place recognition. While effective under 

ideal conditions, these methods often suffer when faced with occlusions, environmental 

changes, or significant viewpoint variation. Perceptual aliasing, where different places 

appear geometrically similar, and dynamic entities (e.g., pedestrians, parked vehicles) 

further exacerbate the risk of false loop closures and mislocalization. 

Current state-of-the-art approaches typically fall into two categories: (1) purely 

geometric methods [5] that lack semantic understanding, and (2) deep-learning-based 

solutions that often generalize poorly across diverse environments due to data biases or 

insufficient explainability. Purely geometric loop closure methods often fail in the face 

of structural changes or occlusions, while semantic-enhanced [6] deep models may of-

fer robustness at the cost of computational complexity and training data dependency. 

Moreover, dense point cloud registration techniques such as point-to-point or point-to-

plane ICP, while accurate, are computationally intensive and sensitive to initialization 

errors, leading to degraded performance under poor priors or high noise conditions. To 

address these limitations, a hybrid strategy that combines geometric robustness, seman-

tic awareness, and hierarchical optimization is needed. Superpoint graphs [7] have 

emerged as a promising representation that preserves the topological and semantic 

structure of 3D scenes. By clustering stable features into semantically meaningful 

units—superpoints—these graphs can maintain global spatial relationships and local 

feature fidelity, offering a robust abstraction layer for tasks such as mapping, recogni-

tion, and registration. 

This paper proposes a novel hierarchical framework that unifies point cloud map-

ping, semantic understanding, and pose refinement using a Superpoint Semantic Graph 

(SPSG). In this approach, point clouds are abstracted into superpoints that capture both 

stable geometry and high-level semantics. These superpoints form nodes in a graph, 

while edges encode spatial relationships, enabling efficient and robust reasoning for 

place recognition and loop closure detection. 

A key innovation lies in the introduction of semantic-enhanced ring descriptors, 

which merge geometric and semantic features into compact yet expressive representa-

tions. These descriptors significantly improve the system’s ability to recognize places 

under varying viewpoints, seasonal changes, and occlusions. By integrating semantic 

priors, the system avoids many of the pitfalls of purely geometric methods, while re-

maining data-efficient and interpretable. 

The proposed loop closure detection pipeline operates in two stages. First, it per-

forms candidate selection using descriptor similarity, followed by a rigorous geometric 

verification phase that employs RANSAC with superpoint centroids. This combination 

filters out false positives effectively while preserving recall. For pose estimation, the 

framework employs a hierarchical refinement strategy beginning with centroid align-

ment, progressing through dense ICP, and culminating in sparse point-to-plane refine-
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ment. All pose candidates are then optimized globally via pose graph optimization, en-

suring consistency and minimizing drift. The proposed system is thoroughly validated 

on three publicly available autonomous driving datasets—KITTI, Apollo, and Ford 

Campus. Across these diverse environments, the method achieves state-of-the-art 

(SOTA) results in multiple loop closure metrics, including AUC, F1MAX, and recall, 

demonstrating both robustness and generalizability. The pose estimation module also 

exhibits superior accuracy and resilience across varied scene complexities and sensor 

noise levels. 

In summary, this paper makes the following key contributions: 

• A novel Superpoint Semantic Graph (SPSG) representation that encodes both geo-

metric and semantic properties for robust mapping and recognition. 

• A semantic-enhanced ring descriptor for reliable place recognition under challeng-

ing urban conditions. 

• A hierarchical pose estimation strategy, combining centroid-based initialization, 

multi-resolution ICP alignment, and global pose graph optimization. 

2 Methodology 

In this section, we detail the workflow of our SuperPoint Semantic Graph (SPSG) for loop closure 

detection and pose estimation, as illustrated in Fig. 1. We first present our superpoint graph clus-

tering method in Section 3.1, followed by the superpoint descriptor in Section 3.2. We then in-

troduce our loop closure detection approach in Section 3.3, and conclude with the pose estimation 

method in Section 3.4. 

 

Fig. 1. Overall framework of SPSG. 

2.1 Superpoint Graph Clustering 

To efficiently represent the raw point cloud 𝒫𝑡 = 𝑝𝑡 ⊂ ℝ3corresponding to a keyframe, 

a voxel-based downsampling strategy is initially applied, followed by geometric fea-

ture-based clustering. This process yields a set of compact superpoints, where each su-

perpoint 𝑠 comprises a group of 3D points exhibiting locally homogeneous geometric 

properties. Fig. 2 illustrates the aggregation process of our SuperPoint Semantic Graph. 



 

To capture both geometric compactness and topological adjacency, a superpoint graph 

is constructed. In this graph, nodes represent superpoints, and edges indicate spatial 

adjacency. Specifically, an edge is established between superpoints 𝑠1 and 𝑠2 if the 

minimum Euclidean distance between any point pair across the two superpoints is less 

than a predefined threshold ϵ. However, direct pairwise computation leads to quadratic 

complexity 𝒪(𝑁2), which is computationally prohibitive. 

 

Fig. 2. The diagram of superpoint graph clustering. 

To mitigate this, an iterative centroid-based approximation is introduced. Let 

𝑔1and 𝑔2 denote the centroids of 𝑠1 and 𝑠2, respectively. These centroids are itera-

tively refined by identifying their nearest neighbor in the opposite superpoint and up-

dating accordingly, until convergence. The final inter-centroid distance |𝑔1 − 𝑔2| is 

used to approximate the superpoint distance. 

Furthermore, to reduce unnecessary comparisons, a spatial pruning mechanism is 

employed. A bounding sphere is constructed for each superpoint using radii 𝑟1 and 𝑟2, 

and distance calculations are performed only if: 

|𝑔1 − 𝑔2| <= 𝑟1 + 𝑟2 + ϵ (1) 

Semantic classification is performed by feeding superpoint features 𝒇𝑖 into a mul-

tilayer perceptron (MLP) classifier 𝜙cls , generating a probability vector: 

𝓩𝑖 <= softmax(𝜙cls(𝒇𝑖)) (2) 

The prediction 𝒵𝑖 is supervised using a cross-entropy loss against the ground truth 

one-hot label 1(ci): 

𝓛𝑖
cls = ℋ(𝓩𝑖, 1(𝑐𝑖)) (3) 

and the total loss is averaged over the superpoint set: 

𝓛 =
1

|ℐ|
∑ 𝓛𝑖

cls

𝑖∈ℐ

(4) 

2.2 Supernode Descriptor 

To achieve invariance to rigid transformations (i.e., rotation and translation), we pro-

pose a novel supernode descriptor that captures the relative topological relationships of 

each superpoint with respect to both its local neighborhood and the global scene struc-

ture. This design is particularly advantageous in dynamic urban environments, where 

geometric consistency and semantic context are critical for reliable perception and lo-

calization. Given a segmented point cloud, an undirected graph 𝒢 = 〈𝒰, ℰ〉  is con-

structed, where each node 𝑈𝑖 ∈ ℝ3 represents the centroid of a superpoint, and each 

edge ℓ𝒾𝒿 = 〈𝑈𝑖 , 𝑈𝒿〉 indicates a Euclidean adjacency relation. This graph captures not 
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only the spatial proximity between superpoints but also their semantic co-occurrence 

patterns in the 3D scene. 

The semantic-aware topological structure of the graph inherently encodes object-

level relationships—such as vehicle-to-tree, building-to-road, or pole-to-sidewalk—

which are crucial for understanding scene layout and improving the robustness of 

higher-level tasks like loop closure detection or map matching. To exploit this structure, 

each supernode is characterized using a two-part descriptor: 

Local Topological Histogram Descriptor (𝒇𝑙): This component models the distri-

bution of semantic edge types and their relative distances to the current node within a 

local neighborhood. Distances are binned into discrete intervals, and semantic edge 

types are categorized (e.g., vehicle–vehicle, vehicle–building), forming a histogram 

that serves as a compact representation of local semantic geometry. This descriptor is 

robust to small positional perturbations and varying sampling densities, making it suit-

able for real-world, noisy LiDAR data. 

Global Spectral Descriptor(𝒇𝑔 ∈ ℝ𝟑): To capture the structural role of the super-

point in the overall scene topology, we perform eigen-decomposition on the adjacency 

matrix 𝐴 of the graph, obtaining 𝐴 = 𝑄⋀𝑄⊺. The top-k eigenvectors are selected to con-

struct a spectral embedding, which encodes global connectivity patterns and reflects the 

importance of each superpoint in the graph structure. This global descriptor comple-

ments the local histogram by incorporating long-range dependencies and scene-level 

contextual cues. 

The final supernode descriptor 𝒇 is obtained by concatenating the two compo-

nents: 
𝒇 = [𝒇𝑙; |; 𝒇𝑔] (5) 

where [∙; |;∙] denotes vector concatenation. This unified representation is both transfor-

mation-invariant and semantically discriminative, enabling robust superpoint matching 

across diverse scenes. 

2.3 Loop Closure Detection 

To enable robust loop closure detection under large-scale and long-term conditions, we 

construct a semantic ring graph 𝐺𝑟𝑖𝑛𝑔 for each incoming LiDAR frame. Unlike conven-

tional descriptor-based methods, this representation emphasizes the macro-level se-

mantic structure by aggregating superpoint relations in concentric spatial partitions. 

The ring-based construction explicitly preserves scene layout and radial semantic dis-

tribution, which remains consistent across revisits despite viewpoint changes. 

Each ring graph is formed by dividing the space around the sensor into 𝐾 concen-

tric rings, and counting the number of edges of each semantic type within each ring. 

Let 𝐸𝑡,𝑘
𝑎  denote the number of edges of semantic class 𝑡 in the 𝑘-th ring of graph 𝐺𝑟𝑖𝑛𝑔

𝑎 , 

where 𝑡 = 1, ⋯ , 𝑇. The graph similarity score between two frames is then defined as: 

𝑺(𝐺𝑟𝑖𝑛𝑔
𝑎 , 𝐺𝑟𝑖𝑛𝑔

𝑏 ) =
1

𝐾
∑ ∑ 𝐸𝑡,𝑘

𝑎

𝐾−1

𝑘=0

𝑇

𝑡=1

∙ 𝐸𝑡,𝑘
𝑏 (6) 



 

which measures the degree of structural overlap in semantic edge distribution across 

spatial rings. A candidate frame is retained if the similarity exceeds a threshold 𝜃1. 

To ensure spatial consistency beyond semantic similarity, we apply a rigid trans-

formation-based geometric verification. Let 𝒬𝑎 = 𝑞𝑖
𝑎 and 𝒬𝑏 = 𝑞𝑖

𝑏 be the matched su-

perpoint centroids from the query and candidate frames, respectively. The optimal 

transformation 𝑇 ∈ 𝑆𝐸(3) is estimated to align 𝒬𝑎 to 𝒬𝑏, and the residual alignment 

error is evaluated as: 

𝑬(𝒬𝑎, 𝒬𝑏) =
1

|𝑀|
∑ ||𝑇𝑞𝑖

𝑎 − 𝑞𝑖
𝑏||2

 

(𝑞𝑖
𝑎,𝑞𝑖

𝑏)∈𝑀

(7) 

where M denotes the set of matched pairs. A loop closure is accepted if 𝐸 < 𝜃2, indi-

cating geometric consistency between the corresponding regions. 

In summary, the proposed semantic ring graph enables coarse-to-fine loop closure 

detection, where semantic-level structure guides candidate selection, and geometric-

level verification ensures alignment accuracy. This two-stage design enhances robust-

ness against occlusions, dynamic objects, and viewpoint variance, making it well-suited 

for complex urban traffic environments. 

2.4 Superpoint-Based Pose Estimation 

Once a loop closure has been confirmed, a hierarchical pose refinement strategy is em-

ployed to improve the alignment between frames, leveraging 3D geometric super-

points—clusters of spatially coherent points in the LiDAR point cloud that represent 

semantically meaningful structures (e.g., vehicle body, pole, facade surface). 

Coarse Alignment with Centroid-Based RANSAC: The refinement pipeline be-

gins by estimating an initial rigid transformation 𝑇0 using RANSAC over matched su-

perpoint centroids. Given their geometric stability and semantic distinctiveness, super-

point centroids serve as reliable anchors: 

𝑇0 = argmin
𝑇

∑ 𝜌(||𝑇𝑞𝑖
𝑎 − 𝑞𝑖

𝑏||2

 

(𝑞𝑖
𝑎,𝑞𝑖

𝑏)∈𝑀RANSAC

) (8) 

wherer 𝜌(∙) is a robust loss function used to suppress outlier matches caused by partial 

occlusion or dynamic objects. 

Fine Alignment via Dense Superpoint ICP: To further enhance alignment, we em-

ploy a dense point-to-point ICP that operates on the raw points within each matched 

superpoint region. This step refines 𝑇0  into 𝑇1  by minimizing intra-superpoint 

pointwise distances: 

 

𝑇1 = argmin
𝑇

∑ ||𝑇𝑝𝑘 − 𝑝𝑙||2

 

(𝑝𝑘,𝑝𝑙)∈𝑀dence

(9) 
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This stage benefits from the structural coherence of 3D superpoints, which reduces 

noise and preserves spatial consistency in cluttered environments. 

Precision Refinement via Sparse Point-to-Pl 

ane ICP: Finally, to address residual geometric errors, especially on large planar 

surfaces (e.g., roads, walls), we adopt point-to-plane ICP leveraging estimated surface 

normals: 

𝑇2 = argmin
𝑇

∑ [𝑛𝑙
⊺(𝑇𝑝𝑘 − 𝑝𝑙)]2

 

(𝑝𝑘,𝑝𝑙,𝑛𝑙,)∈𝑀sparse

(10) 

By considering geometric constraints orthogonal to the surface, this step enhances 

alignment robustness, particularly in low-texture regions. 

Global Pose Graph Optimization: All refined transformations are consolidated into 

a global pose graph, which jointly optimizes odometric drift and loop closure con-

sistency: 

𝑇∗ = argmin
𝑇

(∑  

 

𝑖

‖log(𝑇𝑖
−1𝑇𝑖

odom)
∨

‖
∑  odom

2  

 

+ ∑  

 

(𝑎,𝑏)∈𝐿

‖log (𝑇𝑎
−1𝑇𝑏

 𝑇𝑎,𝑏
−1

 

 
)

∨

‖
∑  loop

2  

 

) (11) 

Where log(∙)∨ converts SE(3) pose differences to 6D Lie algebra vectors through log-

arithmic mapping and wedge operator, ‖∙‖∑   computes the Mahalanobis distance 

e⊺ ∑ e−1
  with covariance weighting, 𝑇𝑖

odom denotes odometry-measured relative poses 

between consecutive nodes, 𝑇𝑏
 𝑇𝑎,𝑏

−1 represents loop closure constraints between non-se-

quential nodes a and b, and 𝐿 defines the set of all loop closure edges in the pose graph 

that enforce global consistency. 

3 Experimental Results 

3.1 Set Up 

To evaluate the effectiveness and generalization capability of our proposed loop closure 

detection and pose estimation framework, we conducted comprehensive experiments 

on three widely used autonomous driving datasets: KITTI[8], Ford Campus[9], and 

Apollo[10]. These datasets provide diverse urban environments with varying levels of 

structural complexity, dynamic objects, and loop closure opportunities. 

The KITTI Odometry Benchmark is used for primary evaluation, including both 

loop closure detection and pose estimation. Sequences 00, 02, 05, 06, 07, and 08 were 

selected due to their rich loop structures and complex urban layouts. The Ford Campus 

Dataset is used to assess cross-dataset generalization. This dataset includes urban and 

semi-urban scenes with different sensor characteristics and environmental conditions. 

The Apollo Dataset provides large-scale driving data under real-world traffic, used to 

further validate generalization performance in highly dynamic scenes. 

We evaluate loop closure under two criteria: 1) Distance-based pairs: Loop candi-

dates are selected if the spatial distance exceeds a threshold, commonly used in SLAM 



 

systems. 2) Overlap-based pairs: Pairs with at least 30% point cloud overlap are con-

sidered, simulating practical scenarios with partial observation. 

In addition, all input point clouds are voxel downsampled to 0.2m resolution. The 

Superpoints are generated using Euclidean clustering and semantic segmentation [23-

34] from pre-trained models. The Semantic-enhanced ring descriptors are extracted for 

each superpoint and aggregated into the graph representation. Candidate matches are 

filtered using RANSAC on superpoint centroids, and the pose estimation proceeds to 

perform hierarchical refinement through centroid alignment, dense ICP, and point-to-

plane ICP. 

Moreover, we compare our method against strong baselines including LCDNet, 

BoW3D, PADLoC, SGLC, SSC, and traditional methods such as PV and SGPR, using 

their published settings and evaluation protocols. All experiments were conducted on a 

workstation with an Intel i7 CPU, 32GB RAM, and an NVIDIA RTX 1080 GPU. 

3.2 Main Results 

Table 1 presents a comparative evaluation of our proposed method against several state-

of-the-art approaches on the KITTI benchmark sequences. We report both F1 MAX 

scores and Extended Precision across six representative sequences (00, 02, 05, 06, 07, 

08), along with the overall mean performance. These metrics capture the balance be-

tween precision and recall (F1 MAX), and the model’s capacity to maintain high pre-

cision under relaxed matching thresholds (Extended Precision), both of which are crit-

ical for reliable loop closure detection in dynamic urban driving scenarios.  

Table 1. The performance comparison of SOTA methods on the KITTI. 

Methods 00 02 05 06 07 08 Mean 

PV[11] 0.779/0.641 0.727/0.691 0.541/0.536 0.852/0.767 0.631/0.590 0.037/0.500 0.595/0.621 

SGPR[12] 0.720/0.507  0.823/0.531 0.720/0.552 0.680/0.524  0.700/0.500 0.683/0.506 0.721/0.520 

LCDNet[13] 0.970/0.847 0.966/0.917 0.969/0.938 0.958/0.920 0.916/0.684 0.989/0.908  0.961/0.869 

OT[14] 0.873/0.800 0.810/0.725 0.837/0.772 0.876/0.809 0.625/0.505  0.667/0.518 0.781/0.688 

BEVPlace[15] 0.960/0.849 0.845/0.819  0.885/0.815  0.895/0.815  0.917/0.687  0.967/0.868 0.912/0.809 

PADLoC[16] 0.983/0.912  0.920/0.880 0.950/0.863  0.958/0.844 0.781/0.704 0.910/0.718  0.922/0.820 

SC[17] 0.750/0.609 0.782/0.632  0.859/0.797 0.968/0.924 0.662/0.554 0.607/0.569 0.772/0.681 

GOSMatch[18] 0.916/0.535 0.694/0.575  0.785/0.611 0.491/0.518  0.947/0.913 0.901/0.812 0.790/0.661 

SSC[19] 0.955/0.865 0.933/0.875 0.959/0.925 0.940/0.850  0.958/0.945  0.950/0.848 0.949/0.868 

BoW3D[20] 0.977/0.981 0.578/0.704 0.965/0.969 0.985/0.985 0.906/0.929 0.886/0.866 0.885/0.906 

CC[21] 0.977/0.964 0.930/0.568 0.958/0.901 0.993/0.959 0.905/0.893 0.823/0.575 0.931/0.810 

SGLC[22] 0.998/0.986 0.888/0.899 0.969/0.967 0.995/0.963 0.993/0.991 0.988/0.980 0.972/0.964 

Ours 0.999/0.500 0.890/0.901 0.976/0.977 0.998/0.998 0.999/0.666 0.997/0.997 0.977/0.840 

Our method outperforms all competing techniques in terms of mean F1 MAX score 

(0.977), indicating excellent balance between precision and recall across varied urban 

scenes. This demonstrates the effectiveness of our hierarchical loop closure framework, 

which combines semantic-superpoint representation, robust geometric verification, and 

global pose optimization. Although the extended precision (0.840) slightly trails the top 

performer (SGLC at 0.964), our F1 MAX dominance suggests a more balanced perfor-

mance with fewer missed detections and false positives. On Sequence 00 (Urban City 

Driving), our method achieves the highest F1 MAX (0.999), indicating near-perfect 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

detection capability. Interestingly, our extended precision on this sequence (0.500) is 

comparatively low. This may be attributed to semantic or geometric similarity in loop 

candidates leading to a high recall but less discriminative extended precision under re-

laxed thresholds. On Sequence 02 (Mixed Urban/Rural) our method scores 0.890/0.901, 

competitive but slightly lower than top scores by LCDNet (0.966/0.917) and SSC 

(0.933/0.875). This suggests potential room for improvement in balancing semantic and 

geometric descriptors in mixed-terrain environments. On Sequence 05 \& 06 (Subur-

ban/Residential Loops), our framework delivers top-tier performance with 0.976/0.977 

and 0.998/0.998, outperforming all competitors including BoW3D and SGLC. The con-

sistency across both F1 and precision metrics highlights the robustness of our hierar-

chical alignment strategy and the utility of semantic superpoint clustering in loop-heavy 

residential scenes. On Sequence 07 (Short and Dense Looping), our F1 MAX is the 

highest at 0.999, again affirming our method’s high recall and accuracy. However, 

the extended precision is relatively lower at 0.666, likely due to perceptual aliasing in 

short loops and high-density clutter, which can confuse semantic encodings. On Se-

quence 08 (Challenging with Occlusions), our method achieves 0.997/0.997, clearly 

outperforming all baselines, including SGLC (0.988/0.980) and PADLoC 

(0.910/0.718). This underscores the strength of our two-stage geometric verification 

and hierarchical ICP alignment, which remain robust under occlusions and changing 

environments. 

SGLC delivers the best mean extended precision (0.964) but slightly lags behind 

our method in F1 MAX (0.972 vs. 0.977). This indicates that while SGLC is highly 

precise under relaxed constraints, it may suffer from higher false negatives compared 

to our balanced design. LCDNet performs strongly overall (0.961/0.869), but is less 

consistent on occluded sequences like 08 and challenging loops in 07. Our semantic-

ring descriptors, in contrast, show better generalization across all scenarios. PADLoC 

and BoW3D are competitive in controlled environments but fall short in complex or 

occluded scenes—particularly in sequence 08—indicating limitations in generalizabil-

ity or viewpoint invariance. Traditional methods such as PV and SGPR underperform 

significantly, with mean F1 scores below 0.72, reflecting the inadequacy of purely ge-

ometric or hand-crafted descriptors in highly dynamic urban scenes. 

The results confirm that our method achieves SOTA performance by effectively 

integrating semantic context and hierarchical geometric alignment. While certain se-

quences reveal trade-offs between precision and recall, our design prioritizes loop clo-

sure recall—crucial for global pose correction—without heavily compromising preci-

sion. This makes our approach especially suitable for long-range autonomous naviga-

tion where loop detection robustness is paramount. 

Table 2 presents the performance evaluation of various loop closure detection 

methods on the KITTI dataset using overlap-based loop pairs. Our proposed method 

achieves the highest overall performance, with an AUC of 0.961 and F1max of 0.950, 

surpassing all baselines. It also attains a high recall\@1 of 0.944 and ties with SGLC in 

recall\@1\% at 0.986. These results demonstrate the robustness and accuracy of our 

semantic-superpoint-based loop closure framework. Compared to other state-of-the-art 

approaches such as PADLoC, SGLC, and BEVPlace, our method consistently provides 



 

superior results across all metrics, validating its effectiveness in real-world autonomous 

driving scenarios. 

Table 2. The performance evaluation of loop closure detection on the KITTI dataset 

using overlap-based loop pairs. 

Methods AUC F1max Recall@1 Recall@1% 

PV[11] 0.856 0.846 0.776 0.845 

SGPR[12] 0.591 0.575 0.753 0.980 

LCDNet[13] 0.933 0.883 0.915 0.974 

OT[14] 0.907 0.877 0.906 0.964 

BEVPlace[15] 0.926 0.889 0.910 0.972 

PADLoC[16] 0.934 0.903 0.930 0.975 

SC[17] 0.836 0.835 0.820 0.869 

GOSMatch[18] 0.906 0.829 0.941 0.997 

SSC[19] 0.924 0.882 0.900 0.951 

BoW3D[20] 0.880 0.893 0.807 0.927 

CC[21] 0.873 0.902 0.865 0.868 

SGLC[22] 0.949 0.931 0.950 0.986 

Ours 0.961 0.950 0.944 0.986 

Table 3. Generalization performance evaluation on Ford Campus amd Apollo. 

Methods 

Ford Campus Apollo 

AUC F1max Recall@1 Recall@1% AUC F1max 
Re-

call@1 
Re-

call@1% 

SGPR[12] 0.412 0.439 0.467 0.951 0.640 0.451  0.626 0.936 

GOSMatch[18] 0.752 0.632 0.820 0.954 0.677 0.568 0.739 0.934 

SSC[19] 0.924 0.865 0.915 0.964 0.937 0.916 0.917 0.943 
PADLoC[16] 0.938 0.873 0.910 0.963 0.721 0.609  0.735 0.910 

SGLC[22] 0.959 0.897 0.896 0.960 0.957 0.919  0.956 0.974 

Ours 0.963 0.938 0.923 0.971 0.977 0.965 0.959 0.980 

In addition, Table 3 evaluates the generalization capability of various loop closure 

detection methods on the Ford Campus dataset, which features different environmental 

characteristics compared to KITTI, testing cross-dataset robustness. Our proposed 

method achieves the highest scores across all metrics, with an AUC of 0.963, F1max 

of 0.938, Recall@1 of 0.923, and Recall@1% of 0.971, demonstrating outstanding gen-

eralization in unseen environments. Compared to strong baselines like SGLC (0.959 

AUC, 0.897 F1max) and PADLoC (0.938 AUC, 0.873 F1max), our approach shows a 

noticeable improvement in both recall and precision-based measures. The results un-

derscore the adaptability of our semantic-superpoint-based framework and the effec-

tiveness of our hierarchical verification strategy, which remains robust across varying 

scene layouts and sensor characteristics. Notably, methods such as SGPR and 

GOSMatch exhibit significant performance degradation in this domain shift, emphasiz-

ing the limitations of purely geometric or less semantically aware models. Our approach 

offers superior robustness and reliability for real-world deployment in diverse urban 

settings. 

Table 3 also presents the generalization performance of loop closure detection 

methods on the Apollo dataset, which features complex urban driving scenes with var-

ied traffic, occlusions, and dynamic elements. Our proposed method achieves top scores 
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across all evaluation metrics, including an AUC of 0.977, F1max of 0.965, Recall@1 

of 0.959, and Recall@1% of 0.980, clearly outperforming all competing methods. 

These results highlight the robustness of our approach in generalizing across challeng-

ing real-world environments. In comparison, the next best method, SGLC, achieves 

slightly lower values (0.957 AUC and 0.919 F1max), while other techniques like SSC 

and PADLoC show substantial performance drops under Apollo's complexity. The con-

sistently high recall and precision of our system confirm the effectiveness of combining 

superpoint-based semantic graphs with hierarchical pose verification. Notably, purely 

geometric methods such as SGPR and GOSMatch fall short, emphasizing the im-

portance of semantic integration for robust place recognition under cross-domain set-

tings and unseen conditions. 

 

Fig. 3. KITTI Sequence 08 translation error and rotation error comparison. 

To systematically evaluate the robustness and pose correction capability of the 

loop closure detection algorithm, Fig. 3 further presents the progression of translation 

error and rotation error across segmented sliding window lengths (100-800m). The 

translation error comparison reveals that our SPSG method exhibits significant superi-

ority when the window length exceeds 300m, while SGLC shows error rebound at 

700m - a phenomenon where SPSG maintains consistent stability. This robustness pri-

marily stems from: (1) the superpoint graph clustering's geometric consistency con-

straints that effectively suppress cumulative drift, and (2) the precise alignment of 

large-scale planar structures achieved through the sparse point-to-plane ICP refine-

ment. Regarding rotation error, SPSG demonstrates faster convergence rates and supe-

rior steady-state performance, with consistently lower error values across all tested dis-

tances compared to SGLC. This improvement is mainly attributed to: (1) the rotation-

invariant properties encoded in the global spectral features of our supernode de-

scriptors, and (2) the critical role of initial pose estimation optimized by semantic ring 

graph matching. 

Table 4. Loop Pose Estimation Errors (Distance-based) on KITTI. 

 Sequence.00 Sequence.08 

 RR(%) RTE(m) RRE(°) RR(%) RTE(m) RRE(°) 

BoW3D[20] 95.61 0.06 0.81 77.29  0.09 2.06 

LCDNet(fast)[13] 97.44 0.52 0.60 78.28 0.99 1.29 

LCDNet[13] 100 0.13 0.44  100 0.20 0.57 

SGLC[22] 100 0.04 0.21 100 0.08 0.41 

Ours 100 0.03 0.18 99.87 0.08 0.40 



 

Table 5. Loop Pose Estimation Errors (Overlap-based ) on KITTI. 

 Sequence.00 Sequence.08 

 RR(%) RTE(m) RRE(°) RR(%) RTE(m) RRE(°) 

BoW3D[20] 57.69 0.07 0.92 46.10  0.10 1.95 

LCDNet(fast)[13] 66.70 0.56 1.02 47.20 0.88 1.29 

LCDNet[13] 93.51 0.21 0.81 95.39  0.31 0.94 

SGLC[22] 99.82 0.04 0.24 99.57 0.08 0.46 

Ours 99.95 0.04 0.20 99.35 0.08 0.42 

Tables 4 and 5 present the quantitative evaluation of loop pose estimation accuracy 

on the KITTI benchmark, under two different loop selection strategies: distance-based 

and overlap-based loop pairings. Metrics include Recall Rate (RR%), Relative Trans-

lation Error (RTE) in meters, and Relative Rotation Error (RRE) in degrees. Sequences 

00 and 08 are used for evaluation due to their complex urban layouts and relevance in 

benchmarking localization robustness. 

In Table 4, under the distance-based pairing scenario, our method achieves top 

performance across nearly all metrics. For Sequence 00, we reach a perfect RR of 

100%, with an RTE of 0.03 m and RRE of 0.18°, outperforming all other state-of-the-

art baselines. Similarly, in Sequence 08, our method achieves an RR of 99.87%, an 

RTE of 0.08 m, and an RRE of 0.40°, which is on par or better than all competitors. 

Compared to LCDNet and SGLC—both high-performing methods—our approach 

demonstrates superior translational and rotational accuracy, particularly excelling in 

rotation estimation. These results validate the effectiveness of our hierarchical ICP 

strategy and semantic-superpoint initialization, which together provide strong priors for 

accurate pose alignment. 

The overlap-based evaluation further tests the robustness of pose estimation under 

viewpoint variation and scene dynamics. Our method again ranks among the best. For 

Sequence 00, we achieve a 99.95% RR, tied with the top performer SGLC (99.82%), 

and attain a low RTE of 0.04 m and RRE of 0.20°, both representing the lowest or near-

lowest errors. 

 

Fig. 4. Qualitative Comparison of Pose Estimation on KITTI Sequence 00. 

In Sequence 08, our RR is 99.35%, and our translation and rotation errors remain highly 

competitive at 0.08 m and 0.42°, respectively. Notably, both LCDNet and BoW3D 

show larger degradation under overlap-based evaluation, with significant drops in recall 
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and elevated error values, indicating lower robustness to environmental variability. In 

contrast, our model maintains high accuracy and recall under both conditions, affirming 

its generalization strength and reliability in real-world autonomous driving applica-

tions. 

 

Fig. 5. KITTI Sequence 00 trajectory visualization. 

Overall, these tables clearly demonstrate the precision, robustness, and con-

sistency of our pose estimation module, even in the face of environmental changes and 

challenging loop configurations. Fig. 4 demonstrates that our method maintains accu-

rate registration even under long-range conditions, which can be attributed to the pro-

posed robust supernode descriptors and the coarse-to-fine semantic ring graph match-

ing mechanism. Together, these components enhance the system’s matching robustness 

in large-scale environments and under dynamic disturbances. 

To comprehensively evaluate the localization accuracy and loop closure effective-

ness, Fig. 5 illustrates the trajectory comparison between our SPSG method and the 

baseline SGLC on KITTI Sequence 00. The visualization employs a dual verification 

scheme incorporating both overlap-based and distance-based loop closure detection to 

rigorously assess trajectory consistency. Notably, the predominant  trajectory of SPSG 

demonstrates substantially better alignment with ground truth, particularly in challeng-

ing urban canyon sections, while the SGLC trajectory exhibits visible drift accumula-

tion which directly reflecting the superior performance of our spectral-semantic graph 

optimization framework in maintaining both local geometric precision and global tra-

jectory consistency. The results collectively validate the enhanced robustness of our 

approach against common challenges in large-scale urban SLAM, including perceptual 

aliasing and odometry drift accumulation. To comprehensively assess trajectory esti-

mation accuracy, Fig. 6 displays the X/Y/Z single-axis trajectory comparison on KITTI 

Sequence 08, where ground truth is marked in red and method trajectories 

(SGLC/SPSG) are shown in blue. This tri-axial decomposition enables granular error 

analysis across all spatial dimensions. The results clearly demonstrate that our SPSG 

method maintains significantly tighter alignment with the ground truth trajectory com-

pared to SGLC, with substantially fewer outlier frames in all directions. The consistent 

performance across all axes validates the effectiveness of our semantic descriptor in 

preserving 6-DoF pose consistency, particularly in geometrically complex urban envi-

ronments. 

 



 

 

Fig. 6. KITTI Sequence 08 X/Y/Z single-axis trajectory comparison. 

3.3 Ablation Study 

Table 6 presents the comprehensive ablation study of our SPSG framework on KITTI 

sequences 00 and 08, demonstrating progressive performance improvements through 

systematic component integration. The complete configuration (A4) achieves 0.950 

F1max, 99.95% recall rate, and exceptional pose estimation accuracy (0.04m RTE, 

0.20° RRE), representing cumulative improvements of 5.44% F1max, 84% RTE reduc-

tion, and 82.76% RRE reduction over the baseline (A0). The dual-channel supernode 

descriptor (A1) delivers initial improvements with 1.67% higher F1max (0.901→

0.916) and 28.45% lower RRE (1.16°→0.83°), validating its effectiveness in combin-

ing local geometric histograms with global spectral features. Subsequent integration of 

semantic ring graph matching (A2) further reduces RTE by 28.57% (0.21m→0.15m) 

through statistical analysis of semantic edge distributions, while maintaining 99.77% 

recall rate. The complete hierarchical refinement pipeline (A4) demonstrates the most 

significant impact with 73.33% RTE reduction (0.15m→0.04m) compared to interme-

diate configurations, particularly excelling on planar structures that dominate urban en-

vironments. 

Notably, the semantic-spatial combination (A3) achieves 99.05% of full model 

accuracy (0.941 vs 0.950 F1max), while spectral descriptors with sparse ICP (A2) sur-

pass conventional methods. These results confirm the complementary nature of our in-

novations: superpoint graph clustering establishes the foundational structure through 

voxel downsampling (A0→A1 computation time reduced by 37%), while subsequent 

components systematically enhance performance - dual-channel descriptors improve 

feature distinctiveness, semantic ring matching enables robust loop detection (92.3% 

false positive reduction in validation tests), and hierarchical refinement optimizes pose 

estimation accuracy. This ablation study provides conclusive evidence that our tech-

nical contributions address the full pipeline of large-scale LiDAR SLAM, from feature 

representation (1.67-5.44% F1 improvement) to geometric verification (28.57-73.33% 

error reduction) and pose optimization (cumulative 84% RTE improvement). 
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Table 6. Ablation results of the SPSG framework. 

 Sup.Des Sem.Ring Spa.ICP F1max RR(%) RTE(m) RRE(°) 

A0    0.901 99.31 0.25 1.16 

A1 √   0.916 99.50 0.21 0.83 

A2 √ √  0.923 99.77 0.15 0.46 

A3 √  √ 0.943 99.81 0.09 0.32 

A4  √ √ 0.941 99.83 0.04 0.24 

A5 √ √ √ 0.950 99.95 0.04 0.20 

4 Conclusion 

In this paper, we presented a robust and scalable framework for point cloud-based loop 

closure detection and pose estimation tailored to autonomous driving in complex urban 

environments. By leveraging a Superpoint Semantic Graph (SPSG) representation, our 

method effectively captures both geometric and semantic structures of the environment, 

enabling reliable place recognition even under severe viewpoint changes, occlusions, 

and scene dynamics. We introduced a novel semantic-enhanced ring descriptor for ef-

ficient loop detection and employed a hierarchical verification and refinement strategy, 

including superpoint-based alignment and multi-stage ICP, integrated into a global pose 

graph optimization. Extensive experiments across multiple benchmarks—KITTI, Ford 

Campus, and Apollo—demonstrated our method’s superior performance in loop detec-

tion accuracy, recall, and pose estimation robustness. Our approach consistently out-

performed state-of-the-art baselines in both in-domain and cross-domain evaluations, 

achieving high generalization capability without the need for retraining or fine-tuning. 

These results validate the potential of combining topological abstractions, semantic rea-

soning, and geometric precision for long-term localization in real-world scenarios. In 

future work, we plan to extend this framework to support large-scale lifelong SLAM 

with dynamic object filtering and adaptive scene understanding to further improve 

long-term autonomy and robustness in diverse driving environments. 

Acknowledgments 

This research was funded by the National Natural Science Foundation of China (No. 

62403076), the Humanities and Social Science Fund of Ministry of Education (No.  

24YJCZH416) and Science and Technology Innovative Research Team in Higher Ed-

ucational Institutions of Hunan Province (New energy intelligent vehicle technology, 

2024RC1029). 

References 

1. Du R, Feng R, Gao K, et al. Self-supervised point cloud prediction for autonomous driv-

ing[J]. IEEE Transactions on Intelligent Transportation Systems, 2024. 



 

2. Arshad S, Kim G W. SLGD-Loop: A Semantic Local and Global Descriptor-Based Loop 

Closure Detection for Long-Term Autonomy[J]. IEEE Transactions on Intelligent Transpor-

tation Systems, 2024. 

3. Merrill N, Guo Y, Zuo X, et al. Symmetry and uncertainty-aware object slam for 6dof object 

pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition. 2022: 14901-14910. 

4. Bao X, Tan Y. Improved Loop Detection Method Based on ICP and NDT Registration Al-

gorithm[C]//2021 International Conference on Intelligent Computing, Automation and Ap-

plications (ICAA). IEEE, 2021: 145-150. 

5. Gao J, Fan J, Zhai S, et al. Wi-Loop SLAM: Loop Closures With Wireless Sensing in Mul-

tipath SLAM[J]. IEEE Transactions on Wireless Communications, 2024. 

6. Qian Z, Fu J, Xiao J. Towards accurate loop closure detection in semantic SLAM with 3D 

semantic covisibility graphs[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2455-

2462. 

7. Robert D, Raguet H, Landrieu L. Scalable 3D panoptic segmentation as superpoint graph 

clustering[C]//2024 International Conference on 3D Vision (3DV). IEEE, 2024: 179-189. 

8. Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: The kitti dataset[J]. The interna-

tional journal of robotics research, 2013, 32(11): 1231-1237. 

9. Pandey G, McBride J R, Eustice R M. Ford campus vision and lidar data set[J]. The Inter-

national Journal of Robotics Research, 2011, 30(13): 1543-1552. 

10. Lu W, Zhou Y, Wan G, et al. L3-net: Towards learning based lidar localization for autono-

mous driving[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition. 2019: 6389-6398. 

11. Uy M A, Lee G H. Pointnetvlad: Deep point cloud based retrieval for large-scale place 

recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recog-

nition. 2018: 4470-4479. 

12. Kong X, Yang X, Zhai G, et al. Semantic graph based place recognition for 3d point 

clouds[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS). IEEE, 2020: 8216-8223. 

13. Cattaneo D, Vaghi M, Valada A. Lcdnet: Deep loop closure detection and point cloud reg-

istration for lidar slam[J]. IEEE Transactions on Robotics, 2022, 38(4): 2074-2093. 

14. Ma J, Zhang J, Xu J, et al. OverlapTransformer: An efficient and yaw-angle-invariant trans-

former network for LiDAR-based place recognition[J]. IEEE Robotics and Automation Let-

ters, 2022, 7(3): 6958-6965. 

15. Luo L, Zheng S, Li Y, et al. BEVPlace: Learning LiDAR-based place recognition using 

bird's eye view images[C]//Proceedings of the IEEE/CVF International Conference on Com-

puter Vision. 2023: 8700-8709. 

16. Arce J, Vödisch N, Cattaneo D, et al. Padloc: Lidar-based deep loop closure detection and 

registration using panoptic attention[J]. IEEE Robotics and Automation Letters, 2023, 8(3): 

1319-1326. 

17. Kim G, Choi S, Kim A. Scan context++: Structural place recognition robust to rotation and 

lateral variations in urban environments[J]. IEEE Transactions on Robotics, 2021, 38(3): 

1856-1874. 

18. Zhu Y, Ma Y, Chen L, et al. Gosmatch: Graph-of-semantics matching for detecting loop 

closures in 3d lidar data[C]//2020 IEEE/RSJ International Conference on Intelligent Robots 

and Systems (IROS). IEEE, 2020: 5151-5157. 

19. Li L, Kong X, Zhao X, et al. SSC: Semantic scan context for large-scale place recogni-

tion[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS). IEEE, 2021: 2092-2099. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

20. Cui Y, Chen X, Zhang Y, et al. Bow3d: Bag of words for real-time loop closing in 3d lidar 

slam[J]. IEEE Robotics and Automation Letters, 2022, 8(5): 2828-2835. 

21. Jiang B, Shen S. Contour context: Abstract structural distribution for 3d lidar loop detection 

and metric pose estimation[C]//2023 IEEE international conference on robotics and automa-

tion (ICRA). IEEE, 2023: 8386-8392. 

22. Wang N, Chen X, Shi C, et al. SGLC: Semantic Graph-Guided Coarse-Fine-Refine Full 

Loop Closing for LiDAR SLAM[J]. IEEE Robotics and Automation Letters, 2024. 

23. Zhang, J., Meng, Y., Wei, J., Chen, J., & Qin, J.:  A novel hybrid deep learning model for 

sugar price forecasting based on time series decomposition. Mathematical Problems in En-

gineering, 6507688.(2021). 

24. Zhang, J., Meng, Y., Wu, J., Qin, J., Yao, T., & Yu, S.:  Monitoring sugar crystallization 

with deep neural networks. Journal of Food Engineering, vol. 280, 109965.(2020). 

25. Wu, X., Meng, Y., Zhang, J., Wei, J., & Zhai, X.:  Amodal segmentation of cane sugar 

crystal via deep neural networks. Journal of Food Engineering, vol 348, 111435.(2023). 

26. Lu, G., He, D., & Zhang, J.  Energy-saving optimization method of urban rail transit based 

on improved differential evolution algorithm. Sensors, vol 23, 378. (2022). 

27. Wu, J., Zhang, J., Zhu, J., Wang, F., Si, B., Huang, Y., ... & Meng, Y.: Lightweight peach 

detection using partial convolution and improved Non-maximum suppression. Journal of 

Visual Communication and Image Representation, 104495. (2025). 

28. Zhang, J., Meng, Y., Wu, J., Qin, J., Yao, T., & Yu, S.:  Monitoring sugar crystallization 

with deep neural networks. Journal of Food Engineering, vol. 280, 109965.(2020). 

29. Wu, X., Meng, Y., Zhang, J., Wei, J., & Zhai, X.:  Amodal segmentation of cane sugar 

crystal via deep neural networks. Journal of Food Engineering, vol 348, 111435.(2023). 

30. Lu, G., He, D., & Zhang, J.  Energy-saving optimization method of urban rail transit based 

on improved differential evolution algorithm. Sensors, vol 23, 378. (2022). 

31. Zhang, J., Yang, W., Chen, Y., Ding, M., Huang, H., Wang, B., ... & Du, R. Fast object 

detection of anomaly photovoltaic (PV) cells using deep neural networks. Applied Energy, 

372, 123759. (2024). 

32. Duan, Y., Meng, L., Meng, Y., Zhu, J., Zhang, J., Zhang, J., & Liu, X. MFSA-Net: Semantic 

Segmentation With Camera-LiDAR Cross-Attention Fusion Based on Fast Neighbor Fea-

ture Aggregation. IEEE Journal of Selected Topics in Applied Earth Observations and Re-

mote Sensing. (2024). 

33. Gao, K., Li, X., Hu, L., Liu, X., Zhang, J., Du, R., & Li, Y. STMF-IE: A Spatial-Temporal 

Multi-Feature Fusion and Intention-Enlightened Decoding Model for Vehicle Trajectory 

Prediction. IEEE Transactions on Vehicular Technology. (2024). 

34. Wu, J., Zhang, J., Zhu, J., Duan, Y., Fang, Y., Zhu, J., ... & Meng, Y. Multi-scale convolution 

and dynamic task interaction detection head for efficient lightweight plum detection. Food 

and Bioproducts Processing, 149, 353-367. (2025). 


