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Abstract. In order to quickly and accurately identify tomato fruit ripeness 

and implement automated tomato harvesting in agricultural environments, 

this study proposes a lightweight tomato  ripeness  detection model based on 

an  improved YOLOv10. Firstly, a lightweight model based on the im-

proved YOLOv10 is proposed by introducing the Universal Inverted 

Bottleneck module from the MobileNetV4 network and integrating it with 

the C2f module in YOLOv10. Then, a new feature fusion structure is 

designed, where the C2fUIB module replaces the original feature fusion 

module in the C C F M structure, and the GhostConv module is introduced 

to replace the standard Conv module. The improved model efficiently 

handles and fuses the different scale information, and at the same time 

enhances the model’s detection accuracy and computational efficiency for 

tomato fruits. The results of this research model on tomato fruit ripeness 

detection show that the accuracy, recall and average precision are 88.2%, 

86.2% and 90.2%, respectively, and the number of parameters of the 

network model is 4.62M, and the model memory occupancy is 9.7MB, 

which has a high detection precision and low number of parameters. It 

highlights the effect of the improved model on tomato fruit ripeness detec-

tion. 

Keywords: YOLOv10, Ripeness Detection, Lightweight Model, Tomato, Mo-

bileNetV4, CCFM. 

1 Introduction 

At present, modern agriculture across the globe has increasingly adopted smart farming, 

establishing it as a significant trend in agricultural development [1]. Researchers around 

the world have incorporated computer vision technology into agriculture, applying it to 

areas such as crop pest detection, fruit recognition, grading, and automated harvesting. 

Deep learning-based fruit detection and picking robots have attracted growing interest. 

Employing detection robots for automated fruit ripeness assessment and mechanized 



harvesting offers the potential to greatly enhance harvesting efficiency and lower costs 

[2]–[4]. Nonetheless, the development of fully mature mechanized harvesting technol-

ogy continues to encounter significant challenges. 

Tomatoes are valued for their rich vitamin content and high nutritional benefits. The 

fruits grow in clusters, and due to the diversity of tomato varieties and the complexity 

of growing environments, achieving objective and standardized ripeness detection re-

mains challenging. This complexity poses significant challenges to the recognition pro-

cess, impacting both accuracy and reliability. Consequently, the critical step in advanc-

ing automated harvesting technology lies in overcoming environmental complexities 

and ensuring precise multi-class target recognition in tomato imagery. 

To tackle this issue, the study introduces a lightweight tomato ripeness detection 

method based on an improved YOLOv10, leveraging advancements from the latest 

YOLO series of object detection algorithms. By adopting the consistent dual allocation 

strategy proposed in YOLOv10, which eliminates the need for NMS during training, 

and incorporating an efficiency and accuracy-driven design, the model achieves opti-

mization in both aspects. This approach significantly enhances the recognition accuracy 

of tomato ripeness. This research offers the following major contributions: 

• The backbone network of the YOLOv10 model is im-proved by integrating the Uni-

versal Inverted Bottleneck (UIB) module from MobileNetV4 with the C2f module, 

creating a new modular structure, C2fUIB, which reduces both the number of model 

parameters and computational complexity. 

• The cross-scale feature fusion model (CCFM) is employed to replace the original 

Neck structure, with C2fUIB substituting for RepC3, the feature fusion mod-ule in 

CCFM, to more effectively integrate feature in-formation from different scales and 

enhance the model’s adaptability to scale variations and the detection of small-scale 

targets. 

• The GhostConv module is introduced as a replacement for the standard Conv module 

in the CCFM architecture, aimed at reducing the number of model parameters and 

memory footprint to support lightweight deployment. 

2 Related work 

2.1 Traditional Methods of Fruit Detection 

Traditional fruit identification and detection methods are mainly digital image pro-

cessing, through the image extraction of the target fruit color, shape and texture features 

such as matching, and discernment of the type of disease and quality analysis [5]. Surya 

Prabha [6] developed two algorithms that utilize color and size features to classify ba-

nana ripeness by analyzing the color characteristics in banana images. Lin [7] employed 

Hough transformation, leveraging color and texture information, for contour-based de-

tection of citrus, tomatoes, and other fruits. 

While color-based fruit recognition methods have shown promising results for cer-

tain fruits, their reliance on color features limits their adaptability to variations in light-

ing and color conditions. On the other hand, texture-based recognition methods face 
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challenges due to filter constraints and feature description limitations, which reduce 

their efficiency. As a result, traditional detection methods are constrained to a single 

detection scenario and struggle with the accuracy and robustness needed for fruit recog-

nition in complex environments. Furthermore, these methods often involve more com-

plex and time-consuming feature extraction processes, making them less suitable for 

addressing the demands of modern agriculture. 

2.2 Deep Learning-Based Tomato Fruit Detection Methods 

Deep learning techniques not only overcome the robust-ness limitations of traditional 

methods that rely on color, shape, and texture features but also deliver significantly 

higher accuracy compared to conventional image processing techniques, demonstrating 

substantial potential for practical applications [8]. Deep learning-based target detection 

algorithms can be broadly categorized into two-stage and single-stage approaches. 

Two-stage detection methods utilize region proposal techniques to identify potential 

candidate regions, followed by classification and localization of these regions. Notable 

examples of such algorithms include R-CNN [9], Fast R-CNN [10], and Faster R-CNN 

[11]. Single-stage object detection methods, by contrast, bypass the need for pre-ex-

tracting candidate regions and directly perform classification and bounding box regres-

sion on feature maps. Examples include SSD [12] and the YOLO series [13]. 

Zheng [14] introduced the YOLOX-Dense-CT detection algorithm, which incorpo-

rates the DenseNet network and CBAM attention mechanism. These improvements en-

hance the network’s suitability for cherry tomato detection, significantly improving the 

model’s recognition performance. Cai [15] developed an improved YOLOv7-tiny 

method for cherry tomato detection, leveraging multi-modal RGB-D images and an 

optimized network. When tested on an AGV-based robot, this method achieved a har-

vesting success rate exceeding 80%. 

3 Approaches 

3.1 LMCNet: Integrating MobileNetV4 and CCFM into YOLOv10 

This study focuses on an enhanced YOLOv10 model designed for detecting tomato 

ripeness in complex environments. To minimize model parameters and computational 

complexity, the original C2f module in the backbone network is replaced with the Uni-

versal Inverted Bottleneck (UIB) module from the MobileNetV4 [16] network, forming 

the C2fUIB module. Additionally, the neck feature fusion module is optimized by re-

placing the original PANet (Path Aggregation Network) with a lightweight Cross-Scale 

Feature Fusion Module (CCFM). Within the CCFM structure, the RepC3 feature fusion 

module is substituted with C2fUIB, enhancing adaptability to scale variations and 

small-scale object detection. Furthermore, the standard Conv convolution module in 

the CCFM structure is replaced with a GhostConv module, reducing the parameter 

count and memory usage. This improved model retains the advanced end-to-end real-

time object detection capabilities of the original design while achieving a lightweight 



architecture, significantly lowering computational resource requirements. The architec-

ture of the refined network model is shown in Fig. 1. 

 

Fig. 1. Structure of the proposed LMCNet model. 

3.2 The C2fUIB Block 

The original backbone network employs the C2f module for feature extraction. How-

ever, detecting tomato fruits in specific agricultural environments often faces compu-

tational inefficiency due to resource constraints. To address this, we integrate the UIB 

module from the MobileNetV4 network to optimize YOLOv10’s feature extraction ca-

pabilities. This approach not only enhances computational efficiency but also signifi-

cantly reduces the algorithm’s parameter size and computational overhead. The UIB 

search block is illustrated in Fig. 2. Its modular and adjustable design makes it well-

suited for efficient network architectures and adaptable to a variety of optimization 

tasks. 
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Fig. 2. Universal Inverted Bottleneck Module. 

Assuming the input feature map is 𝑋 and the output feature map is 𝑌, the computation 

flow of the Universal Inverted Bottleneck (UIB) module is as follows: 

Pre-DWConv: 

 𝑋1 = 𝐷𝑊𝐶𝑜𝑛𝑣𝑘1
(𝑋) (1) 

Channel Expansion (1×1 Convolution): 

 𝑋2 = 𝑃𝑊𝐶𝑜𝑛𝑣𝑒𝑥𝑝𝑎𝑛𝑑(𝑋1) (2) 

Intermediate DWConv: 

 𝑋3 = 𝐷𝑊𝐶𝑜𝑛𝑣𝑘2
(𝑋2) (3) 

Channel Projection (1×1Convolution): 

 𝑌𝑐,ℎ,𝑤 = 𝐵𝑁(∑ 𝑊𝑐,𝑘 ∗ 𝑋3𝑘,ℎ,𝑤

𝐶𝑚𝑖𝑑
𝑘=1 + 𝑏𝑐) (4) 

Where 𝑘 denotes the kernel size, 𝑊 represents the convolution kernel weights, and 𝑏𝑐 

denotes the bias term. 

As shown in Fig. 3, the C2f module processes input data by applying two convolu-

tional layers, extracting abstract features at multiple levels. Additionally, the input data 

is branched to enhance the network’s non-linear and representational capabilities, im-

proving its effectiveness in capturing complex data patterns. 

 

Fig. 3. C2f Module Structure. 

We integrate the UIB block into the original C2f module by replacing its Bottleneck 

component, resulting in the creation of the C2fUIB module, as shown in Fig. 4. This 

new module not only preserves YOLOv10’s strengths in multi-scale feature extraction 



and fusion but also improves efficiency through a lightweight design, significantly re-

ducing computational resource requirements. 

 

Fig. 4. C2fUIB Module Structure. 

3.3 CCFM  Structure 

In this study, an improved Cross-Scale Feature Fusion Mod-ule (CCFM) structure re-

places the Path Aggregation Network (PANet) in the neck of the YOLOv10 model. 

This modification enables the fusion of feature information at different scales, enhanc-

ing the model’s adaptability to scale variations and improving its performance in de-

tecting small-scale targets, as shown in Fig. 5. The enhanced CCFM structure incorpo-

rates a Fusion module consisting of convolutional layers within the fusion paths. These 

layers combine features from neighboring scales, effectively merging detailed features 

with contextual information to boost the model’s overall performance. 

 

Fig. 5. CCFM Structure. 

Let 𝐹𝑙 ∈ ℝ𝐶×𝐻𝑙×𝑊𝑙  denote the low-level semantic features, and 𝐹𝑚 ∈ ℝ𝐶×𝐻𝑚×𝑊𝑚  de-

note the high-level semantic features. The output feature 𝐹𝑜𝑢𝑡 is computed as: 

 𝐹𝑜𝑢𝑡 = 𝜎(𝐵𝑁(𝑊3×3 ∗ 𝜎(𝐵𝑁(𝑊1×1 ∗ 𝐶𝑜𝑛𝑐𝑎𝑡(𝑢(𝐹𝑙), 𝐹𝑚 + 𝑏))))) (5) 

Where 𝑢( ) denotes the upsampling function, 𝜎 is the activation function, 𝑊 represents 

the convolutional kernel weights, and 𝑏 is the bias term. 

Additionally, the feature fusion module in the CCFM structure has been upgraded 

by replacing the RepC3 module with the C2fUIB module, further improving detection 

performance for small objects. The improved fusion modules complement one another 

through their respective design principles, optimizing the feature fusion process and 

significantly enhancing the overall performance of tomato fruit detection. 
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3.4 GhostConv Module 

The original CCFM model structure in the neck network employs a conventional Conv 

module. In this study, we intro-duce the GhostConv module from the GhostNet [17] 

network to replace the standard Conv module. This substitution reduces the model’s 

parameter count and memory footprint, facilitating lightweight deployment. The con-

ventional convolution structure, shown in Fig. 6(a), typically involves convolving the 

input image, followed by batch normalization and non-linear activation. 

 

Fig. 6. Standard Convolution and GhostConv Model 

The structure of the GhostConv module, illustrated in Fig. 6(b), begins with a standard 

convolution to compress the input channels and generate smaller feature maps. These 

feature maps then undergo a grouping operation: each channel is subjected to a linear 

transformation to produce a Ghost feature map. The feature map obtained from the in-

itial convolution is mapped identically. Finally, the two groups of feature maps are 

merged along the channel dimension to produce the output feature map. 

 𝑌′ ∈ ℝ𝐶′×𝐻×𝑊,   𝐶′ = 𝐶𝑜𝑢𝑡/𝑠 (6) 

 𝑌 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑌′, {𝐶ℎ𝑒𝑎𝑝𝑂𝑝(𝑌𝑖
′)}𝑖

𝐶′) (7) 

Where 𝑌′ is the base feature map generated by standard convolution, and 𝐶ℎ𝑒𝑎𝑝𝑂𝑃( ) 

is a linear transformation applied to generate the feature map. 

Unlike traditional convolution, the linear transformation in GhostConv does not in-

volve batch normalization or non-linear activation. This approach enables the extrac-

tion of abundant intrinsic feature information with minimal computation, enhancing the 

efficiency of the convolution operation. As a result, the GhostConv module achieves a 

more lightweight algorithm design while maintaining recognition accuracy. 

3.5 Evaluation Metrics 

The improved YOLOv10 model algorithm adopts common evaluation metrics for ob-

ject detection tasks. The public announcements are as follows: 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

 𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
 (10) 



 𝑚𝐴𝑃50 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑛
𝑖=1  (11) 

Where TP (True Positive) denotes the count of regions accurately identified as targets 

by the model; FP (False Positive) refers to the number of regions without targets mis-

takenly classified as containing targets; FN (False Negative) indicates the number of 

regions with targets that the model fails to detect; P (Precision) refers to the fraction of 

correctly predicted positives among all predicted positives; R (Recall) represents the 

fraction of true positives identified among all actual positives; mAP50 signifies the 

mean average precision across all classes at an IoU of 0.5. 

4 Experiments 

4.1 Dataset 

This study uses experimental image data from the Laboro Tomato dataset [18], consist-

ing of 804 original images captured on a farm using two cameras with resolutions of 

3024×4032 and 3120×4160. The dataset covers a range of scenarios, including single-

object, multi-object, fruit overlap, and occlusion, allowing tomato fruits to be captured 

under various lighting conditions and real-world settings. 

Before data augmentation, the raw images underwent pre-processing steps, such as 

scaling and normalization, to improve the effectiveness of model training on the dataset. 

This study applies data augmentation techniques, including horizontal flipping, vertical 

flipping, center cropping, brightness adjustment, contrast adjustment, and the addition 

of Gaussian noise. Augmentation methods were applied randomly to expand the da-

taset. 

4.2 Experimental Environment 

Table 1. Experimental Environment and Training Parameters. 

Category Details 

Operating System Linux Ubuntu 16.04 

Development Environment VSCode; PyTorch (v2.0.1); CUDA 11.7; Python 3.9 
Input Image Size 640×640×3 

Training Epochs 200 

Optimizer Stochastic Gradient Descent (SGD) 
Batch Size 24 

Initial Learning Rate 0.01 

Momentum 0.937 
Weight Decay 0.0005 

4.3 Comparative Experiment 

After incorporating the C2fUIB module, CCFM structure, and GhostConv module, we 

conducted a comparison of the improved model with several state-of-the-art object de-

tection models, including REDETR-ResNet50, YOLOv5, YOLOv7, YOLOv8, 

YOLOv9, and YOLOv10, as shown in Table 2. 
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Table 2. Comparison of Model Performance 

Model 
Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 
GFLOPs 

Parameter 

(M) 

Model Size 

(MB) 

REDETR-

ResNet18 
88.5 80.9 84.7 58.3 20.10 40.5 

YOLOv5s 86.5 82.9 87.4 24.1 9.12 18.5 

YOLOv8s 86.7 82.1 88.4 28.7 11.14 22.5 

YOLOv9c 88.7 83.7 90.1 103.7 25.53 51.6 

YOLOv10s 86.9 80.3 87.6 24.8 8.07 16.6 

Ours 88.2 86.2 90.2 14.8 4.62 9.7 

As shown in Table 2, the improved model surpassed REDETR-ResNet50, YOLOv5, 

YOLOv8, YOLOv9 and YOLOv10 in mAP50 by 5.5%, 2.8%, 1.8%, 0.1% and 2.6%, 

respectively. Furthermore, its parameter count was reduced by 76.05%, 47.57%, 

56.89%, 81.2%, and 41.57%, respectively. Although the YOLOv9 model achieved 

slightly better accuracy, it comes at the cost of significantly higher parameter count and 

computational load compared to our model. These results demonstrate that the proposed 

model effectively balances detection accuracy and computational efficiency, embody-

ing lightweight characteristics. In addition, the model’s enhanced detection speed and 

efficient resource utilization make it highly suitable for deployment on devices with 

limited computational resources. 

4.4 Ablation experiments 

To assess the impact of replacing specific modules on tomato fruit maturity detection, 

modules were introduced progressively, and the detection performance of the resulting 

fused models was analyzed. The results of the ablation experiments are presented in 

Table 3, while Fig. 7 provides a comparison of parameter counts and GFLOPs. 

 

Fig. 7. Parameter Count and GFLOPs of Ablation Experiment Results 

From the results of the ablation experiment, it is evident that replacing the C2f module 

with the C2fUIB module in the YOLOv10 model (Model 2 in Table I) leads to notable 

improvements. The accuracy increases from 86.9% to 87.2%, the recall rate improves 

from 80.3% to 83.3%, and the mAP50 rises from 87.6% to 89.2%. Additionally, the 

number of parameters decreases from 8.07M to 6.82M, and the GFLOPs reduce to 18.2. 



This demonstrates that the UIB module from the MobileNetV4 network model en-

hances accuracy while simultaneously reducing parameters and computational com-

plexity. 

Table 3. Ablation Experiment Results with Different Modules 

Model C2fUIB CCFM GhostConv Precision(%) Recall(%) mAP50(%) 

1 - - - 86.9 80.3 87.6 

2 √ - - 87.2 83.3 89.2 

3 - √ - 86.6 83.7 89.2 

4 √ √ - 87.6 83.5 89.6 

5 √ √ √ 88.2 86.2 90.2 

Furthermore, with the incorporation of the improved CCFM structure (Model 4 in 

Table I), although the accuracy remains largely unchanged, there is a significant reduc-

tion in both the parameter count and computational load. The number of parameters 

drops to 4.7M, and the GFLOPs decrease to 15.0. These results indicate that integrating 

the CCFM structure with the C2fUIB module effectively minimizes model complexity 

and computational demands, positively impacting the overall performance of the im-

proved network model. 

When the improvements of the C2fUIB module, CCFM structure, and GhostConv 

module were combined (Model5), accuracy, recall, and mAP50 reached 88.2%, 86.2%, 

and 90.2%, respectively. The parameter count decreased to 4.62M, and GFLOPs 

dropped to 14.8. The analysis of the ablation experiment results indicates that these 

enhancements led to significant performance gains in tomato fruit detection, particu-

larly when all the improvements were combined. The detection accuracy improved, 

while the model’s parameter size and computational load were significantly reduced. 

As shown in Fig. 8, the ablation experiment results of the improved model illustrate the 

variation curves for accuracy, recall, and mAP50. It is evident that the accuracy of all 

models shows an upward trend, with the improved model achieving the best perfor-

mance. 

 

Fig. 8. Accuracy Change Curve of Ablation Experiment 

Overall, the improved model demonstrates excellent performance across all evaluation 

metrics. These enhancements not only boost precision, recall, and mAP but also signif-

icantly reduce the model’s parameters and computational complexity, leading to faster 

detection speed. These optimizations confirm the effectiveness of the introduced 
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modules in feature extraction and fusion, resulting in strong performance in the tomato 

fruit ripeness detection task. 

5 Conclusion 

In this study, we proposed an enhanced YOLOv10 model for detecting tomato fruit and 

assessing its maturity. The model introduces a lightweight design based on YOLOv10 

and incorporates the UIB structure, which not only improves the detection of small 

objects but also reduces the computational resources required. Additionally, we inte-

grated the improved CCFM structure for feature fusion, effectively combining multi-

scale features to enhance the model’s ability to detect targets while also reducing the 

number of network parameters. Compared to the original model, the improved network 

achieves superior detection performance, surpassing advanced detection models such 

as REDETR-ResNet50, YOLOv5, YOLOv7, YOLOv8, YOLOv9, and YOLOv10, 

while significantly lowering both the model’s parameter count and computational com-

plexity. 

Future work will focus on collecting fruit samples from various agricultural envi-

ronments to enhance the model’s generalization capabilities. We plan to explore multi-

modal data fusion and improve the model’s adaptability to diverse data types, aiming 

to boost operational efficiency on mobile devices and embedded systems while reduc-

ing computational and storage overhead. Ultimately, the goal is to provide more effec-

tive support for agricultural robots and automation equipment. 
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