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Abstract. To address the issues of nonlinearity and strong coupling characteris-

tics in seeder motor systems, and the insufficient dynamic response and weak 

anti-disturbance capability of traditional control methods. This study proposes 

an active disturbance rejection control (ADRC) method based on an improved 

whale migration algorithm (IWMA) optimized radial basis function (RBF) neural 

network. First, building upon the whale migration algorithm (WMA), a leader 

proportion dynamic adjustment mechanism is introduced to optimize the popula-

tion structure through a nonlinear attenuation function. Second, the global search 

capability is enhanced by integrating a hybrid guidance strategy and Lévy flight 

perturbation mechanism, thereby constructing the IWMA algorithm with high-

efficiency optimization performance. Third, the IWMA is combined with the 

RBF neural network to collaboratively optimize the RBF network’s center vec-

tors, kernel width, and output weights, forming an IWMA-RBF parameter self-

tuning framework. Furthermore, an IWMA-RBF-based ADRC controller is de-

signed. The dynamic compensation capability for disturbances such as sudden 

soil resistance changes is strengthened through an improved extended state ob-

server (ESO), and multi-objective optimization of nonlinear state error feedback 

(NLSEF) gain parameters is achieved using the IWMA-RBF algorithm. Simula-

tion experiments demonstrate that compared to traditional PID, ADRC, and RBF-

ADRC controllers, the IWMA-RBF-ADRC controller significantly improves 

control accuracy, response speed, and robustness in the motor control system. 

Field seeding trials verify the superior stability and response speed of this method 

in complex seeding environments, providing effective technical support for prac-

tical applications. 

Keywords: Seeder Motor Control, IWMA, RBF, ADRC, Parameter Self-Tun-

ing  



1 Introduction 

Seeders, as the core equipment of modern agricultural machinery, has operational pre-

cision that directly affects crop seedling emergence rates and yield. With the advance-

ment of precision agriculture technology, the electro-control systems of seeders must 

achieve centimeter-level spacing control under complex field conditions, imposing 

higher requirements for motor dynamic response speed, anti-interference capability, 

and parameter self-adaptation characteristics [1]. However, seeder motor systems ex-

hibit significant nonlinearity and strong coupling characteristics. Combined with ran-

dom disturbances such as sudden changes in soil resistance and mechanical vibrations, 

conventional PID control methods often fail to adapt to dynamic conditions due to fixed 

parameters, leading to frequent issues like overshoot oscillations and anti-disturbance 

lag[2]. 

In recent years, Active Disturbance Rejection Control (ADRC) technology has 

demonstrated significant advantages in the field of electromechanical system control 

due to its unique disturbance observation and compensation mechanism [3]. However, 

the parameter tuning of ADRC involves multi-variable coordination optimization in-

cluding Nonlinear State Error Feedback (NLSEF) gains and Extended State Observer 

(ESO) bandwidth, where traditional trial-and-error methods struggle to overcome the 

bottleneck of local optima [4]. The radial basis function (RBF) neural network, lever-

aging the local approximation characteristics inherent in its three-layer feedforward 

structure, can precisely describe the dynamic characteristics of controlled objects 

through nonlinear mapping. The radially symmetric distribution of activation functions 

in its hidden layer neurons not only possesses nonlinear function approximation capa-

bilities but also exhibits faster convergence speed, providing crucial technical support 

for real-time control scenarios [5]. The deep integration of RBF neural networks with 

ADRC can fully exploit the former's nonlinear approximation capability to achieve dy-

namic tuning advantages for controller parameters [6,7]. But, gradient optimization of 

its central vectors and kernel width parameters is prone to premature convergence. 

To explore better network structures and enhance neural network performance, me-

taheuristic algorithms have emerged as a reliable alternative. Compared to gradient de-

scent methods, metaheuristic algorithms demonstrate higher efficiency in avoiding lo-

cal optima by shifting from local to global search, making them more suitable for global 

optimization. Consequently, researchers have adopted metaheuristic algorithms as op-

timization strategies for RBF network structures, achieving a series of meaningful re-

sults thus far. For example, Yang et al. (2023) proposed the Chaotic Adaptive Whale 

Optimization Algorithm (CASAWOA) to simultaneously optimize RBF center vectors 

and kernel width, achieving 97.77% accuracy in power transformer fault diagnosis [8]. 

Elansari et al. (2023) developed a hybrid kernel RBF network architecture (MRBFNN) 

that dynamically selects combinations of Gaussian and thin-plate spline kernels via ge-

netic algorithms, significantly improving approximation capabilities in complex func-

tions [9]. Tsoulos et al. (2023) designed a two-stage PSO-GA framework integrating 

global search with local fine-tuning to enhance high-dimensional parameter optimiza-

tion efficiency [10]. Zhang et al. (2022) employed a feature compression strategy com-

bined with PSO to optimize RBF input features, substantially reducing state-of-charge 
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estimation errors in battery packs [11]. Liu et al. (2023) introduced a nonlinear time-

varying inertia weight Black Widow Optimization Algorithm for optimizing RBF out-

put weights, enabling high-precision modeling in power load forecasting [12]. Wang et 

al. (2020) utilized a hybrid particle swarm algorithm to optimize RBF connection 

weights, enhancing noise resistance and reconstruction quality in medical imaging [13]. 

Huang et al. (2018) integrated a super-mutated firefly algorithm with RBF networks to 

create an FPGA-embedded controller for real-time trajectory tracking in intelligent ve-

hicles [14]. 

Despite the investigation of various metaheuristic algorithms for training RBF net-

works, local optima still persist. The whale migration algorithm (WMA) is a novel me-

taheuristic algorithm proposed by Ghasemi et al. in 2025[15], simulates the social col-

laboration and path optimization processes during humpback whale migration. By em-

ploying a leader-follower mechanism and dynamic migration strategies, WMA 

achieves a balance between global exploration and local exploitation, demonstrating 

significant advantages in solving high-dimensional nonlinear optimization problems. 

However, traditional WMA has inherent limitations: fixed leader ratios result in insuf-

ficient early-stage exploration efficiency and redundant late-stage exploitation re-

sources; monotonous follower update strategies lead to rigid search paths; and the lack 

of disturbance escape mechanisms traps populations in local optima.  

To address these issues, this study proposes an ADRC control method optimized by 

an IWMA enhanced RBF neural network. First, a nonlinear decay function dynamically 

adjusts the leader ratio, combined with a hybrid guidance strategy, to construct the 

IWMA algorithm with multimodal search capabilities. Second, a unified encoding map-

ping between RBF network parameters and the optimization space is established, ena-

bling IWMA to collaboratively optimize center vectors, kernel widths, and output 

weights. Finally, an IWMA-RBF-ADRC controller is designed for seeder motors, en-

hancing the estimation capability for sudden soil resistance changes through an im-

proved third-order ESO and optimizing multi-objective synergy of NLSEF gain param-

eters. Simulations and field experiments demonstrate that this method significantly im-

proves control precision and dynamic anti-disturbance performance, providing theoret-

ical foundations and technical support for intelligent control of agricultural electrome-

chanical equipment. 

2 A Novel IWMA-RBF Algorithm 

2.1 IWMA Algorithm 

The WMA is a swarm intelligence optimization algorithm inspired by the migratory 

behavior of whale groups in nature. This algorithm simulates the social division of labor 

observed during whale migration, categorizing population individuals into two roles: 

Leader Whales and Follower Whales, which undertake global exploration and local 

exploitation tasks, respectively. During initialization, a population of N whales is ran-

domly generated within the search space bounded by the lower limit L and upper limit 

U. The whales are then sorted based on their fitness values. The top NL individuals with 



optimal fitness values are designated as Leader Whales, while the remaining act as 

Follower Whales. Their position update equations are defined as follows: 
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Where Wl denotes the leader whale position, Wf denotes the follower whale position, 

D is the problem dimension, Wmean is the current average position of all leader whales, 

Wbest denotes the optimal whale position. r1 and r2 are the vectors of random numbers 

from the interval [0,1] with the dimension D, and is the Hadamard product. 

At the end of each iteration, the migratory whale individuals are sorted from best to 

worst. The positions of whales are updated according to the position update formula 

and fitness values, and the top NL individuals are re-selected as Leader Whales. How-

ever, the WMA algorithm adopts a fixed 50% proportion of Leader Whales, leading to 

insufficient guidance capacity of high-quality individuals in the early iterations that 

hinders rapid identification of potential regions. In later iterations, redundant Leader 

Whale quantities result in population diversity degradation and wasteful exploitation 

resources. The Follower Whales’ update mechanism relies solely on individual histor-

ical optima, which tends to cause rigid search paths and premature convergence. Fur-

thermore, the absence of an effective escape mechanism causes the entire population to 

stagnate due to the "groupthink" effect of information transmission when trapped in 

local optima regions. To address these issues, this paper improves the WMA algorithm 

through dynamic adjustment of the Leader Whale proportion and a hybrid guidance 

strategy. 

First, the number of Leader Whales NL is dynamically adjusted using a nonlinear 

decay function. A higher proportion is set initially to enhance global exploration capa-

bility, which gradually decreases to 20% as iterations progress, guiding the algorithm’s 

transition from exploration to exploitation phases. Then, a hybrid guidance strategy is 

introduced into the position update of Follower Whales. The traditional mean-based 

update formula is refined into a dynamic weight fusion form, which balances swarm 

information and individual optimal directions, thereby avoiding search rigidity caused 

by single-path dependencies. Additionally, to address local optima escape, a probabil-

istically triggered Lévy flight perturbation is incorporated to leverage its long-jump 

characteristics for breaking local optima traps [16]. The improved equations are: 
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Where t is the number of iterations, and T represents the maximum number of itera-

tions. w is the dynamic weight coefficient, η is the constant weight coefficient, δ is the 

Lévy flight step size scaling factor, u and v are random vectors following the standard 

normal distribution, β is a constant value, and a is a random number between 0 and 1. 

The improved WMA algorithm is designated as the IWMA algorithm in this study. 

2.2 Algorithm Validation Experiment 

To evaluate the performance of the IWMA, this study conducts comparative experi-

ments using one representative function from each of the four categories in the 

CEC2017 benchmark suite (unimodal, multimodal, hybrid, and composition functions) 

[17]. The compared algorithms include the classic Whale Optimization Algorithm 

(WOA) [18], Artificial Ecosystem Optimization (AEO) [19], Butterfly Optimization 

Algorithm (BOA) [20], Particle Swarm Optimization (PSO) [21], and the original 

WMA. The experiments adopt unified parameter settings: a population size of 30, a 

maximum of 500 iterations, and a 30-dimensional search space. Fig. 1 illustrates the 

three-dimensional topological surfaces of the test functions and the comparative con-

vergence curves of the six algorithms on the corresponding functions. 

 

 



 

 

Fig. 1. Presents the convergence curves of the IWMA algorithm and comparison algorithms on 

different types of test functions in CEC2017. 

According to the iterative convergence curves, the IMMA algorithm demonstrates 

superior performance across various test functions. In the unimodal function F1, IMMA 

achieves the fastest convergence speed, with its fitness value rapidly decreasing and 

approaching the optimum within 100 iterations, significantly outperforming other al-

gorithms. For the multimodal function F7, IMMA maintains robust performance in 

complex multi-extremum environments without noticeable fluctuations throughout the 

optimization process. In the hybrid function F16, although starting with a relatively 

high initial fitness value, IMMA rapidly adjusts its strategy and achieves significantly 

lower fitness values than competitors after 200 iterations. When handling the high-di-

mensional composite function F22, IMMA exhibits the most pronounced descending 

trend in fitness values, ultimately reaching the lowest final fitness value with particu-

larly prominent advantages emerging after 300 iterations. While other algorithms (such 

as BA and GWO) show oscillations or stagnation in later stages, IMMA maintains sta-

ble convergence throughout. The improved mechanism of IMMA effectively balances 

exploration and exploitation capabilities, surpassing other algorithms in convergence 

speed, precision, and robustness. This enhanced performance makes IMMA particu-

larly suitable for solving multi-modal, highly complex engineering optimization prob-

lems. 
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2.3 IWMA-RBF Algorithm 

The RBF neural network is a classic three-layer feedforward supervised learning model, 

widely used in nonlinear system modeling and pattern recognition due to its rapid con-

vergence capability, local approximation properties, and global convergence ad-

vantages. The network consists of an input layer, a hidden layer, and an output layer. 

The input layer receives raw feature signals and directly transmits them to the hidden 

layer. The hidden layer performs nonlinear spatial mapping of the input data through 

radial basis functions (typically Gaussian kernel functions) [22]. The output layer gen-

erates final predictions by linearly combining the weighted activation values of the hid-

den layer nodes. By optimizing the center positions and bandwidth parameters of the 

hidden layer kernels, as well as the weight coefficients of the output layer, the network 

efficiently approximates complex nonlinear relationships while avoiding the gradient 

vanishing problem commonly encountered in traditional backpropagation neural net-

works. 

The Gaussian radial basis function is expressed as: 
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Where c is the center of the function, and is the width (effective range) parameter. 

When a bias term is incorporated, the output of the RBF neural network can be ex-

pressed as: 
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Where b is the bias term for output adjustment, wi represents the connection weights 

between the hidden layer and the output layer, and n denotes the number of hidden 

units. 

To achieve optimal performance metrics, RBF networks typically employ the k-

means clustering algorithm and gradient descent method to calibrate critical parameters 

(center vectors c, output weights ω, and kernel width σ) [23]. However, these methods 

suffer from slow convergence and susceptibility to local optima. This paper optimizes 

these parameters using the IWMA to enhance overall performance. In the IWMA-RBF 

framework, each whale’s position vector encodes the core RBF parameters: the hidden 

layer centers c (dimensions n × d), Gaussian kernel width σ (dimensions n), and output 

weights ω (dimensions n), forming a unified optimization space with total dimension-

ality n×(d+2). Through dynamic leader-whale ratio adjustment, hybrid guidance strat-

egies, and Lévy flight perturbation mechanisms, IWMA enables intelligent exploration 

of the RBF parameter space. 

The procedure of optimizing RBF with the IWMA algorithm is as follows: 

1.Encode the parameters to be optimized in the RBF neural network (c, σ, ω) into the 

solution vector of the optimization problem. 

2.Initialize the whale population, where the position vector of each individual is ran-

domly generated. 



3.Calculate the fitness value of each individual, update the individual best position 

and global best position. The fitness function evaluates model performance using cross-

validation: 
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Where k is the number of cross-validation folds, ni is the number of samples in the i-

th validation set, 
i

jD is the expected output value of the j-th sample in the i-th validation 

set, 
i

jY is the predicted output value of the j-th sample in the i-th validation set. 

4.Dynamically select the number of leader whales based on fitness values(Eq.3), then 

update the position of leading whales according to Eq.1, and update the position of 

following whales through the hybrid guiding strategy (Eq.4 and 5). 

5.Repeat Steps 2-4 until the maximum number of iterations is reached or termination 

criteria are satisfied. 

6.Construct a new RBF neural network using the global best position vector. 

3 Controller Design 

3.1 ADRC Controller Design 

The Tracking Differentiator (TD) achieves smooth approximation of the generalized 

derivative of the input signal through nonlinear functions in ADRC. It primarily in-

volves two state variables, v1 and v2. Here, v1 represents the state variable tracking the 

input signal, whose output is the smoothed signal, while v2 denotes the estimated dif-

ferential value tracking the input signal, whose output is the differentiated signal [24]. 

The update equations are: 
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Where v is the input signal, fhan is the fastest control synthesis function for nonlinear 

optimization tracking, h is the integration step size, r is the speed factor, and h0 is the 

filtering factor. 

The ESO serves as the core of the ADRC. Traditional third-order ESO compensates 

for system states in real time through output feedback by estimating unmodeled dynam-

ics, uncertain parameters, and unknown external disturbances, thereby achieving static-

error-free control. However, conventional third-order ESO can only estimate current 

disturbances (e.g., soil resistance, mechanical vibrations) but fails to capture disturb-

ance change trends (e.g., soil resistance mutation rates). In seeder operations, abrupt 

soil resistance changes may occur at rates of 10–30 N·m/s, and the lagged compensation 

from ESO would lead to seeding depth fluctuations, compromising uniformity. To ad-

dress these limitations and better adapt to seeder systems, a redesigned third-order ESO 

is proposed, with its core equations expressed as: 
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Where Z1 and Z2 are the observed values of the system states, Z3 is the total disturb-

ance estimate. y is the actual system output. β01, β02, and β03 are the observer gains 

determining estimation speed and stability; e is the observation error; b is the compen-

sation coefficient. fal is the nonlinear function, α1 and α2 are the nonlinear factors, and 

δ is the linear interval threshold. soildF

dt
represents the instantaneous rate of change of 

the soil resistance acting on the seeder opener with respect to time, with units of N·m/s. 

To obtain this critical information, high-precision force sensors are installed on key 

force-bearing components of the seeder (such as the opener). This sensor directly and 

in real-time measures the soil resistance Fsoil (unit N·m) experienced by the opener, 

generating corresponding electrical signals.γis an adjustable gain coefficient used to 

regulate the contribution weight of the estimated soil resistance change rate in the ESO 

state update. 
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The NLSEF acts as the control output module of ADRC. Its core function is to pro-

cess tracking errors through nonlinear combinations, generating control signals that 

counteract disturbances and enable precise tracking. Unlike traditional linear PID, 

NLSEF employs the fal function to amplify gain in small-error regions while smoothing 

responses in large-error regions, thereby adapting to complex nonlinear systems [25]. 

The structural design of NLSEF is expressed as: 
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Where u0 is the control law; β1 and β2 are gain parameters; e1 is the tracking error, e2 

is the error derivative; α3 and α4 are the nonlinear factors. 

3.2 IWMA-RBF-Based ADRC Controller 

Aiming at the nonlinear and strongly coupled control characteristics of the corn planter 

motor and the high-precision control requirements, this study proposes an intelligent 



parameter tuning system integrating ADRC technology with the IWMA-RBF neural 

network. Within the multi-parameter framework of ADRC, the gain parameters β1 and 

β2 of the NLSEF play dominant roles in determining system dynamics. The disturbance 

rejection gain β1 directly governs the system's anti-interference capability and response 

speed increasing β1 enhances disturbance suppression and accelerates response, yet re-

quires careful balancing between disturbance rejection and system stability to prevent 

oscillation caused by excessive parameter values. The dynamic compensation gain β2 

regulates damping characteristics during transitional processes to suppress overshoot, 

with its optimization significantly improving tracking accuracy and dynamic smooth-

ness. Traditional trial-and-error methods prove inadequate for achieving collaborative 

optimization of β1 and β2, being prone to local optima. To address this, the study inno-

vatively employs the IWMA-RBF algorithm for synergistic parameter optimization, 

dynamically balancing the constraints between parameters to achieve comprehensive 

performance enhancement of the controller. The schematic structure of the IWMA-

RBF driven ADRC controller is illustrated in Fig. 2. 

 

Fig. 2. Structural diagram of the ADRC controller based on IWMA-RBF. 

3.3 Simulation Testing and Comparative Analysis   

To validate the performance advantages of the IWMA-RBF-optimized ADRC control-

ler in high-precision control of stepper motors, a multi-condition simulation model for 

the stepper motor was developed on the MATLAB/Simulink platform. Comparative 

analyses were conducted on the dynamic response characteristics of four controllers 

PID, conventional ADRC, RBF-ADRC, and IWMA-RBF-ADRC under different oper-

ational scenarios. The main parameters of the ADRC controllers are shown in Table 1. 

Table 1. Controller Parameters Table 

Structure Parameter Value 

TD r 5000 

h 0.01 

h0 0.01 

ESO α1 0.5 

α2 0.75 
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β01 30 

β02 300 

β03 1000 

δ 0.001 

b 

γ 

2 

0.15 

NLSEF α3 0.25 

 α4 0.25 

 

As shown in Fig. 3, In the disturbance-free step response test, the IWMA-RBF-

ADRC algorithm demonstrated optimal rapid response and stability. Its response curve 

reached the target position within approximately 0.1s with zero overshoot throughout 

the process, indicating the algorithm's strong tracking capability for dynamic systems. 

In contrast, the PID controller exhibited the slowest rise speed along with approxi-

mately 10% overshoot, followed by persistent oscillations near the target position, re-

vealing the limitations of fixed parameters in traditional PID control. Both ADRC and 

RBF-ADRC eliminated overshoot but required slightly longer convergence times com-

pared to IWMA-RBF-ADRC. 

 

Fig. 3. Response curves of each controller after step signal input. 

As shown in Fig. 4, when subjected to a sudden 15 N·m torque load disturbance at 

0.5s, all controllers exhibited positional deviations. However, IWMA-RBF-ADRC 

achieved the fastest recovery speed with minimal position fluctuation amplitude. The 

PID controller experienced a sharp position drop of approximately 0.5 rad under load 

disturbance, accompanied by sustained oscillations during recovery, exposing its insuf-

ficient disturbance rejection capability. 



 

Fig. 4. Response curves of each controller under load. 

In the sinusoidal signal tracking test shown in Fig. 5, the tracking curve of IWMA-

RBF-ADRC nearly coincides with the target sinusoidal signal without phase lag, indi-

cating that its dynamic response bandwidth fully covers the signal frequency. The other 

three controllers exhibited noticeable amplitude attenuation and phase lag, further val-

idating that IWMA-RBF-ADRC demonstrates both high-precision tracking capability 

and strong noise resistance for periodic dynamic signals. 

 

Fig. 5. Response curves of each controller after sinusoidal signal input. 

3.4 Seeding Test 

To further validate the practical effectiveness of the IWMA-RBF optimized ADRC 

system in agricultural electromechanical control, field testing was conducted using a 

constructed experimental platform (see Fig. 6). 
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Fig. 6. Corn planter experimental platform. 

The seeding performance verification experiment was designed as follows: based on 

the agronomic requirement of a preset 15 cm seed spacing, the real-time rotational 

speed signal of the tractor’s drive wheels was acquired using an incremental encoder, 

converted to linear velocity by the STM32F407 microcontroller, and dynamically ad-

justed PWM commands were sent to the stepper motor via CAN bus. To comprehen-

sively evaluate the control algorithm performance, three comparative groups were set: 

1. traditional PID controller, 2. classical ADRC controller, 3. IWMA-RBF-optimized 

ADRC controller. The HMI touchscreen integrated parameter configuration, status 

monitoring, and anomaly alert functions, enabling real-time display of seeding speed 

and quantity. During the experiment, the working status of the seeding unit was contin-

uously recorded 10 repeated trials on a 50 m standardized test ridge. The actual seed 

spacing of 100 consecutive seeding points was manually measured using a high-preci-

sion tape (see Fig. 7), and the mean spacing was calculated. The experimental data for 

the three groups showed: PID control group had an average spacing of 16.5 cm (stand-

ard deviation 2.3 cm), maximum deviation ±4.0 cm, and miss-seeding rate of 3.5%; 

classical ADRC group had an average spacing of 16.1 cm (standard deviation 0.9 cm), 

maximum deviation ±2.1 cm, and miss-seeding rate of 2.1%; IWMA-RBF-optimized 

ADRC group had an average spacing of 15.6 cm (standard deviation 0.6 cm), maximum 

deviation ±1.5 cm, and miss-seeding rate consistently below 1.2% (corresponding to a 

seeding rate ≥98.8%). When encountering hardened ground interference, the PID con-

trol exhibited a persistent 0.8 s speed-tracking lag, resulting in spacing fluctuations of 

±2.5 cm, while the IWMA-RBF-optimized ADRC system suppressed fluctuations to 

within ±1 cm. These results validate that the IWMA-RBF-optimized ADRC system 

significantly outperforms traditional control methods in spacing accuracy, anti-inter-

ference capability, and seeding reliability, meeting the design requirements. 

 



  

Fig. 7. The red circles in the figure indicate corn seeds sown by the planter. Seed spacing is 

measured using a ruler. 

4 Conclusion 

This study addresses the high-precision control requirements of seeder motor systems 

by proposing an ADRC control method optimized via IWMA-RBF. Through enhance-

ments to the whale migration algorithm, a leader proportion dynamic adjustment mech-

anism and a hybrid guidance strategy are innovatively introduced, resolving the conflict 

between insufficient early exploration and redundant late exploitation in traditional 

WMA. The algorithm demonstrates superior convergence speed and global optimiza-

tion capabilities in CEC2017 benchmark function tests. By deeply integrating IWMA 

with the RBF neural network, a collaborative optimization framework with dynami-

cally adaptable parameter encoding dimensions is constructed, effectively overcoming 

the tendency of traditional gradient descent methods to fall into local optima. The de-

signed IWMA-RBF-ADRC controller employs an improved third-order ESO to predict 

disturbance variation rates. Combined with multi-objective collaborative optimization 

of NLSEF gain parameters, the controller exhibits near-zero overshoot and phase-lag-

free tracking characteristics in simulations, achieving faster recovery time under sudden 

15 N·m load disturbances compared to traditional ADRC. Field trial data further con-

firm the method’s superior seeding accuracy. Future work will extend this approach to 

multi-motor cooperative operation scenarios and explore real-time parameter adaptive 

adjustment mechanisms based on edge computing. 
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