
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Traffic Flow Prediction Using Multi-Scale Convolution 

and Attention Mechanisms 

Pengfei Qi1, Jinlai Zhang2( ), Chulin Li1, Linlong Lei2  

Wei Hao2, and Xiong Jiang3 

 

1 School of Physics and Electronic Science, Changsha University of Science and Technology, 

Changsha, 410114, Hunan, China 
2 College of Mechanical and Vehicle Engineering, Changsha University of Science and Tech-

nology, Changsha, 410114, Hunan, China 
3 Changsha Planning and Design Institute Co., Ltd., Changsha, 410114, Hunan, China 

 

Abstract. Traffic flow prediction is a critical task in intelligent transportation 

systems, significantly improving the efficiency of traffic management and sched-

uling. However, the complexity and diversity of traffic flow data pose substantial 

challenges to existing prediction methods. In particular, the frequent temporal 

variations and spatial characteristics in complex spatiotemporal data are difficult 

to handle effectively. To address this issue, this paper proposes MCANet, a novel 

prediction model designed to capture the intricate spatiotemporal features in traf-

fic flow prediction through the integration of multi-scale convolution and atten-

tion mechanisms. Specifically, we introduce the Large Kernel Decomposition 

and Spatio-Temporal Selection (LKD-STS) module to enhance the model's abil-

ity to extract multi-scale features in traffic flow prediction, enabling it to better 

capture traffic patterns at different temporal scales. Additionally, we propose the 

Global Channel Spatial Attention (GCSA) module to improve the model's capa-

bility in capturing multi-scale traffic features and preserving spatial-channel in-

formation. Furthermore, we introduce the Partial Convolution Batch-normaliza-

tion GELU (PCBG) module, which reduces redundant computations and memory 

access through partial convolution techniques, thereby enhancing the model's ef-

ficiency. Compared to the baseline model and other state-of-the-art (SOTA) traf-

fic flow prediction models, MCANet demonstrates superior performance on the 

Flight and Traffic datasets. Notably, MCANet efficiently captures complex spa-

tiotemporal features, maintaining stable performance in high-frequency traffic 

flow prediction tasks. Experimental results show that MCANet excels in traffic 

flow prediction tasks with varying prediction horizons. Particularly, for a predic-

tion length of T=96, MCANet outperforms SOTA models such as MSGNet and 

TimesNet, with Mean Squared Error (MSE) reductions of 2.7% and 5.7%, re-

spectively.   

Keywords: Multi-Scale Convolution, Attention Mechanism, Traffic Flow Pre-

diction, Time Series. 



 

1 Introduction 

Traffic flow prediction plays a pivotal role in the optimization and management of in-

telligent transportation systems (ITS). The growing complexity and volume of traffic 

data generated by urban environments, as well as the increasing need for real-time de-

cision-making, have led to an increasing demand for robust traffic flow prediction mod-

els. Effective traffic prediction is crucial for various applications, including traffic con-

gestion control, route planning, and predictive maintenance, all of which contribute to 

enhancing traffic safety, reducing travel time, and improving overall traffic efficiency. 

Traffic flow prediction is inherently a spatiotemporal task, where the goal is to pre-

dict the future traffic states at different locations over a specified time horizon. Unlike 

traditional forecasting tasks, traffic flow prediction faces unique challenges due to the 

dynamic, non-linear, and complex nature of traffic systems. Traditional time-series 

forecasting methods, such as ARIMA [1], LSTM [6], and GRU [5], while capable of 

handling time-series data, still perform inadequately when confronted with complex 

tasks involving long-range dependencies. The traffic flow data is influenced by a myr-

iad of factors, such as weather conditions, road incidents, and human-driven behaviors, 

which vary not only across time but also across different spatial regions. These fluctu-

ations, combined with the interdependence between traffic patterns at various locations, 

make accurate prediction a difficult and computationally expensive task. Traditional 

methods, such as time-series analysis and linear regression, often fail to capture the 

complexity inherent in these spatiotemporal dependencies, leading to suboptimal pre-

dictive performance. Recently, deep learning-based models such as Informer [19] and 

Autoformer [12] have introduced self-attention mechanisms to enhance the modeling 

of long-term dependencies; however, they still face challenges in addressing multi-

scale features and complex spatial dependencies. To overcome this limitation, convo-

lutional neural networks (CNNs) [20-24] have been introduced to capture spatial fea-

tures by applying convolutional operations across the spatial domain of traffic data. 

Despite these advancements, most existing methods still struggle with the trade-off be-

tween efficiently modeling both spatial and temporal dependencies in a unified frame-

work, leading to less accurate predictions, especially in high-frequency and large-scale 

traffic flow prediction tasks. 

To address these challenges, this paper proposes MCANet, a novel traffic flow pre-

diction model that leverages the strengths of both convolution and attention mecha-

nisms to simultaneously capture intricate spatial and temporal dependencies in traffic 

data. At the heart of MCANet is the Large Kernel Decomposition and Spatio-Temporal 

Selection (LKD-STS) module, which enhances the model’s ability to extract multi-

scale features from traffic flow data. The LKD-STS module is specifically designed to 

address the issue of capturing traffic patterns at different temporal scales. In addition, 

MCANet incorporates the Global Channel Spatial Attention (GCSA) module to further 

enhance its ability to capture spatial features. The GCSA module operates by applying 

a global attention mechanism that learns the relationships between different spatial lo-

cations and channels in the traffic flow data. By focusing on the most relevant features 

at each spatial location and time step, the GCSA module improves the model’s ability 

to preserve essential spatial and temporal information, leading to more accurate and 
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robust predictions. Moreover, MCANet introduces the Partial Convolution Batch-nor-

malization GELU (PCBG) module, which enhances the model’s computational effi-

ciency. The PCBG module reduces redundant computations and memory access by em-

ploying partial convolution techniques, enabling faster training and inference. 

The experimental evaluation of MCANet on benchmark datasets, such as the Flight 

and Traffic datasets, demonstrates its superior performance compared to SOTA models, 

including MSGNet [2] and TimesNet [11]. Notably, MCANet shows a significant re-

duction in Mean Squared Error (MSE) compared to these baseline models, with reduc-

tions of 2.7% and 5.7% for a prediction length of T=96, respectively. These results 

highlight the effectiveness of MCANet in handling complex spatiotemporal features 

and maintaining stable performance, even in high-frequency traffic flow prediction 

tasks. The results also reveal that MCANet significantly outperforms existing models, 

such as MSGNet, Informer, and Autoformer, across key evaluation metrics, including 

MSE and MAE. Notably, MCANet excels in capturing the spatiotemporal features of 

traffic flow, thereby enhancing its ability to predict complex traffic patterns. Our con-

tributions can be summarized as follows: 

• We propose a novel deep learning architecture for traffic flow prediction that inte-

grates multi-scale convolution and attention mechanisms to capture both spatial and 

temporal dependencies effectively. 

• We introduce the LKD-STS module, which improves the model’s ability to capture 

multi-scale temporal features by leveraging large kernel convolutions and spatio-

temporal selection. 

• Through extensive experiments on multiple datasets, we demonstrate that MCANet 

outperforms existing SOTA models. 

2 Methodology 

2.1 Overview of the proposed MCANet 

In this paper, we propose an innovative method based on Multi-Scale Convolution and 

Attention Mechanisms, for simplicity, we refer to this method as MCANet. To over-

come the inherent limitations of traditional methods in handling multi-scale spatiotem-

poral correlations, we propose the integration of multi-scale convolution with attention 

mechanisms. This is especially important in complex spatiotemporal data, where fre-

quent changes across different time periods and spatial features pose challenges for 

effective processing. Our proposed MCANet is illustrated on the left side of Fig. 1, 

where each Block entails a four-step sequence: 1) Extracting periodic frequency infor-

mation from the input time series via “FFT for Periods”; 2) Modeling multi-scale cor-

relations with the Scale and Mid Layer modules, followed by reshaping the data’s di-

mensions; 3) Refining features through the LKD-STS, GCSA,  



 

 

Fig. 1. The overall architecture of MCANet.  

 

and PCBG modules, then fusing them with Multi-Head Attention Layer; 4) Integrating 

the final representation into the backbone network via an addition operation. When it 

comes to the innovations of this paper, firstly, to capture traffic patterns across different 

time scales, we introduce the LKD-STS module. Secondly, to effectively identify and 

reinforce key traffic spatial features, we incorporate the GCSA module. Finally, we 

propose the PCBG module, which alleviates redundant computation through partial 

convolution, thereby improving the model’s efficiency. Furthermore, to mitigate the 

potential overfitting issue arising from the introduction of new modules, we incorporate 

residual connections between the two LKD-STS modules, ensuring the model remains 

robust in handling the diverse features and dynamic dependencies in complex traffic 

data [8]. In the following subsections, we provide a detailed introduction to each of 

these three modules. 

2.2 LKD-STS Module 

To address the need for multi-scale feature extraction [25-28] in traffic flow prediction 

and capture traffic patterns across different time scales, we propose the Large Kernel 

Decomposition and Spatio-Temporal Selection (LKD-STS) module, as illustrated in 

Fig. 2. The LKD-STS utilizes its unique Large Selective Kernel mechanism to dynam-

ically adjust the receptive field size based on the input data requirements [15]. This 

feature is particularly effective in capturing patterns across different time scales in traf-

fic data, making it especially suitable for complex traffic scenarios where both short-

term fluctuations and long-term trends coexist. Compared to traditional selective con-

volution modules, such as SKNet [13], ResNeSt [14], and SCNet [9], the time-selective 
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mechanism of LKD-STS is more flexible and adaptive, enabling it to effectively handle 

the variable patterns encountered in traffic flow prediction tasks. 

 

Fig. 2. The key components of the LKD-STS. 

Moreover, the varying requirements across different time scales, including short-

term and long-term fluctuations, necessitate the recognition of distinct temporal char-

acteristics. The LKD-STS model leverages its Large Kernel Selection module to dy-

namically capture comprehensive temporal context information. This capability ena-

bles it to detect changes in traffic flow with greater precision across diverse time scales. 

The core part of LKD-STS includes: 

Decomposition of Large Convolutions: LKD-STS decomposes large convolution 

kernels into sequences of multiple depth-wise convolution kernels, ensuring a large re-

ceptive field while effectively reducing the number of parameters. This decomposition 

is described by the following formula: 

 

𝑅𝐹1 = 𝑘1, 𝑅𝐹𝑖 = 𝑑𝑖(𝑘𝑖 − 1) + 𝑅𝐹𝑖−1 (1) 

 

where 𝑘𝑖 and 𝑑𝑖 represent the size and dilation rate of the i-th convolution kernel, re-

spectively. By decomposing large convolution kernels, LKD-STS can dynamically ad-

just to capture both temporal and spatial features in complex traffic scenarios, ensuring 

the extraction of rich contextual information. 

Spatio-Temporal Selection Mechanism: After extracting multi-scale spatiotemporal 

features, LKD-STS employs a spatio-temporal selection mechanism to dynamically 

weight features at different spatial and temporal positions, further enhancing the flexi-

bility and effectiveness of feature extraction. This mechanism generates selection 

masks through max pooling and average pooling, and uses the following formula to 

combine the features at each position: 

 

𝑆 = 𝐹(∑(

𝑁

𝑖=1

𝑆𝑖 ⋅ 𝑈𝑖)) (2) 

 



 

where 𝑆𝑖represents the spatio-temporal selection mask corresponding to each convolu-

tion kernel. 

Through the selective use of large convolution kernels and a dynamic spatiotemporal 

selection mechanism, LKD-STS is able to effectively capture large-scale contextual 

information at lower layers while optimizing and refining fine-grained features at 

higher layers. As a result, LKD-STS demonstrates excellent performance in traffic flow 

prediction, particularly in recognizing traffic patterns across different time scales, as 

well as in complex traffic spatial scenarios, such as intersections and congested areas. 

This design significantly enhances the model’s predictive accuracy and robustness. 

2.3 GCSA Module 

Although traditional attention mechanisms (such as SENet [10], CBAM [18], etc.) im-

prove feature extraction performance to some extent, they often lead to the loss of 

global features when processing the channel and spatial dimensions separately. This 

occurs due to dimensionality reduction and independent operations, making it difficult 

to fully capture multi-dimensional interaction information. To highlight key spatial fea-

tures in complex traffic scenarios, we propose the Global Channel Spatial Attention 

(GCSA) module, which effectively enhances the model’s ability to capture multi-scale 

traffic features and preserve spatial-channel information. 

The GCSA module employs a global attention mechanism, introducing 3D displace-

ment operations and a Multi-Layer Perceptron (MLP), allowing the channel attention 

submodule to retain global information across space, time, and channels, and amplify 

cross-dimensional dependencies. 

Meanwhile, the spatial attention module replaces pooling with convolution opera-

tions, effectively preventing feature loss. It also leverages group convolutions and chan-

nel shuffling to reduce computational complexity. 

In the GCSA module, channel attention first preserves the integrity of the three-di-

mensional information through 3D displacement and then reprocesses the information 

using a two-layer MLP to enhance feature representation capability. In the spatial at-

tention component, the 7×7 convolution kernel not only increases the model’s sensitiv-

ity to spatial dependencies but also effectively controls the growth of parameters 

through group convolutions. The overall workflow is illustrated in Fig. 3 and is specif-

ically described by the following two formulas: 

 

𝐹2 = 𝑀𝑐(𝐹1) ⊗ 𝐹1 (3) 
 

𝐹3 = 𝑀𝑠(𝐹2) ⊗ 𝐹2 (4) 
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Fig. 3. The GCSA module. 

where 𝑀𝑐 and 𝑀𝑠 represent the channel and spatial attention maps, respectively, and ⊗ 

denotes element-wise multiplication. 

The GCSA module can preserves global features and enhance spatial-channel de-

pendencies, particularly in peak and off-peak period predictions, thereby eliminating 

the information loss caused by pooling. This allows the model to more accurately per-

ceive dynamic interactions between sensors. At the same time, GCSA optimizes the 

fusion of spatial and channel features, enabling MCANet to better capture the dynamic 

changes in traffic flow across different time scales and spatial dimensions, significantly 

improving the model’s prediction accuracy and robustness in complex traffic environ-

ments, and helping traffic management systems more effectively address peak traffic 

and unexpected events. 

2.4 PCBG Module 

In order to extract spatial features more efficiently by minimizing redundant computa-

tions and memory accesses, we propose the Partial Convolution Batch-normalization 

(PCBG) module. Specifically, the PCBG module combines partial convolution 

(PConv) [3], Batch Normalization, and GELU activation functions, with the detailed 

structure shown in Fig. 4. 

 

Fig. 4. Details of the PCBG module 

In traffic prediction tasks, traditional convolution operations have significant limita-

tions, particularly when handling spatiotemporal dynamic features. Traditional convo-

lutions perform computations uniformly across all channels, leading to a large number 



 

of redundant operations. For example, when processing the spatiotemporal features of 

traffic flow, the input data often contains redundant spatial information. Traditional 

convolutions apply the same computations to each input channel, which results in low 

computational efficiency and increased dependency on computational resources and 

memory. This leads to computational bottlenecks and excessive memory access re-

quirements during the inference of large-scale traffic data, making it challenging to 

meet the performance demands of real-time applications. 

The proposed PCBG module significantly reduces the computational load by intro-

ducing PConv, optimizing the model’s efficiency. The PConv module applies convo-

lution filters only to a subset of the input channels while leaving the remaining channels 

unchanged, thereby optimizing the process of spatial feature extraction. The design of 

PConv is shown on the left side of Fig. 4. FLOPs can be expressed as: 

 

ℎ × 𝑤 × 𝑘2 × 𝑐𝑝
2. (5) 

 

where cp  represents the number of partial channels. Typically, the partial ratio of 

PConv is r =
cp

c
=

1

4
 , and the FLOPs is 1/16 of the standard convolution. This provides 

MCANet with a distinct advantage in applications requiring efficient inference. 

In addition, the PCBG module integrates Batch Normalization and the GELU acti-

vation function, which provide the model with greater stability and stronger nonlinear 

expressiveness when handling complex traffic data. Batch Normalization standardizes 

the output features, improving the model’s training stability on traffic data, accelerat-

ing convergence, and reducing issues such as vanishing and exploding gradients. The 

GELU activation function, compared to traditional ReLU, is smoother when processing 

dynamic traffic data and can effectively preserve subtle differences in the input fea-

tures, thus improving the model’s prediction accuracy. 

Therefore, compared to traditional convolution, the PCBG module not only reduces 

redundant computations and improves efficiency, but also enhances the model’s sta-

bility and accuracy in traffic flow prediction. Specifically, in scenarios involving long 

time series and complex dynamic features, the PCBG module significantly boosts the 

model’s overall performance in traffic prediction [8]. 

3 Experimental Results 

In this section, we perform extensive experiments to validate the effectiveness of 

MCANet. In Section 3.1, we introduce the traffic flow dataset used for training. Section 

3.2 details the five baseline models used for comparison and the loss function used for 

training. In Section 3.3, we describe the experimental setup for training. In Section 3.4, 

we validate the capability of the enhanced model, MCANet, which consists of the LKD-

STS, GCSA, and PCBG modules, as proposed in this paper. We also analyze the con-

tribution of the PCBG module in reducing computational cost. In Section 3.5, we ana-

lyze and compare the impact of different modules on the overall model performance 
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through ablation studies. Finally, in Section 3.6, we present visualized prediction ex-

amples on the Flight and Traffic datasets to provide intuitive comparisons of different 

models in capturing trend variations and periodic patterns. 

 

3.1 Datasets 

Table 1. Description of datasets. 

 

 

Flight dataset [2]: The Flight dataset, obtained from the OpenSky Network plat-

form, contains flight operation records related to the COVID-19 pandemic. As a widely 

used benchmark dataset in the original MSGNet paper, it is utilized to assess model 

robustness under out-of-distribution (OOD) conditions. The dataset spans from January 

2019 to December 2021 and includes flight information from seven major European 

airports: EDDF, EHAM, LEMD, LFPG, LIRF, LSZH, and UUEE. 

It comprises a diverse set of attributes, including flight number, airline, departure 

and arrival airports, scheduled and actual departure/arrival times, flight delay durations, 

and operational status (e.g., on-time, delayed, or canceled) [4]. Due to the significant 

disruptions in air traffic caused by the COVID-19 outbreak, a considerable portion of 

the dataset consists of OOD samples, making it a valuable resource for evaluating 

model generalization in non-stationary environments. 

Traffic dataset [19]: The Traffic dataset, provided by the California Department of 

Transportation, contains occupancy rate data from highway segments in the San Fran-

cisco Bay Area. As one of the widely adopted benchmark datasets in the MSGNet 

study, it is commonly used in time series forecasting tasks. Thedata were collected by 

862 sensors deployed along major highways between 2015 and 2016, with a temporal 

resolution of one measurement per hour. 

Each record in the dataset reports the occupancy rate of a specific highway segment 

as a percentage, representing the proportion of time that segment was occupied by ve-

hicles. This enables a comprehensive characterization of traffic patterns across different 

times and locations. 

To ensure consistency with the experimental configuration of MSGNet, we adopt an 

identical data partitioning strategy for both datasets, dividing them into training, vali-

dation, and test sets with a ratio of 7:1:2. All subsets are standardized using the mean 

and standard deviation computed from the training set to ensure fair comparisons across 

models. Detailed partitioning information used in the experiments is summarized in 

Table 1. 

Datasets Dim   Input Length Output Length         {Train / Test / Valid Size}  Frequency 

Flight 7 96 {96, 192, 336, 720} (18317, 2633, 5261) Hourly 

Traffic 862 96 {96, 192, 336, 720} (12185,1757,3509) Hourly 



 

3.2 Baseline Models and Evaluation Metrics 

We compared our approach against five time series prediction methods, including the 

MSGNet [2] framework with an adaptive graph convolution module and Transformer-

based models such as Informer [19] and Autoformer [12]. Addi- tionally, we included 

the linear model DLinear [16] and considered TimesNet [11], which employs period 

decomposition and currently attains SOTA performance. All models are trained using 

Mean Squared Error (MSE) as the loss function. 

For model evaluation, we employ two metrics: MSE and Mean Absolute Error 

(MAE), defined as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑(

𝑛

𝑖=1

𝑦
^

𝑖 − 𝑦𝑖)
2 (6) 

 

𝑀𝐴𝐸 =
1

𝑛
∑|

𝑛

𝑖=1

𝑦
^

𝑖 − 𝑦𝑖| (7) 

where 𝑦𝑖 and 𝑦
^

𝑖 represent the i-th true value and predicted value, respectively, and n 

denotes the size of the test set [17]. 

3.3 Experimental Setup 

All experiments were conducted on a Tesla P100 GPU. We adopted Mean Squared 

Error (MSE) as the primary loss function for model training. To ensure reproducibility, 

the input sequence length was fixed at L = 96, and the prediction lengths were selected 

from T = {96, 192, 336, 720}. The initial learning rate was set to 1 × 10−4, and the 

batch size was set to 32. Each model was trained for a maximum of 10 epochs, with 

early stopping applied when necessary to prevent overfitting. 

To maintain fairness and consistency, we applied the same set of hyperparameters 

across both the Flight and Traffic datasets, as summarized in Table 2. In particular, the 

number of temporal scales was set to k = 5, and the embedding dimension of the node 

features was fixed at 100. The model depth 𝑑𝑚𝑜𝑑𝑒𝑙  was set to 16 for Flight and 1024 

for Traffic, reflecting the difference in input feature dimensionality. We used 2 

ScaleGraph blocks and a MixHop order of 2 to capture both local and multi-hop de-

pendencies. The number of attention heads was set to 8, and optimization was per-

formed using the Adam optimizer [7]. 
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Table 2. Hyper-parameters on Flight and Traffic. 

Datasets Flight/Traffic 

Epochs 10 

Batch size 32 

Loss MSE 

Learning rate 1e-4 

k 5 

Dim of E 100 
dmodel {16,1024} 

ScaleGraph block 2 

Mixhop order 2 

Heads 8 

Optimizer Adam [7] 

 

3.4 Results and Analysis 

As shown in Table 3, MCANet demonstrates outstanding overall performance on the 

Flight dataset, achieving either the best or second-best results across all prediction ho-

rizons. Its superiority is particularly evident in short-term forecasting tasks. For in-

stance, at a prediction length of T = 96, MCANet achieves an MSE of 0.178 and an 

MAE of 0.296, highlighting its strong capability in modeling complex temporal de-

pendencies. 

Table 3. The forecast results. 
 

 

 

 

 

 

 

 

 

 

 

 

Metric Models MCANet MSGNet TimesNet DLinear Informer Autoformer 

  MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

 96 0.178 0.296 0.183 0.301 0.237 0.350 0.221 0.337 0.333 0.405 0.204 0.319 

Flight 
192 0.187 0.303 0.189 0.306 0.224 0.337 0.220 0.336 0.358 0.421 0.200 0.314 
336 0.203 0.317 0.206 0.320 0.289 0.394 0.229 0.342 0.398 0.446 0.201 0.318 

 720 0.250 0.356 0.253 0.358 0.310 0.408 0.263 0.366 0.476 0.484 0.345 0.426 

 96 0.575 0.330 0.610 0.349 0.593 0.321 0.650 0.396 0.719 0.391 0.613 0.388 

Traffic 
192 0.623 0.360 0.634 0.370 0.617 0.337 0.598 0.370 0.696 0.379 0.616 0.382 
336 0.657 0.383 0.670 0.392 0.629 0.339 0.605 0.373 0.777 0.420 0.622 0.337 

 720 0.709 0.412 0.727 0.422 0.640 0.350 0.645 0.394 0.864 0.472 0.660 0.408 



 

 
 

Fig. 5. Performance comparison  

 

On the more complex and volatile Traffic dataset, MCANet also exhibits robust and 

highly accurate forecasting performance. Although certain baseline models yield 

slightly lower MSE values at specific prediction steps, MCANet consistently achieves 

the lowest MAE across all horizons, indicating a significant advantage in error control 

and overall stability. For example, in the short-term prediction task at T = 96, MCANet 

yields a markedly lower MAE compared to models such as DLinear and Informer, fur-

ther validating its effectiveness in capturing short-term traffic fluctuations. 

In addition to predictive performance, we further conducted a comparative analysis 

of training efficiency and resource consumption across different convolutional struc-

tures within MCANet. Table 4 presents the GPU memory usage and per-epoch training 

time under various prediction lengths for two model variants—one employing standard 

3×3 convolutions and the other incorporating the proposed PCBG module—on the 

Flight and Traffic datasets. 

The results clearly demonstrate that the PCBG module significantly reduces both 

GPU memory consumption and training time across all settings. For instance, on the 

Flight dataset with a prediction length of 96, the standard convolutional model con-

sumed 0.879 GB of GPU memory, while the PCBG-based model reduced this to 0.828 

GB, yielding a reduction of approximately 5.8%. Similarly, the training time decreased 

from 363.863 seconds to 345.826 seconds, representing an improvement of about 

5.0This optimization becomes even more pronounced on the Traffic dataset. At a pre-

diction length of 96, the PCBG-based model reduced GPU memory consumption by 

18.1%, with usage dropping from 

30.078 GB to 24.626 GB. In addition, it shortened the training time from 835.382 

seconds to 795.037 seconds, resulting in an approximate 4.8% gain in training effi-

ciency. 

Moreover, as the prediction horizon increases, the standard convolutional model ex-

hibits steadily rising memory and computational overheads, whereas the PCBG-based 

architecture maintains a more stable resource consumption profile. For example, at a 
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prediction length of 720 on the Traffic dataset, the PCBG model utilized only 30.171 

GB of GPU memory, compared to 31.019 GB for the standard convolutional model—

a reduction of approximately 2.7%—while also decreasing the training time by nearly 

29 seconds. 

 

Table 4. Comparison of GPU Memory Usage and Training Time 

 

 

Table 5. Ablation study on the Traffic dataset. 

 

 

3.5 Ablation Studies 

We conducted ablation studies to examine the contribution of multi-scale convolution 

and attention mechanisms to the effectiveness of MCANet. In this analysis, we tested 

the performance of model by removing individual modules and assessing their impact 

on the public Traffic dataset, as illustrated in Table 5. 

The results demonstrate that each module positively contributes to model perfor-

mance across different prediction horizons. The incorporation of the LKD-STS module 

consistently reduced prediction errors for all forecast lengths, particularly in short-term 

forecasting. For instance, at T=96, the MSE decreased from 0.610 to 0.588, and the 

MAE decreased from 0.349 to 0.343, indicating that this module effectively enhances 

Dataset Model Pred Length      GPU Memory (GB)     Running Time (s/epoch) 

  96 0.879 363.863 

 Ours (Conv 3×3) 
192 0.883 370.765 

336 0.838 358.048 

Flight  720 0.887 357.274 

  96 0.828 345.826 

Ours (PCBG) 
192 0.878 346.951 

336 0.834 340.260 

 720 0.885 334.998 

  96 30.078 835.382 

 Ours (Conv 3×3) 
192 30.921 818.558 

336 30.597 817.671 

Traffic  720 31.019 832.445 

  96 24.626 795.037 

Ours (PCBG) 
192 30.537 802.731 

336 30.265 809.565 

 720 30.171 803.175 

✓    0.610 0.349 0.634 0.370 0.670 0.392 0.727 0.422 

✓ ✓   0.588 0.343 0.632 0.365 0.668 0.388 0.724 0.418 

✓  ✓  0.584 0.336 0.625 0.360 0.657 0.386 0.710 0.412 

✓   ✓ 0.599 0.350 0.640 0.368 0.670 0.391 0.723 0.419 

✓  ✓ ✓ 0.576 0.335 0.627 0.364 0.659 0.387 0.714 0.415 

✓ ✓  ✓ 0.589 0.348 0.633 0.367 0.666 0.390 0.718 0.416 

✓ ✓ ✓  0.574 0.332 0.625 0.362 0.658 0.386 0.708 0.414 

✓ ✓ ✓ ✓ 0.575 0.330 0.623 0.360 0.657 0.383 0.709 0.412 

 
    

 



 

the model’s ability to capture temporal dependencies by dynamically adjusting the re-

ceptive field. In comparison, the GCSA module yielded even more substantial improve-

ments. At T=96, the MSE and MAE dropped to 0.584 and 0.336, respectively, and 

further declined to 0.710 and 0.412 at T=720. These results highlight the GCSA mod-

ule’s notable advan- tage in modeling long-term spatiotemporal channel interactions. 

Although the performance gains introduced by the PCBG module were relatively 

modest, its contribution to computational efficiency was particularly significant. As 

shown in the resource consumption comparison in Table 4, on the Traffic dataset with 

a prediction length of 96, the use of the PCBG module reduced GPU memory usage 

from 30.078 GB to 24.626 GB and shortened training time from 835.382 seconds to 

795.037 seconds, representing reductions of 18.1% and 4.8%, respectively. Therefore, 

the PCBG module demonstrates strong practical value by substantially decreasing com-

putational overhead while maintaining stable performance. 

Furthermore, combining multiple modules led to synergistic improvements in pre-

diction accuracy. When both the LKD-STS and GCSA modules were incorporated, the 

model achieved the lowest MSE at T=96 and T=720, with values of 0.574 and 0.708, 

respectively, suggesting that these modules offer complementary strengths in temporal 

modeling and spatial feature integration. However, some fluctuations in the MAE were 

observed with this combination. Upon further inclusion of the PCBG module, the model 

maintained competitive performance in terms of MSE and achieved the lowest MAE 

across all prediction lengths—0.330,0.360, 0.383, and 0.412 at T=96, 192, 336, and 

720, respectively—further enhancing the model’s overall stability and prediction accu-

racy. 

3.6 More Showcases 

We conduct a series of visualized case studies in Fig. 6 and Fig. 7. Compared to SOTA 

models, our MSGNet exhibits a superior ability to capture trend variations and periodic 

patterns, yielding more accurate representations of both the global structure and local 

fluctuations in the time series. 
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Fig. 6. Visualization of the prediction with input length 96 and output 
length 336. The sequence id is 40. 

 

 
 

Fig. 7. Visualization of the prediction with input length 96 and output 
length 96. The sequence id is 100. 

4 Conclusion 

In this paper, we propose a novel traffic flow prediction model, denoted as MCANet. 

The model enhances its multi-scale feature extraction capability by introducing the 

LKD-STS module, and further improves its capacity to capture multi-scale traffic char-



 

acteristics and retain spatial–channel information through the GCSA module. Addition-

ally, we integrate the PCBG module to reduce redundant computations and memory 

access, thus improving the model’s efficiency. Experimental results show that, com-

pared with the baseline and other SOTA prediction models, MCANet achieves lower 

MSE across various prediction horizons. These findings highlight the pivotal role of 

multi-scale convolution and attention mechanisms in advancing performance for traffic 

flow prediction tasks. In the future, we aim to explore more complex traffic scenarios 

and further optimize and expand our model to handle larger-scale traffic data and more 

diverse traffic patterns. 
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