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Abstract. Traffic flow prediction is critical for the effective management and 

public safety of modern cities; however, it remains a challenging task. The intri-

cate spatiotemporal dependencies in traffic data and the trade-off between com-

putational efficiency and predictive accuracy in existing models have long been 

key challenges. To address these issues, we propose a novel attention-based 

model built upon the Transformer architecture, termed the Multi-dimensional 

Collaborative Spatial-Temporal Attention Model (MCSTA). Our model intro-

duces several innovations: first, we design a Lightweight Multi-dimensional Co-

operative Enhanced Attention (LMCEA) mechanism to capture spatiotemporal 

relationships across multiple dimensions. Additionally, we propose Non-dimen-

sionality Reduction Local Cross-Channel Attention (NDLCCA), which leverages 

1D convolution to model local cross-channel interactions while circumventing 

dimensionality reduction operations. This approach significantly reduces compu-

tational complexity, enhances the utilization of inter-channel information, accu-

rately captures correlations among channels, and ultimately provides more dis-

criminative feature representations.Experimental evaluations on two real-world 

traffic datasets demonstrate that MCSTA outperforms state-of-the-art (SOTA) 

models. Compared to the baseline model, our approach achieves RMSE reduc-

tions of 3.43%, 6.63%, and 13.01% on the NYCBike dataset and 6.13%, 7.24%, 

and 7.49% on the NYCTaxi dataset, respectively. 

Keywords: Traffic Flow Prediction, Transformer, Lightweight Attention, 

Cross-Channel Attention. 

1 Introduction 

Traffic flow prediction plays a crucial role in the efficient management and operation 

of modern urban transportation systems [1-5]. With the rapid growth of urbanization 

and the increasing number of vehicles on the road, accurately predicting traffic flow 

has become a key challenge for both city planners and transportation authorities. Effec-

tive traffic prediction not only helps in optimizing traffic management strategies, but it 



 

also improves public safety by anticipating potential traffic congestions, accidents, and 

other safety hazards. Moreover, accurate traffic flow forecasting is an essential compo-

nent of intelligent transportation systems (ITS) that can reduce road congestion, en-

hance fuel efficiency, and ultimately improve the quality of life for citizens in large 

urban areas. 

Traffic flow prediction involves forecasting the number of vehicles passing through 

a specific area over a given period. This task is inherently complex due to the spatio-

temporal nature of the data involved. In recent years, with the advancement of convo-

lutional neural networks (CNNs) and recurrent neural networks (RNNs), deep learning 

models based on these architectures have been widely employed in traffic flow predic-

tion. With the emergence of the Transformer model, researchers [6-13] have integrated 

Transformers with CNNs to enhance traffic flow prediction. In these studies, Trans-

former networks are utilized to capture temporal dependencies, while CNNs are em-

ployed to extract spatial dependencies. Dosovitskiy et al. [14], however, demonstrated 

the capability of Transformer networks in extracting spatial dependencies. Spacetime-

former [15] adopts a variant similar to Informer [16] to address this issue, yet its per-

formance remains suboptimal. Despite these advancements, existing traffic prediction 

models still face significant limitations. For instance, although attention-based mecha-

nisms, such as those in Transformer models, offer a more flexible and efficient way to 

model spatial-temporal dependencies, they often overlook the multi-dimensional nature 

of traffic data. Traffic flow involves a variety of interrelated factors, such as weather, 

time of day, road type, and other contextual factors, that need to be considered across 

multiple dimensions. Additionally, the computational cost of capturing local spatial-

temporal correlations, particularly in large-scale traffic networks, remains a challenge. 

To address these challenges, we introduce a novel attention model for traffic flow 

prediction, the Multi-dimensional Collaborative Spatial-Temporal Attention Model 

(MCSTA). MCSTA builds on the strengths of Transformer-based architectures while 

introducing several key innovations designed to improve both accuracy and efficiency. 

At the heart of the MCSTA model are two innovative mechanisms: Lightweight Multi-

dimensional Cooperative Enhanced Attention (LMCEA) and Non-dimensionality Re-

duction Local Cross-Channel Attention (NDLCCA). The LMCEA mechanism is de-

signed to better capture the relationships between spatial and temporal data across mul-

tiple dimensions. Unlike traditional attention mechanisms that treat spatial and tem-

poral dependencies separately, LMCEA considers the multi-dimensional nature of the 

data, allowing the model to leverage both temporal and spatial information simultane-

ously. This enables the model to effectively capture the intricate relationships that exist 

within traffic flow data, providing a richer and more discriminative feature representa-

tion. Another challenges in applying deep learning models to traffic flow prediction is 

the high dimensionality of the data, which leads to increased computational complexity. 

The NDLCCA mechanism is designed to reduce the operational complexity by using 

1D convolution to capture local cross-channel interactions. This approach avoids the 

need for dimensionality reduction operations and ensures that the model effectively 

utilizes information between channels, making the predictions more accurate while 

maintaining computational efficiency. 
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We evaluate the MCSTA model on two real-world traffic datasets: the NYCBike 

dataset and the NYCTaxi dataset. The experimental results demonstrate that MCSTA 

outperforms state-of-the-art (SOTA) models, achieving significant reductions in root 

mean square error (RMSE) when compared to baseline models. Specifically, the RMSE 

of MCSTA on the NYCBike dataset was reduced by 3.43%, 6.63%, and 13.01%, while 

the RMSE on the NYCTaxi dataset was reduced by 6.13%, 7.24%, and 7.49% in dif-

ferent evaluation settings. These results confirm that MCSTA is both accurate and ef-

ficient, making it a promising model for real-time traffic flow prediction in smart cities.  

The contributions of this paper can be summarized as follows: 

• We propose LMCEA, which captures temporal and spatial dependencies from mul-

tiple dimensions, can adaptively capture local feature interactions, pay attention to 

different factors in traffic flow data, and extract more discriminative features. 

• We propose NDLCCA, using 1D convolution to capture local cross-channel inter-

actions. Avoiding dimensionality reduction greatly reduces the operational complex-

ity, and can make more efficient use of the information between channels, accurately 

capture the correlation between these channels. 

In the structure of this paper, Section 2 describes the prerequisites required for the 

experiment. Section 3 elaborates on the proposed method in detail. Section 4 conducts 

an in-depth analysis of the experimental results. Finally, Section 5 summarizes the con-

clusions of this paper. 

2 Preliminary 

In this section, we define the origin-destination traffic flow prediction problem. 

Based on the established coordinate system, the urban area is evenly and regularly di-

vided into (𝐼 × 𝐽) grids. 

For the grid (𝑖, 𝑗) located in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column, its inflow and outflow within 

the time interval 𝑡 are clearly defined as follows: 

𝑥𝑡
𝑖𝑛,𝑖,𝑗

= ∑ |

𝑔𝑡
𝑒𝑛𝑑=(𝑖,𝑗)

𝑇𝑟𝑠|   (1)
 

𝑥𝑡
𝑜𝑢𝑡,𝑖,𝑗

= ∑ |

𝑔𝑡
𝑠𝑡𝑎𝑟𝑡=(𝑖,𝑗)

𝑇𝑟𝑠| (2)
 

where 𝑔𝑡
𝑠𝑡𝑎𝑟𝑡 = (𝑖, 𝑗))([𝑔𝑡

𝑒𝑛𝑑 = (𝑖, 𝑗)]  is used to represent the geographical spatial 

starting [ending] coordinates of the trajectory in the region (𝑖, 𝑗) within the time interval 

𝑡. 𝑇𝑟𝑠: 𝑔𝑡
𝑠𝑡𝑎𝑟𝑡 → 𝑔𝑡

𝑒𝑛𝑑  represents a set of trajectories, and | ⋅ | represents the cardinality 

of the set. It should be particularly noted that the starting region and the ending region 

of a trajectory may be the same or different. 

At the time interval 𝑡, the inflows and outflows of all 𝐼 × 𝐽 regions can be represented 

by the tensor 𝑋𝑡 ∈ ℝ2×𝐼×𝐽, where (𝑋𝑡)0,𝑖,𝑗 = 𝑥𝑡
𝑖𝑛,𝑖,𝑗

 and (𝑋𝑡)1,𝑖,𝑗 = 𝑥𝑡
𝑜𝑢𝑡,𝑖,𝑗

 .  

We conduct sparse sampling of historical traffic flows from near to far according to 

three corresponding time perspectives: closeness, periodicity, and trend [17]. When 

constructing these three perspectives, we select hours, days, and weeks as the key time 



 

steps. For each time perspective, we select a series of key time-step traffic flow matrices 

and splice them together in sequence along the time axis to construct the input data: 

 
𝑋𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 = [𝑋𝑡−1, 𝑋𝑡−2, ⋯ , 𝑋𝑡−𝑙𝑟

]  (3) 

𝑋𝑝𝑒𝑟𝑖𝑜𝑑 = [𝑋𝑡−𝑝𝑑
, 𝑋𝑡−2𝑝𝑑

, ⋯ , 𝑋𝑡−𝑙𝑑∗𝑝𝑑
]  (4) 

𝑋𝑡𝑟𝑒𝑛𝑑 = [𝑋𝑡−𝑝𝑤
, 𝑋𝑡−2𝑝𝑤

, ⋯ , 𝑋𝑡−𝑙𝑤∗𝑝𝑤
]  (5) 

𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = [𝑋𝑡𝑟𝑒𝑛𝑑 , 𝑋𝑝𝑒𝑟𝑖𝑜𝑑 , 𝑋𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠] (6) 

where 𝑙𝑟 , 𝑙𝑑, and 𝑙𝑤 correspond to the input lengths of the matrices of the three time 

perspectives respectively, and 𝑝𝑑 and 𝑝𝑤 are the daily cycle (24 hours) and the weekly 

cycle (144 hours), respectively. 

In addition, external factors such as weather conditions, the day of the week, whether 

it is a weekend, temperature, and wind speed are all characterized by the One-Hot En-

coding method, which is convenient for subsequent analysis and processing. 

Based on the given historical observations 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑦  and external factors, achieving 

accurate prediction of  𝑋𝑡 constitutes one of the core problems of this study. 

3 Methodology 

In this section, we first introduce MCSTA in general. Then we introduce Lightweight 

Multi-dimensional Cooperative Enhanced Attention (LMCEA) and Non-dimensional-

ity Reduction Local Cross-Channel Attention (NDLCCA). 

3.1 Overview of MCSTA 

The overall framework of our proposed method is illustrated in Fig. 1. First, we explic-

itly model the transportation system as a topological graph, where nodes represent traf-

fic sensors or road segments, and edges encode spatial connectivity. This graph-struc-

tured representation facilitates the integration of graph convolutional networks (GCNs) 

with Transformer layers. The input 𝑇-step traffic flow data, along with the road network 

structure, is processed through a Data Embedding Layer to generate spatiotemporal 

feature representations.  Subsequently, the model leverages two core components to 

enhance feature learning: Transformer-based self-attention, which integrates Light-

weight Multi-dimensional Cooperative Enhanced Attention (LMCEA) with Non-di-

mensionality Reduction Local Cross-Channel Attention (NDLCCA). LMCEA adap-

tively captures spatiotemporal dependencies across multiple dimensions, dynamically 

focuses on local feature interactions, and collaboratively weights heterogeneous factors 

influencing traffic flow. NDLCCA preserves the integrity of original feature infor-

mation by circumventing dimensionality reduction operations while efficiently extract-

ing fine-grained cross-channel correlations through localized attention mechanisms.   

These components iteratively refine feature representations through stacked layers, 

where the interaction between Key (𝐾) and Query (𝑄) further optimizes global depend-
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encies. Finally, the Output Layer predicts the 𝑇′-step traffic flow by synthesizing hier-

archical spatiotemporal patterns, significantly enhancing prediction accuracy through 

discriminative feature fusion and multi-scale dependency modeling. 

 

Fig. 1. Overview of the proposed MCSTA. 

3.2 Lightweight Multi-dimensional Cooperative Enhanced Attention 

Traffic flow prediction poses significant challenges in three key aspects: modeling in-

tricate spatiotemporal dependencies, identifying discriminative feature representations, 

and ensuring robust model generalization across diverse scenarios. Prediction accuracy 

is inherently constrained by multiple interdependent factors, whose complex nonlinear 

interactions are seldom fully captured by existing methodologies. Conventional feature 

extraction techniques employ oversimplified approaches that are ill-suited for traffic 

flow prediction, while deep learning models based on CNNs [29-33] and GCNs often 

exhibit limited generalization capabilities in diverse traffic scenarios. These limitations 

collectively hinder prediction accuracy and reduce the practical applicability of such 

models. To address these fundamental challenges, we propose a novel module termed 

Lightweight Multi-dimensional Cooperative Enhanced Attention (LMCEA). LMCEA 

is a lightweight, efficient, and generalizable attention mechanism that can be seamlessly 

integrated into network architectures. As illustrated in Fig. 2, LMCEA comprises three 

parallel branches: the first two branches capture feature interdependencies along the 

spatial dimensions 𝑊 and 𝐻, respectively, while the third branch models interactions 

between channels, thereby enhancing the network’s ability to extract comprehensive 

and discriminative feature representations. 

LMCEA can be regarded as a highly optimized computational unit, which can 

achieve a precise and efficient specific transformation from an input tensor to an output 

tensor of the same shape.  

In the top branch, 𝐅 is first rotated counterclockwise by 90∘ along the $H$ axis, and 

the resulting rotated feature map is denoted as 𝐅̃
𝑊

∈ ℝ𝑊×𝐻×𝐶 . To accurately model the 



 

long-distance dependency between the channel dimension 𝐶 and the spatial dimension 

𝐻, we innovatively introduce an optimized squeeze transformation operation. Input 𝐅̃
𝑊

 

into it, and the obtained aggregated feature map is still denoted as 𝐅̃
𝑊

∈ ℝ𝑊×𝐻×𝐶 . Sub-

sequently, by using a carefully designed excitation transformation, we deeply capture 

the feature interactions in the spatial dimension 𝑊. The resulting width-oriented feature 

weights are represented as 𝐅̂
𝑊

∈ ℝ𝑊×1×1 . Then, 𝐅̂
𝑊

 generates the attention weights 

closely related to the input in the 𝑊 dimension through an efficient sigmoid activation 

function, which is represented as 𝐅̃
𝑊

∈ ℝ𝑊×1×1. Through an optimized element-wise 

multiplication operation, 𝛼𝑊is precisely applied to 𝐅̃
𝑊

, thus obtaining the enhanced fea-

ture map 𝐅𝑊 ∈ ℝ𝑊×𝐻×𝐶 . Finally, 𝐅𝑊 is rotated clockwise by 90 degrees along the 𝐻 

axis to obtain a feature map 𝐅𝑊
′ ∈ ℝ𝐶×𝐻×𝑊 with the same shape as the original input.In 

the middle branch, 𝐅 is first rotated counterclockwise by 90∘ along the 𝑊 axis to obtain 

the rotated feature map 𝐅̂
𝐻

∈ ℝ𝐻×𝐶×𝑊. To accurately depict the dependency between the 

channel dimension 𝐶 and the spatial dimension 𝐻, and further deeply explore the fea-

ture interactions in the height direction, we sequentially apply the optimized squeeze 

transformation and excitation transformation to 𝐅̂
𝐻

. By doing so, we can accurately de-

rive the aggregated feature map 𝐅̂𝐻 ∈ ℝ𝐻×1×1 and the feature weights in the height di-

rection 𝐅̌𝐻 ∈ ℝ𝐻×1×1 in sequence. Subsequently, 𝐅̌𝐻 is activated by an efficient sigmoid 

function to generate the attention weights 𝒜𝐻 ∈ ℝ𝐻×1×1 that are highly adaptable to 

the input in the 𝐻 dimension. 𝒜𝐻 is used to precisely recalibrate 𝐅̂
𝐻

, thereby obtaining 

the enhanced feature map 𝐅′𝐻 ∈ ℝ𝐻×𝐶×𝑊 . Finally, 𝐅′𝐻  is rotated clockwise by 90∘ 

along the 𝑊 axis to obtain a feature map 𝐅′′𝐻 ∈ ℝ𝐶×𝐻×𝑊 with the same shape as the 

original input. 

The design of the bottom branch integrates cutting-edge design concepts with the 

advantages of classic channel attention mechanisms, mainly focusing on deeply mod-

eling spatial dependencies, and it can keenly capture the complex interactions between 

channels. 𝐅 first generates the feature map 𝐅̂
𝐶

∈ ℝ𝐶×𝐻×𝑊 through an optimized identity 

mapping operation. Then, 𝐅̂
𝐶

 is input into the optimized squeeze transformation and ex-

citation transformation modules in sequence, and thus the aggregated feature map 𝐅̂𝐶 ∈

ℝ𝐶×1×1  and the feature weights in the channel direction𝐅̌𝐶 ∈ ℝ𝐶×1×1   are obtained. 

Next, an efficient sigmoid activation function is applied to 𝐅̂
𝐶

, and the channel attention 

weights 𝒜𝐶 ∈ ℝ𝐶×1×1 closely related to the input are precisely derived. Subsequently, 

𝒜𝐶  is used to precisely rescale 𝐅̂
𝐶

 to generate the enhanced feature map 𝐅′𝐶 ∈ ℝ𝐶×𝐻×𝑊. 

Finally, the feature map 𝐅′𝐶  is precisely remapped through the optimized identity map-

ping function to obtain 𝐅′′𝐶 ∈ ℝ𝐶×𝐻×𝑊. 

Finally, by averaging the weights, all the outputs of the three branches that have been 

recalibrated with attention weights in different dimensions are comprehensively pro-

cessed, so as to obtain the highly optimized final refined feature map. The weight av-

eraging method fully considers the differences in the importance of the outputs of each 

branch. Compared with the simple average, it can more effectively integrate the key 
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information of each dimension, significantly improve the model's ability to extract and 

represent complex traffic flow features, and thus comprehensively enhance the model 

performance. 

 

Fig. 2. The structure of LMCEA. ⊗ represents broadcast element-level multiplication, and ⊕ 

represents broadcast element-level summation. 

3.3 Non-dimensionality Reduction Local Cross-Channel Attention 

In conventional channel information processing, traditional dimensionality reduction 

operations disrupt the correspondence between channels and their associated weights, 

leading to inaccurate information transmission and impairing the ability to capture cor-

relations among various factors. Furthermore, in local cross-channel interactive learn-

ing, existing models suffer from excessive parameterization, high computational costs, 

and a limited capacity to capture only simple adjacent channel relationships, making it 

challenging to extract long-range local dependencies.   

To address these limitations, we propose the Non-dimensionality Reduction Local 

Cross-Channel Attention (NDLCCA) mechanism. As illustrated in Fig. 3, the input to 

the NDLCCA module consists of data with dimensions 𝑊 × 𝐻 × 𝐶, where 𝑊 denotes 

width, 𝐻 represents height, and 𝐶 corresponds to the number of channels. 

The input data first passes through a Global Average Pooling (GAP) layer. The GAP 

operation averages the spatial information within each channel, compressing the spatial 

dimension and thereby obtaining a set of feature vectors with global statistical infor-



 

mation. Non-dimensional reduction operation helps aggregate feature information, re-

duces computational load, and enhances the robustness of the features. The set of fea-

ture vectors processed by GAP then enters an operation layer controlled by parameter 

𝑘. Parameter 𝑘 is used to adjust the feature mapping and transformation, enabling pre-

liminary screening and transformation of features based on the characteristics of the 

input data, making the features more targeted in subsequent processing. The features 

processed by the 𝑘 operation layer are then passed to an activation and normalization 

layer controlled by parameter 𝜎. Parameter 𝜎 is mainly used to adjust the distribution 

of features, ensuring that the feature values are within an appropriate range through 

activation functions and normalization operations, preparing for subsequent convolu-

tion and feature interaction operations. Subsequently, the data is split into two parallel 

branches. One branch passes through multiple alternating convolutional layers and Lo-

cal Cross-Channel Interaction (LCCI) modules. Convolutional layers extract local spa-

tial and channel features by sliding different convolution kernels over the feature data. 

The LCCI module focuses on mining the interaction relationships among different 

channels within the same local region. The other branch passes through Adaptive Ker-

nel Size Determination Mechanism (AKSDM) module. After processing by the two 

parallel paths, the data is merged at the fusion node with the initial data, generating an 

output with a dimension still of  𝑊 × 𝐻 × 𝐶. 

1) Local Cross-Channel Interaction 

As shown in Fig. 4, in the LCCI module, the input features are initially transformed 

through a convolutional layer. Then, the transformed features undergo a split operation, 

dividing them into multiple sub-feature sets. Each sub-feature set is processed by 1D 

convolution (C1D) to further extract the feature information within the channels. Fi-

nally, the processed sub-feature sets are merged through a concatenation (Concat) op-

eration and passed through another convolutional layer for feature fusion and adjust-

ment. This design can effectively enhance the feature representation ability and capture 

the complex inter-channel dependencies. 

2) Adaptive Kernel Size Determination Mechanism 

As shown in Fig. 4, in the AKSDM module, the input features are first preliminarily 

regularized through a convolutional layer to unify the feature expression form. After 

passing through the convolutional layer, it enters a cascaded structure of 𝑁 Blocks. 

Each Block consists of two convolutional layers, with the convolution kernels of each 

layer being 3 × 3. The first convolutional layer is used for the preliminary feature ex-

traction of the input features, and after the first convolutional layer, there is a BN layer, 

which is used to accelerate the network convergence and reduce the internal covariate 

shift. The second convolutional layer is used to further extract features, and after the 

second convolutional layer, there is also a BN layer. The input features are added to the 

output of the second convolutional layer, and then the output is passed through a ReLU 

activation function. The output of N Blocks is concatenated with the convolutional 

layer through Concat operation, and then the multi-scale features are integrated through 

the convolution operation to output the global features and interaction information, 

achieving the hierarchical extraction of multi-scale features. 
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Fig. 3. The structure of NDLCCA.                   Fig. 4. The diagram of LCCI and AKSDM. 

4 Experimental Results 

4.1 Datasets 

We compared the proposed model to 13 baseline models on two real-world datasets 

from New York City, NYCBike and NYCTaxi. 

NYCBike. The data are shared bike data from New York City. The time range strarts 

from January 1, 2018, and ends on  December 31, 2020, and it contains approximately 

56 million track records. We divided New York City into 192 zones. We created three 

separate subdatasets with time windows of 30 minutes, 60 minutes, and 90 minutes. 

NYCTaxi. The data are yellow taxi data from New York City. The time range starts 

from January 1, 2013, and ends on December 31, 2015, and it contains approximately 

416 million track records. We divided New York City into 192 zones. We created three 

separate subdatasets with time windows of 30 minutes, 60 minutes, and 90 minutes. 

For both datasets, we designated all data except the final eight weeks as the training 

set, the first four weeks of the last eight weeks as the validation set, and the remaining 

four weeks as the test set. 

4.2 Main Results 

Table 1 presents the evaluation results for the NYCBike dataset, while Table 2 summa-

rizes the evaluation results for the NYCTaxi dataset. Here, we trained the model di-

rectly on datasets with prediction horizons of 30, 60, and 90 minutes. Subsequently, we 

fine-tuned the 60 minutes and 90 minutes models using pre-trained parameters from the 

30-minute dataset, with the corresponding results denoted as 60 min
∗
 and  90 min

∗
.  To 

facilitate a visual comparison of accuracy levels with previous studies, we selected the 

classical CNN-based model ST-ResNet as the zero baseline. Table 3 reports the relative 

error index of MCSTA with respect to ST-ResNet on the NYCBike dataset, and Table 

4 provides the corresponding results for the NYCTaxi dataset.  



 

MCSTA consistently outperformed all competing models. As shown in Table 1 and 

Table 3, on the NYCBike dataset, MCSTA fine-tuned at 60 and 90 minutes achieved 

RMSE values of 3.66 and 5.28, representing relative reductions of 6.63% and 13.01% 

compared to the zero baseline. Similarly, as presented in Table 2 and Table 4, on the 

NYCTaxi dataset, MCSTA trained for 30 minutes achieved RMSE and MAE values of 

9.34 and 3.33, with relative reductions of 6.13% and 7.24% compared to the zero base-

line. These results consistently surpassed all baseline models. The RMSE and MAE 

values obtained from direct training on the 90-minute dataset were 28.72 and 8.90, re-

spectively, with MCSTA being the only model achieving an MAE below 9.00 across 

all baselines. Furthermore, MCSTA attained the highest proportion of optimal values 

among all competing models, outperforming state-of-the-art (SOTA) approaches in 

traffic flow prediction. 

Table 1. The Prediction Results on NYCBike. 

 Models 

30 min  60 min 90 min 60 min∗ 90 min∗ 

RMS

E 

MA

E 

RMS

E 

MA

E 

RMS

E 

MA

E 

RMS

E 

MA

E 

RMS

E 

MA

E 

Classical 

Models 

HA 8.90 3.00 17.43 5.76 25.62 8.47 17.43 5.76 25.62 8.47 

ARIMA  10.46 3.52 8.32 2.85 8.97 3.12 8.32 2.85 8.97 3.12 

SimpleExpSmooth-

ing 9.04 3.13 8.07 2.74 12.72 5.44 8.07 2.74 12.72 5.44 

GCN 

GCN [20]  2.88 1.25 5.29 2.24 7.48 3.10 5.05 2.25 7.62 3.13 

STGCN [21]  2.71 1.16 5.02 2.03 7.66 2.98 4.94 2.02 7.58 2.98 

ASTGCN [22] 2.36 1.08 4.09 1.84 6.17 2.63 4.05 1.82 6.24 2.69 

CNN 

ConvLSTM [23]  2.30 1.02 4.09 1.75 6.23 2.55 3.85 1.67 5.69 2.43 

ST-ResNet[24] 2.33 1.04 4.10 1.76 6.38 2.64 3.92 1.71 6.07 2.54 

LMST3D-

ResNet[25] 2.33 1.03 3.98 1.70 6.06 2.55 3.90 1.69 5.92 2.47 

Trans-

former 

Traffic trans-

former[26] 2.44 1.08 4.30 1.88 6.15 2.69 4.12 1.71 5.86 2.38 

Spacetimeformer[27] 2.34 1.06 3.97 1.74 5.70 2.46 3.83 1.67 5.59 2.38 

Bi-STAT[28] 2.28 0.99 3.95 1.64 5.78 2.28 3.86 1.63 5.82 2.32 

ProSTformer[18] 2.24 0.99 3.82 1.65 5.62 2.38 3.67 1.58 5.29 2.21 

MCSTA (ours) 2.25 1.00 3.83 1.64 5.61 2.35 3.66 1.63 5.28  2.20  
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Table 2. The Prediction Results on NYCTaxi. 

 Models 

30 min  60 min 90 min 60 min∗ 90 min∗ 

RMS

E 
MAE 

RMS

E 
MAE 

RMS

E 
MAE 

RMS

E 
MAE 

RMS

E 
MAE 

Classical 

Models 

HA 44.22 12.43 87.25 24.24 129.4 35.84 87.25 24.24 129.4 35.84 

ARIMA  116.2 35.81 104.9 32.02 93.58 28.52 104.9 32.02 93.58 28.52 

SimpleExpSmooth-

ing 86.08 27.01 89.49 30.05 65.09 18.69 89.49 30.05 65.09  18.69 

GCN 

GCN [20]  11.98 4.25 23.72 8.23 35.56 12.65 22.64 7.92 32.49 11.16 

STGCN [21]  11.24 3.90 22.54 7.30 35.57 11.00 21.99 7.20 35.57 11.19 

ASTGCN [22] 10.53 3.74 21.76 7.57 34.69 11.07 21.35 7.02 33.89 10.07 

CNN 

ConvLSTM [23]  11.72 3.87 22.69 6.71 43.52 10.28 24.25 7.14 46.59 11.00 

ST-ResNet[24] 9.95 3.59 19.47 6.68 30.40 9.76 19.45 6.54 28.59 9.22 

LMST3D-

ResNet[25] 10.05 3.53 19.39 6.43 30.09 9.93 18.84 6.27 28.51 9.05 

Trans-

former 

Traffic trans-

former[26] 10.84 3.81 21.59 7.01 33.63 10.75 20.29 6.73 30.90 9.55 

Spacetime-

former[27] 10.10 3.69 18.85 6.55 32.16 10.11 19.43 6.83 30.86 9.96 

Bi-STAT[28] 9.58 3.41 18.52 6.18 28.80 9.21 18.39 6.14 28.85 9.14 

ProSTformer[18] 9.38 3.34 18.29 5.98 28.90 9.18 17.53 5.83 26.58 8.41 

MCSTA (ours) 9.34 3.33 18.71 6.05 28.72 8.90  17.93 5.84 26.45 8.52 

Table 3. Results of Relative Error on NYCBike. 

 Models 
30 min 60 min 90 min 

RMSE MAE RMSE MAE RMSE MAE 

Classical 

Models 

HA 281.97% 188.46% 344.64% 236.84% 322.08% 244.09% 

ARIMA  348.93% 203.85% 112.24% 66.67% 47.78% 22.83% 

SimpleExpSmoothing 287.98% 200.96% 105.87% 60.23% 109.56% 114.17% 

GCN 

GCN [20]  23.61% 20.19% 28.83% 30.99% 23.23% 22.05% 

STGCN [21]  16.31% 11.54% 26.02% 18.13% 24.88% 17.32% 

ASTGCN [22] 1.29% 3.85% 3.32% 6.43% 1.65% 3.54% 

CNN 

ConvLSTM [23]  -1.29% -1.92% -1.79% -2.34% -6.26% -4.33% 

ST-ResNet[24] 0 0 0 0 0 0 

LMST3D-ResNet[25] 0.00% -0.96% -0.51% -1.17% -2.47% -2.76% 

Trans-

former 

Traffic transformer[26] 4.72% 3.85% 5.10% 0.00% -3.46% -6.30% 

Spacetimeformer[27] 0.43% 1.92% -2.30% -2.34% -7.91% -6.30% 

Bi-STAT[28] -2.15% 4.81% -1.53% -4.68% -4.78% 10.24% 

ProSTformer[18] -3.86% -4.81% -6.38% -7.60% -12.85% -12.99% 

MCSTA (ours) -3.43% -3.85% -6.63% -4.68% -13.01% -13.39% 

 

  



 

Table 4. Results of Relative Error on NYCTaxi. 

 Models 
30 min 60 min 90 min 

RMSE MAE RMSE MAE RMSE MAE 

Classical 

Models 

HA 334.42% 246.24% 348.13% 283.87% 325.56% 267.21% 

ARIMA  1068.04% 897.49% 439.54% 379.34%  207.83% 192.21% 

SimpleExpSmoothing 764.92% 652.37% 359.63% 349.85% 114.11% 91.50% 

GCN 

GCN [20]  20.40% 18.38% 16.40% 21.10% 13.64% 21.04% 

STGCN [21]  12.96% 8.64% 13.06% 10.09% 24.41% 19.31% 

ASTGCN [22] 5.83% 4.18% 9.77% 7.34% 18.54% 16.05% 

CNN 

ConvLSTM [23]  17.79% 7.80% 16.66% 2.60% 52.22% 11.50 

ST-ResNet[24] 0 0 0 0 0 0 

LMST3D-ResNet[25] 1.01% -1.67% -3.14% -4.13% -0.28% -1.84% 

Trans-

former 

Traffic transformer[26] 8.94% 6.13% 4.32% 2.91% 8.08% 3.58% 

Spacetimeformer[27] 1.51% 2.79% -3.08% 0.15% 7.94% 8.03% 

Bi-STAT[28] -3.72% -5.01% -5.45% -6.12% 0.73% -0.87% 

ProSTformer[18] -5.73% -6.96% -9.87% -10.86% -7.03% -8.79% 

MCSTA (ours) -6.13% -7.24% -7.81% -10.70% -7.49% -7.59% 

4.3 Results Analysis 

In order to further explore the performance stability and adaptability of MCSTA, we 

conducted an in-depth analysis of the experimental results, focusing on analyzing mul-

tiple key dimensions such as pre-training results analysis, applicability analysis, atten-

tion weight analysis, and efficiency analysis: 

1) Pre-training Results Analysis: To explore the role of pre-training in traffic flow 

prediction models, we investigate the effects of pre-training and fine-tuning on the per-

formance of MCSTA models across different duration datasets. In the experiment, we 

pre-trained the model on 30 minutes datasets and fine-tuned the resulting parameters 

on 60 minutes and 90 minutes datasets. As shown in Fig. 5 and Fig. 6, pre-trained and 

fine-tuned models generally perform better in most cases. Taking the NYCTaxi dataset 

as an example, on 60 minutes data, only the ConvLSTM and Spacetimeformer models, 

after pre-training, exhibited worse results than direct training. On 90 minutes data, only 

the ConvLSTM and Bi-STAT models, after pre-training, showed worse performance 

than direct training. The RMSE results for other models, after pre-training and fine-
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tuning, were superior to those of direct training. This suggests that pre-training can help 

models capture data features more efficiently, thereby enhancing prediction accuracy. 

 
Fig. 6. The error reduction of RMSE on 90 

min NYCTaxi with pre-training than with 

direct training. The negative values mean 

the RMSE errors decrease. 

 

2) Applicability Analysis: As illustrated in Fig. 7, an in-depth analysis of the mod-

el's prediction results reveals that MCSTA exhibits outstanding performance in han-

dling complex traffic flow data. Taking New York City traffic as a case study, the sig-

nificant regional variations in traffic flow pose substantial challenges for accurate pre-

diction. In the city’s core areas, such as bustling commercial centers and transporta-

tion hubs, traffic flow is highly dense, whereas in remote suburbs or restricted zones, it 

remains sparse. Despite this complexity, MCSTA effectively distinguishes traffic char-

acteristics across different regions.  For key areas with high traffic density, the model 

closely aligns with actual flow trends, providing precise predictions. As shown in Fig. 

7 and Fig. 8, between 10:00–10:30 a.m. and 6:00–6:30 p.m., traffic surges signifi-

cantly during weekday morning and evening rush hours. MCSTA accurately captures 

these peak fluctuations and rhythmic changes, producing predictions that closely cor-

respond with real-world data.  Moreover, the model performs robustly in regions with 

low traffic volume. Even during periods where traffic is nearly nonexistent, MCSTA 

reliably differentiates between true low-flow conditions and potential misjudgments, 

effectively preventing overestimation or false predictions. This capability is crucial for 

practical applications, as it enables urban traffic planners to make informed decisions, 

optimally allocate transportation resources, and avoid unnecessary investments in low-

traffic regions.  To further illustrate the model’s predictive performance, we con-

ducted a detailed analysis of traffic flow across different time intervals. Whether cap-

turing short-term fluctuations or long-term trends, MCSTA consistently demonstrates 

stable and accurate predictions.  

Fig. 5. The error reduction of RMSE on 60 min 

NYCTaxi with pre-training than  with direct 

training. The negative values mean the RMSE 

errors decrease. 



 

 

Fig. 7. The prediction results of MCSTA on 30 min NYCTaxi. 

 

Fig. 8. The true value and predicted value in relative traffic flow in New York City during the 

day. 

4) Efficiency Analysis: As shown in Fig. 9 and Fig. 10, we present the GPU memory 

usage and total training time for all models during the training phase. For the MCSTA 

model, both GPU memory usage and training time remain within acceptable limits, 

while delivering optimal performance. To facilitate comparison and reference, the time 

complexity and space complexity of each model are summarized in Table 5. In the 

traffic prediction task addressed in this study, there are no strict requirements regarding 

real-time inference performance or computing resources. Therefore, we prioritize the 

accuracy between the predicted and actual values as the core evaluation metric, specif-

ically conducting a quantitative evaluation using RMSE and MAE. This approach 

aligns with the methodology adopted in most related research. 
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Table 5. The efficiency comparison of different models. 

Models 

30 min NYCBikc 30 min NYCTaxi 

Paramcters FLOPS 
Iteration 

time(s) 
Paramcters FLOPS 

Iteration 

time(s) 

GCN [18] 6.914K 3.834M 1 6.914K 3.834M 1 

STGCN [36] 133.666K 169.439M 40 133.666K 169.439M 7 

ASTGCN [12] 89.478K 67.830M 7 89.478K 67.830M 7 

ConvLSTM [26] 1.038M 2.389G 3 16.538M 38.093G 12 

ST-ResNet[39] 2.690M 516.469M 3 2.690M 516.469M 12 

LMST3D-

ResNet[8] 4.005M 3.073G 4 4.005M 3.073G 4 

Traffic trans-

former[5] 169.990M 1.020G 3 169.990M 1.020G 3 

Spacetime-

former[11] 92.290K 210.727M 10 92.290K 210.727M 10 

Bi-STAT[7] 551.756K 1.338G 17 551.756K 1.338G 17 

ProSTformer[33] 3.623M 1.484G 12 14.273M 2.851G 10 

MCSTA (ours) 3.521M 1.377G 12 15.269M 2.649G 12 

 

Fig. 9. GPU-Memory occupancy on 30 min 

NYCTaxi. 

4.4 Ablation Experiments 

As shown in Table 6, we conducted additional experiments on MCSTA on NYCBike, 

taking into account ablation factors. 

 

1) The effect of LMCEA: We removed the LMCEA module from the MCSTA 

model, leaving only the basic attention mechanism, represented as 𝑀𝐶𝑆𝑇𝐴†. This mod-

ification aims to assess the contribution of the LMCEA module’s ability to capture 

feature dependencies in different dimensions to the overall performance of the model. 

As shown in Table 6, the model's performance significantly decreases after the removal 

Fig. 10. Training time on 30 min NYCTaxi. 



 

of the LMCEA module, indicating that the LMCEA module plays a crucial role in min-

ing the spatial-temporal feature correlations of traffic data and enabling multi-dimen-

sional collaborative prediction. 

 

2) Applicability Analysis: We removed the NDLCCA module from the MCSTA 

model, leaving only the basic attention mechanism, represented as 𝑀𝐶𝑆𝑇𝐴††. This ad-

justment aims to evaluate the NDLCCA module's ability to prevent dimensional deg-

radation and capture the contribution of cross-channel interactions to the model’s 

overall performance in an efficient manner. As shown in Table 6, the model's perfor-

mance significantly decreases after the removal of the NDLCCA module, indicating 

that the NDLCCA module plays a vital role in local cross-channel interactive learning 

and enhancing prediction accuracy. 

Table 6. Ablation Experiment on NYCBike. 

Models 
30 min 60 min 90 min 

RMSE MAE RMSE MAE RMSE MAE 

MCSTA  2.25 1.00 3.66 1.63 5.28 2.20 

𝑀𝐶𝑆𝑇𝐴† 2.27 1.04 3.82 1.64 5.55 2.29 

𝑀𝐶𝑆𝑇𝐴†† 2.29 1.11 3.73 1.66 5.75 2.37 

5 Conclusion 

In this paper, we propose MCSTA based on two key innovations. First, we introduce 

LMCEA to capture the relationship between temporal and spatial data from multiple 

dimensions, thereby improving the predictive accuracy of the model. Second, we pro-

pose NDLCCA, which uses 1D convolution to capture local cross-channel interactions. 

By avoiding dimensionality reduction, NDLCCA significantly reduces operational 

complexity, enhances the effective use of information between channels, and accurately 

captures correlations between these channels, ultimately providing more discriminative 

feature information and improving the prediction accuracy. Compared with the baseline 

model, the RMSE of our model on the NYCBike dataset was reduced by 3.43%, 6.63%, 

and 13.01%, while the RMSE on the NYCTaxi dataset was reduced by 6.13%, 7.24%, 

and 7.49%, respectively. These results demonstrate that MCSTA outperformed SOTA 

models across three subdatasets of NYCBike and NYCTaxi. 

In future work, we aim to further enhance the accuracy of MCSTA in predicting 

traffic flow and expand its application to a wider range of complex real-world scenarios 

to verify its prediction performance in diverse environments. 
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