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Abstract. Few-shot object detection (FSOD) aims to detect novel categories 

from only a few labeled samples. Most of the meta-learning based FSOD meth-

ods tend to rely on static support features which lack adaptability to query con-

texts and have limited representational power, and they often underutilize class-

specific features to refine proposals to promote detection performance. To ad-

dress these challenges, we propose a novel Context-aware Feature Aggregation 

for FSOD (CFA-FSOD) that enhances interaction in a support-query bidirec-

tional manner. Concretely, in this method, a Query-guided Support Enhancement 

(QSE) module is proposed to adaptively integrate features from query image re-

gions (typically proposals) into support features to enhance their flexibility; 

meanwhile, a Cross-attention Feature Modulation (CFM) module is proposed to 

leverage the enhanced support features to refine query proposals for fine-grained 

alignment. Experimental results on both Pascal VOC and MS COCO demonstrate 

that CFA-FSOD achieves outstanding performance in most evaluation settings, 

benefiting from its bidirectional interaction mechanism that improves the effi-

ciency of sample utilization and the transfer of category-specific features. 

Keywords: Few-shot Object Detection, Meta Learning, Feature Aggregation 

1 Introduction 

Deep convolutional neural networks (CNNs) have achieved remarkable success in ob-

ject detection, but their performance heavily depends on large-scale annotated data. In 

real-world domains such as remote sensing, medical imaging, and industrial inspection, 

privacy concerns, security restrictions, and high annotation costs often result in insuf-

ficient annotated data, which may lead to overfitting and poor generalization in object 

detectors. To address this challenge, few-shot object detection (FSOD) [1][2][3] has 

emerged as a promising solution. FSOD aims to pre-train models on extensively anno-

tated base classes and subsequently transfer the learned knowledge to novel classes 

with only a limited number of labeled samples, enabling accurate detection of objects 

from novel categories. 



Meta-learning has been widely adopted in FSOD to alleviate overfitting caused by 

limited training data. It follows a task-oriented training paradigm to learn class-agnostic 

detectors that generalize across tasks. Each task consists of a support set (a few labeled 

instances) and a query set (unlabeled samples to be detected) in meta-learning, where 

the detector learns to recognize objects in the query image by exploiting interactions 

between support and query features. To enhance such interactions, various methods 

have been proposed. For instance, Multi-Relation Detector [4] performs multi-perspec-

tive feature comparison; Meta Faster R-CNN [5] applies spatial alignment to refine 

class features; and UNP [3] dynamically optimizes gradients using cosine similarity. 

While effective, these methods typically construct static support features by averaging 

support samples, resulting in coarse representations that not only lack query-aware in-

formation and adaptability to diverse query samples, but also suffer from distributional 

bias due to the limited and potentially unrepresentative support samples. In addition, 

these methods often fail to fully exploit class-specific features to refine proposal fea-

tures, which may limit their overall discriminative capability. 

To address the limitations of static support features and insufficient proposal refine-

ment in few-shot object detection, we propose Context-aware Feature Aggregation for 

FSOD (CFA-FSOD), a novel framework built upon Meta Faster R-CNN that enhances 

support-query interaction bidirectionally. Specifically, a novel Query-guided Support 

Enhancement (QSE) module is proposed, which incorporates class features from query 

proposals into support features by evaluating global and local consistency, yielding 

more adaptive and representative ones. Furthermore, based on the refined support fea-

tures, a Cross-attention Feature Modulation (CFM) module is proposed to modulate 

proposal features in a similarity-aware manner, enabling fine-grained alignment be-

tween support features and region proposals. With these modules, CFA-FSOD en-

hances support features and refines query proposals, effectively improving detection 

performance. 

Our contributions are threefold: 

1.We propose CFA-FSOD, a novel FSOD framework that enables bidirectional sup-

port-query interaction, addressing limitations of prior methods in static support feature 

and coarse proposal refinement. 

2.Unlike prior FSOD methods, the proposed QSE module evaluates consistency be-

tween query proposals and support features at global and local levels to select high-

quality proposals, filter out noise, and aggregate their features into support features, 

thereby improving their adaptability to diverse query samples. 

3.We propose the CFM module, which effectively highlights the features in pro-

posals that are highly correlated with class-specific information and fuses them into the 

corresponding proposals for modulation, thereby enhancing the model’s ability to dis-

tinguish objects. 

2 Related work 

Object Detection. Conventional object detection methods are generally classified into 

single-stage and two-stage frameworks. Single-stage models, such as the YOLO [6], 
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utilize a backbone network to extract image features and directly predict object catego-

ries and bounding box coordinates. In comparison, two-stage detectors such as the 

widely used Faster R-CNN [7], a foundation for many FSOD approaches, first generate 

class-agnostic proposals and then classify and refine them. Despite these advances, 

most existing detectors encounter difficulties in few-shot scenarios. This is primarily 

because they rely on large-scale annotated datasets rich in object instances, which are 

expensive and labor-intensive to obtain in practice. 

Few-Shot Object Detection. Few-shot object detection (FSOD) aims to detect novel-

class objects with only a few annotated samples. Early transfer learning methods often 

suffered from overfitting, while meta-learning approaches improve generalization by 

leveraging prior knowledge from base classes. A majority of meta-learning-based 

FSOD methods focus on modeling interactions between query proposals and class-spe-

cific support features. Meta R-CNN [8] aligns proposals with support prototypes 

through a dedicated support branch. FSDetView [9] fuses support and query features 

for task-specific prediction. DRL [10] constructs a dynamic graph among proposals to 

capture their dependencies. Meta Faster R-CNN [5] performs spatial alignment be-

tween support and query features, and UNP [3] reweights sample gradients based on 

proposal-prototype affinity. QA-FewDet [11] propagates information across proposals 

and support via a heterogeneous graph to enhance feature interaction, while CoAE [12] 

extracts common semantics across images and maps them into a shared embedding 

space for better generalization. Inspired by these methods, we propose CFA-FSOD, a 

framework featuring a bidirectional interaction mechanism between support features 

and query proposals for more effective class-specific feature interaction and fusion. 

3 Method 

3.1 Problem Statement 

Following prior work [2][3] in FSOD, we split the dataset into a base dataset 𝐷𝑏  with 

abundant samples and annotations from base classes 𝐶𝑏 and a novel dataset 𝐷𝑛 with K 

samples per novel class 𝐶𝑛, i.e., 𝐶𝑏 ∩ 𝐶𝑛 = ∅. The goal of FSOD is to train a detector 

on 𝐷𝑏  that can quickly adapt to 𝐷𝑛 in the K-shot setting while detecting both base and 

novel classes. The training process consists of two stages: base training, where the de-

tector is trained on 𝐷𝑏 , and fine-tuning, where it is finetuned on a balanced dataset 𝐷𝑏𝑎𝑙 

formed by combining a subset of 𝐷𝑏  with 𝐷𝑛 to ensure equal object counts per cate-

gory. Following meta-learning conventions, both stages use a support set 𝐷𝑠 = {𝑥𝑠, 𝑦𝑠} 

following the N-way K-shot setting and a query set 𝐷𝑞 = {𝑥𝑞 , 𝑦𝑞}, where in base train-

ing both sets come from 𝐷𝑏  while in fine-tuning they come from 𝐷𝑏𝑎𝑙 . The support set 

can be formally represented as 𝐷𝑠 = {𝑥𝑛,𝑘
𝑠 , 𝑦𝑛,𝑘

𝑠 } , where 𝑛 = 1,2, … , 𝑁  indexes the 

class, 𝑘 = 1,2, … , 𝐾 indexes the instance. Based on this, query set images are processed 

using the support set as reference. 

Our goal is to enrich static support features with query-aware features derived from 

high-quality proposals, and leverage them to enhance proposal features for learning 

more discriminative object representations. As illustrated in Fig. 1, the proposed CFA-



FSOD method involves the following steps: given a query image and K support in-

stances per class (K-shot), shared backbone networks extract query and support feature 

maps separately. The K support feature maps of each class are averaged to obtain the 

average support feature map. Meanwhile, the query feature map is passed through a 

Region Proposal Network (RPN) to generate region proposals, which represent local-

ized object hypotheses and encode the query image’s local visual patterns. In the QSE 

module, the average support feature map and proposal features are compared using a 

distance function to compute feature consistency scores (FCS), which are then used to 

weight and aggregate proposal features for modulating the support features. The CFM 

module then enhances the key features within proposals by leveraging semantic corre-

lations and similarity-conditioned modulation between the modulated support features 

and the proposals. Finally, the support features and proposal features output separately 

by the two modules are aggregated and fed into a binary classifier and a regressor to 

complete the detection. 

 

Fig. 1. The overall framework of CFA-FSOD. 

3.2 Query-guided Support Enhancement (QSE) 

Meta-learning-based FSOD methods typically average support sample features to form 

static support features. However, due to the limited number of support samples, such 

features often exhibit distributional bias and adapt poorly to diverse query samples. 

Certain methods (e.g., QA-FewDet, CoAE) attempt to address this by propagating pro-

posal features into the support features. Nevertheless, their indiscriminate feature fu-

sion can introduce noise and irrelevant features, ultimately impairing detection accu-

racy. To address these challenges, as shown in Fig. 2, we design a Query-guided Sup-

port Enhancement (QSE) module, which includes two processing steps: Feature Con-

sistency Score, a joint evaluation of global semantics and local context that selects in-

formative proposals, and Feature-Weighted Aggregation, which integrates the features 

of the selected proposals to refine the support features. This design improves the repre-

sentativeness of the support features while suppressing the interference of irrelevant 

features, enabling a shift from static priors to dynamic adaptation. 

Feature Consistency Score. The classification scores produced by the box classifier 

are typically used as an implicit measure of proposal localization quality in R-CNN-

based detectors. However, since classification scores are primarily influenced by high-

confidence regions within the proposal, they often fail to accurately reflect its overall 
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localization quality. As shown in Fig. 3, some proposals (e.g., the green box) may re-

ceive classification scores similar to those of well-localized boxes, even though they 

are clearly misaligned with the ground truth. While such inconsistencies can be miti-

gated with large-scale training data, the scarcity of samples in novel categories limits 

the model’s generalization ability, often resulting in low-quality proposals during few-

shot detection. 

 

Fig. 2. The flowchart of Query-guided Support Enhancement (QSE) Module. 

 

Fig. 3. Motivation for evaluating proposal quality using feature consistency scores (FCS). The 

features of high-FCS proposals are more informative for target representation, as they contain 

richer local details. 

To mitigate the impact of low-quality proposals, we introduce a Feature Consistency 

Score (FCS) based on a global-local cooperative evaluation mechanism. By measuring 

semantic and spatial consistency, FCS filters proposals to retain those with accurate 

classification and localization (e.g., the blue box in Fig. 3). Features of these selected 

proposals are then dynamically aggregated to enhance the adaptability of the support 

features. 



Specifically, given a support set 𝑆𝑐  of target class c and a proposal feature map 

𝑟 ∈ R𝐶×𝐻×𝑊, we first obtain the class-wise average support feature map 𝑥̅𝑐
𝑠 ∈ R𝐶×𝐻×𝑊 

by computing the mean of all support feature maps in 𝑆𝑐, which is then used to compute 

the FCS for each proposal as follows: 

𝐹𝐶𝑆(𝑥̅𝑐
𝑠, 𝑟) = 𝜎[(1 − 𝛼)𝐷(𝑣𝑠,𝑐 , 𝑣𝑟) + 𝛼𝐷(𝑓𝑠,𝑐 , 𝑓𝑟)] (1) 

𝐷(𝑥, 𝑦) =
𝑥𝑇𝑦

||𝑥|| ∙ ||𝑦||
(2) 

𝜎(𝑥) =
1

1 + 𝑒−𝜆𝑥
(3) 

Where 𝛼 is a balancing coefficient, and 𝐷(⋅) and 𝜎(⋅) denote the cosine similarity 

and the sigmoid function with scaling factor 𝜆, respectively. Since 𝜎(⋅) is strictly mon-

otonic, 𝜆 (empirically set to 3) only controls the sharpness of the score distribution 

without affecting ranking. 𝑣𝑠,𝑐, 𝑣𝑟 ∈ R𝐶 denote the global semantic feature vectors of 

the support and proposal, respectively, obtained by applying global average pooling 

(GAP) to 𝑥̅𝑐
𝑠 and 𝑟. These vectors encode semantic information useful for classifica-

tion. 𝑓𝑠,𝑐 , 𝑓𝑟 ∈ R𝐶𝐻𝑊 denote the flattened local feature vectors of the support and pro-

posal, respectively, obtained by reshaping 𝑥̅𝑐
𝑠 and 𝑟. Although flattening discards ex-

plicit spatial coordinates, variations in local responses still implicitly reflect spatial con-

sistency. This dual-level comparison jointly evaluates semantic similarity and spatial 

consistency for robust proposal scoring. 

Feature-Weighted Aggregation. After computing the FCS for all proposals, a pre-

set threshold 𝜏  is applied to filter proposals, retaining only those proposals satisfy 

𝐹𝐶𝑆(𝑥̅𝑐
𝑠, 𝑟) ≥ 𝜏. This deterministic filtering mechanism ensures that subsequent feature 

fusion focuses on proposals with strong semantic relevance to the support features. 

Then, normalized weights are assigned to the selected proposals according to their FCS 

values, as follows: 

𝑤𝐹𝐶𝑆𝑖
=

𝐹𝐶𝑆(𝑥̅𝑐
𝑠, 𝑟𝑖)

∑ 𝐹𝐶𝑆(𝑥̅𝑐
𝑠, 𝑟𝑗)𝑛

𝑗=1

(4) 

Where n denotes the number of proposals that satisfy the filtering criterion; 𝑟𝑖 and 

𝑤𝐹𝐶𝑆𝑖
 represent the i-th filtered proposal and its corresponding normalized weight, re-

spectively. Based on these normalized weights, the query-aware feature 𝑟𝑞 ∈ R𝐶×𝐻×𝑊 

is constructed via weighted aggregation, as follows: 

𝑟𝑞 = ∑ 𝑤𝐹𝐶𝑆𝑖
∙ 𝑟𝑖

𝑛

𝑖
(5) 

Finally, the original support feature 𝑥̅𝑐
𝑠 and the query-aware feature 𝑟𝑞  are concate-

nated and passed through a 1×1 convolution followed by ReLU activation. The resulting 

feature is then element-wise added to 𝑥̅𝑐
𝑠 to preserve the original feature and produce 

the query-adaptive support feature 𝑥́𝑐
𝑠 ∈ R𝐶×𝐻×𝑊, as follows: 

𝑥́𝑐
𝑠 = 𝑥̅𝑐

𝑠 + 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡[𝑥̅𝑐
𝑠; 𝑟𝑞])) (6) 
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3.3 Cross-attention Feature Modulation (CFM) 

 

Fig. 4. The flowchart of Cross-attention Feature Modulation (CFM) Module. 

Effective support-query interactions play a crucial role in transferring class-specific 

features in meta-learning based FSOD. When proposal features lack fine-grained align-

ment with support features, these interactions weaken, reducing the model’s ability to 

distinguish objects from background and suppress irrelevant regions. This issue impairs 

the accurate localization and classification of objects, especially when they are oc-

cluded or deformed. To address this, a Cross-attention Feature Modulation (CFM) mod-

ule is proposed, as illustrated in Fig. 4, which performs non-local interactions between 

the support features enhanced by the QSE module and the query proposal features to 

capture pixel-level similarities. These similarities are then employed to conditionally 

modulate the proposal features, enabling more effective feature refinement. The CFM 

module consists of two components: Category Semantic Association (CSA) and Simi-

larity-Conditional Modulation (SCM), described as follows. 

Category Semantic Association. When the feature map has a high channel dimen-

sionality, noisy or irrelevant features may hinder the non-local interaction mechanism 

from effectively focusing on key features. To mitigate this issue, we introduce a channel 

attention mechanism that uses the query-adaptive support feature 𝑥́𝑐
𝑠 as a semantic prior 

to suppress weakly relevant feature responses. Specifically, a class-specific attention 

vector is first obtained by applying global average pooling (GAP) to 𝑥́𝑐
𝑠. This vector is 

then transformed through a fully connected (FC) layer followed by a ReLU activation 

to introduce non-linearity, thereby yielding channel-wise attention weights that are then 

applied to the proposal feature 𝑟 to suppress channels that are less relevant to the target 

class c. To preserve the original feature, the weighted features are finally added back to 

𝑟, as defined in Eq. (7), where ⊗ denotes channel-wise multiplication. 

𝑟 = 𝑟 + 𝑟 ⊗ 𝑅𝑒𝐿𝑈(𝐹𝐶(𝐺𝐴𝑃(𝑥́𝑐
𝑠))) (7) 

Similarity-Conditioned Modulation. For conveying class-specific features from 

the query-adaptive support feature 𝑥́𝑐
𝑠 to the proposal 𝑟, we compute a similarity matrix 

based on a query-key compatibility function [13] to model their global dependencies. 



Specifically, 𝑥́𝑐
𝑠  is first projected by a 1×1 convolution to produce the query Q∈

R𝐶′×𝐻×𝑊, while 𝑟 is transformed into the key K∈ R𝐶′×𝐻×𝑊 and value V∈ R𝐶′×𝐻×𝑊 via 

two separate 1×1 convolutions. These projections reduce channel dimensionality and 

enhance inter-channel interactions. Then, Q and K are reshaped into matrices of size 

𝐶′ × 𝐻𝑊, and the dot-product similarity matrix 𝑄𝑇𝐾 ∈ R𝐻𝑊×𝐻𝑊 is computed to quan-

tify the pairwise spatial similarity between the transformed support and proposal fea-

tures. Finally, a row-wise SoftMax is applied to 𝑄𝑇𝐾 to obtain the normalized attention 

weight matrix 𝐹(𝑄, 𝐾) ∈ R𝐻𝑊×𝐻𝑊, as follows: 

𝐹(𝑄, 𝐾) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑇𝐾) (8) 

Where 𝐹(𝑄, 𝐾)𝑖,𝑗 denotes the attention weight between the i-th spatial location in Q 

and the j-th spatial location in K. For matrix multiplication, V is reshaped into matrices 

of size 𝐻𝑊 × 𝐶′, and is then multiplied by 𝐹(𝑄, 𝐾) to aggregate features across spatial 

locations based on the learned attention weights, highlighting features highly correlated 

with class-specific information, as follows: 

𝑟̂ = 𝐹(𝑄, 𝐾) ∙ 𝑉 (9) 

Where 𝑟̂ ∈ R𝐻𝑊×𝐶′
 denotes the attention-weighted modulated feature, which is then 

reshaped back into a feature map of size 𝐶′ × 𝐻 × 𝑊 for subsequent feature fusion. 

To integrate the modulated feature 𝑟̂ with the original proposal feature 𝑟, we concat-

enate 𝑟 and 𝑟̂ along the channel dimension and apply a 1×1 convolution followed by a 

ReLU activation to adaptively fuse the refined feature. Finally, to preserve the original 

information, the fused output is added back to 𝑟, yielding the final proposal represen-

tation 𝑟′ ∈ R𝐶×𝐻×𝑊, as follows: 

𝑟′ = 𝑟 + 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡[𝑟; 𝑟̂])) (10) 

4 Experiments 

4.1 Dataset and Experimental Details 

Benchmark Datasets. Following prior work [3][5], we evaluate our method on the 

PASCAL VOC [14] and MS COCO [15] datasets. For PASCAL VOC, the model is 

trained on the combined trainval sets of VOC 2007 and 2012 [16], and tested on the 

VOC 2007 test set. Three few-shot splits are defined by selecting 5 novel and 15 base 

classes, with K = {1, 2, 3, 5, 10} annotated instances per novel class used for fine-

tuning. For MS COCO, 20 categories overlapping with PASCAL VOC are treated as 

novel classes and the remaining 60 as base classes. Evaluation is performed with K = 

{10, 30} instances per novel class randomly sampled for fine-tuning. 

Experimental Setup. We adopt an episodic training scheme, where each query image 

is paired with a 2-way 30-shot support set during base training. Support images are 

constructed by cropping ground-truth objects and resized to 320×320 pixels. Training 

consists of two stages: base training and fine-tuning. Base training includes three phases 

with a batch size of 8. For PASCAL VOC, base training is divided into three phases 

with a batch size of 8. The learning rate is set to 0.002 for the first 20k iterations (phase 

1), followed by two phases of 10k iterations each (phases 2 and 3) with a reduced learn-

ing rate of 0.001. For MS COCO, the same settings are used, but the iteration count is 
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doubled to accommodate the larger dataset. In the fine-tuning stage, following the TFA 

[17] protocol, the backbone is frozen while the detection head is updated using a few 

novel-class samples. The batch size, learning rate, and iteration count are uniformly set 

to 8, 0.001, and 3,000 for both datasets. 

Evaluation Metrics. Consistent with most FSOD studies [5][6][10], we report nAP50 

(average precision of novel classes at IoU = 0.5) on the PASCAL VOC 2007 test set. 

For MS COCO, we adopt the standard evaluation metrics nAP, nAP50, and nAP75, 

which represent the average precision of novel classes at IoU thresholds of [0.5:0.95], 

0.5, and 0.75, respectively. Notably, nAP75 imposes a stricter matching criterion than 

nAP50, requiring a higher overlap between predicted and ground-truth (GT) boxes. 

4.2 Performance Comparisons 

We evaluated the proposed method against the mainstream state-of-the-art methods, 

including meta-learning-based approaches (e.g., Meta R-CNN [8], FSDetView [9], 

QA-FewDet [11], DRL [10], Meta Faster R-CNN [5], UNP [3]) and transfer-learning-

based methods (e.g., TFA [17], FSCE [18], DiGeo [19], FS3C [1], FSRC [20], FSNA 

[21], EME [22]), following standard evaluation protocols. For fairness, all methods 

were implemented under the Faster R-CNN framework with a ResNet-101 [23] back-

bone, consistent with most FSOD studies. In the results table, bold indicates the best 

result, underline marks the second-best, '†' denotes a reproduced baseline under identi-

cal settings, and '-' indicates missing values in prior literature. 

Table 1. The comparative experimental results on PASCAL VOC dataset (%) 

Method/Shots 
Novel Split 1 Novel Split 2 Novel Split 2 

Avg 
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 

MetaRCNN 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1 31.1 

TFA w/cos 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8 39.9 

FSDetView 24.3 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6 36.7 

FSCE 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5 46.6 

QA-FewDet 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5 48.0 

DRL 28.0 40.5 49.4 49.9 59.4 22.9 33.4 36.4 36.1 52.7 28.0 32.0 40.4 46.7 53.5 40.6 

DiGeo 37.9 39.4 48.5 58.6 61.5 26.6 28.9 41.9 42.1 49.1 30.4 40.1 46.9 52.7 54.7 44.0 

FS3C  44.1 46.5 51.6 57.8 61.5 27.6 29.5 40.9 40.0 46.8 40.4 44.5 46.0 52.9 55.6 45.7 

FSRC 45.5 43.4 51.1 61.4 64.0 28.4 31.1 45.0 46.1 51.6 38.8 45.1 48.4 55.5 59.0 47.6 

FSNA 43.8 47.7 50.8 57.4 60.3 23.9 32.3 37.9 40.2 41.8 34.0 40.7 45.5 52.3 54.0 44.2 

UNP 43.7 58.3 59.8 63.7 64.2 28.1 42.8 47.7 49.5 50.3 38.4 49.3 53.8 57.7 58.7 51.1 

EME 41.8 47.1 49.6 58.6 62.6 29.6 31.2 40.6 44.4 47.7 36.6 40.9 46.1 49.7 52.7 45.3 

Meta FRCNN† 43.1 54.9 59.0 63.2 65.8 27.3 35.8 44.3 48.1 52.1 40.1 47.3 53.4 59.1 58.6 50.1 

CFA-

FSOD(Ours) 48.0 58.7 61.9 65.8 67.4 29.2 43.2 47.0 51.8 52.8 41.0 49.3 54.2 59.4 59.8 52.6 

 

PASCAL VOC. Table 1 summarizes the detection results of the proposed method 

CFA-FSOD compared to the mainstream state-of-the-art approaches on the PASCAL 



VOC dataset. CFA-FSOD consistently outperforms the Meta Faster R-CNN baseline, 

achieving average improvements of 2.6%, 4.4%, 2.1%, 2.2%, and 1.2% across the 1-, 

2-, 3-, 5-, and 10-shot settings. Notably, the performance improvements tend to be more 

pronounced in scenarios with fewer shots. This can be attributed to the Query-guided 

Support Enhancement (QSE) module, which effectively alleviates the distributional 

bias of support features caused by limited support samples by aggregating high-quality 

proposal features from the query image. Compared with other SOTA methods, CFA-

FSOD achieves the highest nAP50 in 13 out of 15 trials (3 splits × 5 shot settings) and 

ranks second in the other 2 trials, demonstrating its superiority in novel class detection. 

MS COCO. We further evaluated the proposed method on the more challenging MS 

COCO dataset, with results summarized in Table 2. Compared to the baseline Meta 

Faster R-CNN, our method achieves AP improvements of 1.4% and 1.2% in the 10-

shot and 30-shot settings, respectively. Furthermore, our method consistently outper-

forms other SOTA approaches on most evaluation metrics, confirming that CFA-FSOD 

remains effective on challenging and complex datasets. 

Table 2. The comparison experimental results on MS COCO dataset (%) 

Method/Shots 
10-shot 30-shot 

nAP nAP50 nAP75 nAP nAP50 nAP75 

Meta R-CNN  8.7 19.1 6.6 12.4 25.3 10.8 

TFA w/cos 10.0 17.1 8.8 13.7 22.0 12.0 

FSDetView 12.5 27.3 9.8 14.7 30.6 12.2 

DRL 10.9 25.2 7.0 15.0 31.7 11.8 

FSCE 11.9 - 10.5 16.4 - 16.2 

QA-FewDet 11.6 23.9 9.8 16.5 31.9 15.5 

DiGeo 10.3 18.7 9.9 14.2 26.2 14.8 

FS3C  11.0 23.6 10.0 15.1 28.9 14.9 

FSRC 12.0 - 10.7 16.4 - 15.7 

FSNA 11.9 25.4 10.3 16.1 31.1 15.1 

UNP 12.3 23.1 11.5 15.3 28.5 14.8 

EME 10.6 19.8 10.2 15.1 27.3 15.7 

Meta FR-CNN† 12.3 25.1 10.6 16.0 31.2 14.8 

CFA-FSOD(Ours) 13.7 26.7 12.0 17.2 32.5 16.3 

4.3 Ablation Studies 

To verify the effectiveness of the proposed modules, we conducted a series of ablation 

studies. First, we evaluated the individual contributions of the Query-guided Support 

Enhancement (QSE) and Cross-attention Feature Modulation (CFM) modules to the 

overall CFA-FSOD framework. Next, we investigated the effect of the balancing coef-

ficient 𝛼 and threshold 𝜏 in the QSE module. Finally, we analyzed the impact of the 

projection channel dimension used in computing Q, K, and V within the CFM module. 
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Ablation of different modules. Table 3 demonstrates the effectiveness of CFA-

FSOD’s modules. The QSE module alone brings a 2.3% average improvement, demon-

strating that incorporating class features from query proposals into static support fea-

tures improves their adaptability. For the CFM module, introducing the Similarity-Con-

ditioned Modulation (SCM) component yields a 0.8% average gain by capturing class-

relevant features through non-local interactions. Adding the Category Semantic Asso-

ciation (CSA) component on top of SCM further boosts the gain to 1.5%, as semantic 

priors help suppress noise and improve feature quality. Combining QSE with CFM 

achieves a 3.2% average gain, indicating that the synergy between the two modules 

facilitates more effective fine-grained alignment between support features and proposal 

features. 

Analysis of the balancing coefficient 𝜶. We analyze the impact of the balancing 

coefficient 𝛼 in the Feature Consistency Score (FCS), which guides the QSE module 

in selecting high-quality proposals. As shown in Table 4, intermediate values of 𝛼 con-

sistently yield better results than extreme settings (𝛼 = 0.0 or 1.0), confirming the com-

plementary nature of global semantics and local contextual patterns. The best perfor-

mance occurs at 𝛼 = 1/4, where spatial consistency is moderately emphasized without 

compromising the global semantic features’ ability to convey category information. In 

contrast, larger 𝛼 values emphasize local contextual information through flattened local 

feature vectors, which may degrade the accuracy of cosine similarity due to their high 

dimensionality and sensitivity to spatial noise. 

Table 3. Ablation experiment results of the QSE and CFM modules (%) 

No QSE 
CFM Shots 

Avg  ∆Avg  
CSA SCM 1 2 3 5 10 

1       43.1 54.9 59.0 63.2 65.8 57.2 - 

2       46.8 57.3 61.0 65.2 67.2 59.5 +2.3 

3       44.6 55.4 59.6 64.0 66.5 58.0 +0.8 

4       45.9 56.2 60.4 64.4 66.8 58.7 +1.5 

5       48.0 58.7 61.9 65.8 67.4 60.4 +3.2 

Table 4. Analysis of the balancing coefficient 𝛼 in the QSE module (%) 

No 𝛼 
Shots 

3 10 

1 0 59.9 66.3 

2 1/4 61.0 67.2 

3 1/2 60.6 67.0 

4 3/4 60.0 66.5 

5 1 59.7 66.4 

Analysis of the threshold 𝝉. We analyze the impact of the threshold 𝜏 for selecting 

high-quality proposals. As shown in Table 5, the best performance is achieved at 𝜏 =0.8, 

which effectively balances filtering low-quality proposals and preserving informative 

regions. A lower threshold (𝜏 =0.7) allows noisy proposals, while a higher threshold 



(𝜏 =0.9) may discard complementary proposals that help cover the full extent of the 

target object, leading to incomplete query-aware features. 

Table 5. Analysis of the threshold 𝜏 in the QSE module. (%) 

No 𝜏 
Shots 

3 10 

1 0.7 59.7 66.3 

2 0.8 61.0 67.2 

3 0.9 60.5 66.8 

 

Fig. 5. Analysis of the projection dimension of Q, K, and V in the CFM module. 

Analysis of the projection dimension in CFM module. We analyze the impact of 

the intermediate channel dimension 𝐶′  used to project the query (Q), key (K), and value 

(V) in our CFM module. This dimension controls the representation capacity of the 

attention mechanism. As shown in Fig. 5, using 1024 channels achieves the best per-

formance. Reducing it to 512 limits the feature representation capacity of the feature 

maps, while increasing it to 2048 may overfit noise from limited training samples due 

to the high-dimensional feature projections. We use 1024 as the default setting for a 

good trade-off between accuracy and generalization. 

4.4 Visualization 

In Fig. 6, we visualize the heatmaps generated by the baseline, the CFM module 

alone, and the complete CFA-FSOD framework (i.e., CFM + QSE). The results show 

that CFM helps the model focus on target-relevant regions. With the integration of 

QSE, CFA-FSOD further refines the attention by incorporating query-adaptive support 

features, enabling the model to concentrate more precisely on category-relevant re-

gions. These results suggest that the bidirectional interaction between support and query 

features contributes to improving the model’s ability to extract key features during the 

target recognition process. We further present the detection results of our method and 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

the baseline in Fig. 7. The proposed CFA-FSOD demonstrates superior performance, 

effectively reducing false positives and false negatives in challenging scenarios such as 

appearance variations and occlusions. This validates the effectiveness of the overall 

design, where the CFM module employs cross-attention to align the query proposal 

features with the support features enhanced by the QSE module, thereby improving the 

model’s perception of foreground objects. 

 

Fig. 6. Qualitative Heatmap Results on the VOC Dataset. The first three rows correspond to the 

heatmaps generated by the baseline, CFM module, and the complete CFA-FSOD framework, 

respectively. 

 

Fig. 7. Detection results of the baseline and our method CFA-FSOD. 

5 Conclusion 

In this paper, by addressing the limitations of static support features and insufficient 

proposal refinement in most of the meta-learning based FSOD methods, we propose 

Context-aware Feature Aggregation for FSOD (CFA-FSOD), a novel framework for 

few-shot object detection by enhancing interaction in a support-query bidirectional 

manner. Within this framework, a Query-guided Support Enhancement (QSE) module 



is proposed to dynamically adapt support features by evaluating proposal-support con-

sistency, while a Cross-attention Feature Modulation (CFM) module is proposed to re-

fine proposals through similarity-guided attention. Experiments on PASCAL VOC and 

MS COCO demonstrate that CFA-FSOD consistently outperforms most existing state-

of-the-art methods, confirming the effectiveness of bidirectional support-query interac-

tion in improving few-shot detection. In our future work, the support features are con-

structed adaptively by considering the relative importance of support samples to im-

prove generalization to diverse query samples. 

Acknowledgments. The authors greatly acknowledge the financial support from the Natural Sci-

ence Foundation of Guangxi Zhuang Autonomous Region (Grant No. 2024JJA170106), the Key 

Research and Development Program of Guangxi (Grant No. AD25069071), and the National 

Natural Science Foundation of China (Grant No. 52169021). 

Disclosure of Interests. The authors declare no conflict of interest. 

References 

1. Qi, D., Hu, J., Shen, J.: Few-Shot Object Detection with Self-Supervising and Cooperative 

Classifier. IEEE Trans. Neural Networks Learn. Syst. 35(4), 5435-5446 (2024) 

2. Chen, H., Wang, Q., Xie, K., et al.: SD-FSOD: Self-Distillation Paradigm via Distribution 

Calibration for Few-Shot Object Detection. IEEE Trans. Circuits Syst. Video Technol. 

34(7), 5963-5976 (2024) 

3. Yan, B., Lang, C., Cheng, G., et al.: Understanding Negative Proposals in Generic Few-Shot 

Object Detection. IEEE Trans. Circuits Syst. Video Technol. 34(7), 5818-5829 (2024) 

4. Fan, Q., Zhuo, W., Tang, C., et al.: Few-shot object detection with attention-RPN and multi-

relation detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, pp. 4013-4022 (2020) 

5. Han, G., Huang, S., Ma, J., et al.: Meta Faster R-CNN: Towards accurate few-shot object 

detection with attentive feature alignment. In: Proceedings of the AAAI Conference on Ar-

tificial Intelligence, pp. 780-789 (2022) 

6. Liu, W., Anguelov, D., Erhan, D., et al.: SSD: Single shot multibox detector. In: Proceedings 

of the European Conference on Computer Vision, pp. 21-37 (2016) 

7. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: Towards real-time object detection with 

region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137-1149 (2016) 

8. Yan, X., Chen, Z., Xu, A., et al.: Meta R-CNN: Towards general solver for instance-level 

low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer 

Vision, pp. 9577-9586 (2019) 

9. Xiao, Y., Lepetit, V., Marlet, R.: Few-shot object detection and viewpoint estimation for 

objects in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3090-3106 (2022) 

10. Liu, W., Cai, X., Wang, C., et al.: Dynamic relevance learning for few-shot object detection. 

Signal Image Video Process 19(4), 297 (2025) 

11. Han, G., He, Y., Huang, S., et al.: Query adaptive few-shot object detection with heteroge-

neous graph convolutional networks. In: Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pp. 3263-3272 (2021) 

12. Hsieh, T., Lo, Y., Chen, H., et al.: One-shot object detection with co-attention and co-exci-

tation. In: Advances in Neural Information Processing Systems, vol. 32, pp. 560-568 (2019) 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

13. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neu-

ral Information Processing Systems, pp. 30 (2017) 

14. Everingham, M., Van, G., Williams, C., et al.: The pascal visual object classes (VOC) chal-

lenge. Int. J. Comput. Vis. 88(2), 303-338 (2010) 

15. Lin, T., Maire, M., Belongie, S., et al.: Microsoft COCO: Common objects in context. In: 

Proceedings of the European Conference on Computer Vision (ECCV), pp. 740-755 (2014) 

16. Everingham, M., Eslami, S., Van, G., et al.: The pascal visual object classes challenge: A 

retrospective. Int. J. Comput. Vis. 111, 98-136 (2015) 

17. Wang, X., Huang, T., Darrell, T., et al.: Frustratingly Simple Few-Shot Object Detection. 

In: 37th International Conference on Machine Learning: ICML, pp. 9919-9928 (2021) 

18. Sun, B., Li, B., Cai, S., et al.: FSCE: Few-shot object detection via contrastive proposal 

encoding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, pp. 7352-7362 (2021) 

19. Ma, J., Niu, Y., Xu, J., et al.: DiGeo: Discriminative geometry-aware learning for general-

ized few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, pp. 3208-3218 (2023) 

20. Shangguan, Z., Huai, L., Liu, T., et al.: Few-shot object detection with refined contrastive 

learning. In: IEEE 35th International Conference on Tools with Artificial Intelligence 

(ICTAI), pp. 991-996 (2023) 

21. Zhu, J., Wang, Q., Dong, X., et al.: FSNA: Few-Shot Object Detection via Neighborhood 

Information Adaption and All Attention. IEEE Trans. Circuits Syst. Video Technol. 34(8), 

7121-7134 (2024) 

22. Liu, C., Li, B., Shi, M., et al.: Explicit margin equilibrium for few-shot object detection. 

IEEE Trans. Neural Netw. Learn. Syst. 36(5), 8072-8084 (2025) 

23. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778 

(2016) 


