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Abstract. Tooth landmark localization plays a pivotal role in digital orthodon-

tics, providing the computational foundation for generating alignment coordi-

nates and guiding precise treatment planning. However, the limited availability 

of high-quality 3D tooth landmark datasets and the prevalent reliance on segmen-

tation-based methods hinder the accuracy and scalability of current approaches. 

In this work, we construct a high-quality 3D tooth landmark dataset through man-

ual annotation, specifically designed for training and evaluating tooth landmark 

localization models in real-world clinical scenarios. To overcome the limitations 

of existing methods, we propose HTLNet (Heatmap-based Tooth Landmark Lo-

calization Network), a novel segmentation-free localization framework based on 

multi-view 2D heatmap regression. HTLNet eliminates the dependency on prior 

segmentation and reduces error propagation in the processing pipeline. Experi-

mental results demonstrate that HTLNet outperforms state-of-the-art 3D models, 

such as PointNet-Reg, in terms of accuracy and robustness, especially under chal-

lenging conditions such as missing teeth or misaligned dentition. Our method 

provides a generalizable, scalable, and efficient solution, making it well-suited 

for integration into intelligent dental digital systems and advancing the applica-

tion of computer vision technologies in digital healthcare. 

Keywords: Neural networks, Heatmap regression, Multi-view learning, 3D land-

mark localization, Segmentation-free, Orthodontic applications, Tooth landmark 

datasets. 

1 Introduction 

With the rapid development of digital oral technologies, computer-assisted diagnosis 

and treatment have been widely adopted in modern dentistry[1][2][3][4]. In orthodon-

tics, 3D intraoral scanners are commonly used to obtain detailed tooth morphology, 

laying the foundation for digital tooth arrangement. To perform precise alignment, it is 

essential to establish a dental coordinate system based on anatomical landmarks. Accu-

rate localization of these landmarks directly affects treatment quality and efficiency. 



Tooth landmark localization is essentially a form of 3D landmark localization, capa-

ble of directly processing three-dimensional reconstructed data and providing a more 

intuitive representation. In recent years, advances in deep learning models have signif-

icantly improved the accuracy and robustness of this technology. Wang et al.[5] pro-

posed using a graph convolutional network[6] to construct 3D heatmaps based on 

Gaussian distances and learn their geometric information for accurate landmark predic-

tion. They also introduced a nearest surface matching technique to optimize the infer-

ence process. To address the limitations of traditional graph convolutional networks, 

such as limited receptive fields and shared transformation matrices, Zhao et al.[7] in-

troduced the Semantic Graph Convolutional Network, enabling end-to-end training of 

local and global relationships. Zou et al.[8] further enhanced graph convolutional per-

formance through weight and similarity modulation. 

However, 3D dental models are structurally more complex than general 3D models. 

To ensure accuracy, a single 3D tooth model often contains up to 84 landmarks and 

approximately 70,000 triangular facets. Directly applying the above methods would 

lead to excessive computational demands and reduced accuracy. Therefore, most meth-

ods rely on prior 3D segmentation, such as PointNet-Reg[9]. Yet even after downsam-

pling, models like PointNet[10] still face challenges in handling the data without sacri-

ficing precision. Jiang et al.[11] proposed a segmentation method combining a concav-

ity-aware harmonic field with heuristic feature line extraction, which showed promising 

results. However, current methods still cannot guarantee ideal segmentation for all 

teeth, and the segmentation quality significantly affects landmark localization accuracy. 

Moreover, structural differences among incisors, canines, and molars[12][13] lead to 

inconsistent results in mixed-type training. Missing teeth further complicate boundary 

determination, resulting in poor generalization. To improve robustness, Wei et al.[14] 

introduced a multi-scale latent feature extraction module based on point cloud net-

works, but its performance remains dependent on segmentation quality. 

Dataset limitations further hinder progress. Most publicly available datasets focus 

on 2D images such as clinical photographs or X-rays[15][16], while 3D datasets like 

Teeth3DS[17] lack annotated landmarks. Although a recent work by Wang and Lei et 

al.[18] provides 3D tooth landmarks, it only includes 200 samples, which limits model 

training and generalization. Thus, there is an urgent need for high-quality 3D tooth 

landmark datasets. 

In response to the limitations of segmentation-dependent methods and the scarcity 

of annotated 3D dental landmark data, we propose a novel segmentation-free multi-

view Heatmap-based Tooth Landmark Localization Network (HTLNet). Our method 

leverages multi-view rendering to project 3D tooth meshes into multiple 2D views, 

from which HTLNet predicts landmarks. The optimal landmark positions are then de-

termined through a view matching mechanism guided by consistency and confidence 

estimation, followed by an inverse mapping step to recover the corresponding 3D co-

ordinates. This pipeline eliminates the reliance on tooth-level segmentation and signif-

icantly enhances robustness in challenging clinical scenarios such as tooth crowding, 

deformities, and missing teeth. We further evaluate HTLNet against commonly used 

2D landmark detection networks such as Pose-ResNet[19], Hourglass[20], CPN[21], 

and ViTPose[22], as well as ConvNeXt[23], a modern convolutional architecture that 
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excels at capturing long-range dependencies and achieves performance comparable to 

transformer-based models like ViT[24]. To support research and development in this 

field, we also introduce a new public dataset, LandMark-Teeth3DS, which consists of 

752 3D tooth models annotated with detailed landmark coordinates across various tooth 

types. The key contributions of this work are summarized as follows: 

1) We propose HTLNet, a novel segmentation-free 3D tooth landmark localization 

framework that transforms the 3D detection task into a multi-view 2D heatmap regres-

sion problem, thereby reducing computational complexity and improving robustness. 

To further ensure the accuracy of 3D landmark reconstruction, we introduce an optimal 

view selection strategy coupled with an error detection mechanism. 

2) A new dataset, LandMark-Teeth3DS, containing 752 annotated 3D tooth models, 

which we plan to make publicly available. 

3) Extensive comparative and ablation experiments demonstrating our method’s ad-

vantages in accuracy, robustness, and generalizability. 

2 Method 

2.1 Overall Framework 

To address the limitations of existing 3D methods and eliminate the reliance on tooth 

segmentation for landmark localization, this paper proposes a tooth landmark localiza-

tion method based on multi-view projection, as illustrated in Fig. 1. First, we synthesize 

multiple 2D images from a 3D tooth model using specified virtual cameras. The gener-

ated 2D images are then input into our 2D landmark localization network, HTLNet, for 

training, enabling it to output the 2D coordinates of the tooth landmarks and its network 

architecture is illustrated in Fig. 2. Since a single viewpoint may result in occluded 

landmarks and incomplete localization, we select five different viewpoints to ensure 

full coverage of all landmarks. The final 2D landmarks are obtained by selecting the 

predictions from the viewpoint with the lowest matching cost, based on the matching 

costs of each landmark across the five viewpoints. Finally, the 2D coordinates are 

mapped back to the 3D model to obtain the 3D coordinates of the tooth landmarks. 

 

Fig. 1. The pipeline of segmentation-free multi-view heatmap-based tooth landmark localiza-

tion.  



2.2 HTLNet Architecture 

Relative to the 3D mesh model, 2D images have fixed sizes and require relatively fewer 

computations. Therefore, we use Pytorch3D to render the 3D mesh model into 2D im-

ages. Considering that a single viewpoint may lead to some landmarks being occluded, 

we selected five viewpoints that can better cover all the landmarks of the teeth for ren-

dering. Each rendered 2D image from these viewpoints is encoded in RGB, containing 

the appearance information of the teeth. 

The dental image consists of three parts: the teeth, the dental arch, and the back-

ground. However, for landmarks localization, only the teeth contain useful information. 

Therefore, we introduce the Attention Block to focus on the dental region in the image. 

The Attention Block first extracts features using the DRes, and then combines multi-

scale features and attention mechanisms through the EMSA Module[25] to focus on 

features at different scales, improving the model’s performance. It automatically learns 

the weighted importance of features at different scales, enabling the network to focus 

more effectively on key regions. 

 

Fig. 2. The structure of HTLNet. The proposed network mainly consists of an Attention block 

and an HP block. The Attention block is composed of a DRes block and an EMSA module, 

while the HP block is composed of a DRes block and a FastNet block. 

The HP Block is a key component of this network and is composed of two main 

parts. The first part is the DRes[26] block, which introduces a low-dimensional bottle-

neck in a specific layer of the network. This compresses the input features via a convo-

lutional layer with a lower output dimension, and then recovers these features through 

one or more higher-dimensional convolutional layers. This approach reduces the net-

work's computational load while preserving its expressive power. The second part is 

the FasterNet Block[27], which consists of a 3x3 partial convolution (PConv) and two 
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1x1 convolutions. PConv takes advantage of redundancy in the feature map by applying 

convolution operations on only a subset of the channels while leaving some input chan-

nels unchanged. During memory access, only the first or last consecutive channels are 

used as representatives for the entire feature map in the computation. Furthermore, 

PConv preserves part of the original input features within the feature map, providing 

richer semantic information for high-level feature fusion in the subsequent layers. Im-

portantly, the input and output feature maps maintain the same number of channels, 

ensuring that PConv requires fewer floating-point operations and less memory access 

than standard convolution. In 2D dental images, where occlusion may occur, PConv 

computes only within the valid regions, skipping over missing areas, which helps avoid 

interference from missing values in the convolution results. 

We also use deconvolution to transform the features into a heatmap of the same size 

as the input image, facilitating more accurate localization of tooth landmark coordi-

nates. 

At the end of the model, we apply the DSNT[28] layer to convert the output 2D 

heatmap into accurate keypoint targets. Through this weighted summation process, the 

model not only leverages the heatmap’s characteristics but also performs direct coordi-

nate regression for the keypoints, thus enhancing both the efficiency and accuracy of 

the model. 

2.3 Inverse Mapping from 2D to 3D Coordinate Points 

In our method, a set of 2D images of a tooth is captured from five different viewpoints. 

Each 2D image from a viewpoint is input into HTLNet, which then outputs a set of 2D 

tooth landmark coordinates. However, each viewpoint may suffer from occlusion is-

sues, and sometimes the displacement of 2D coordinates can cause a misalignment in 

the corresponding 3D coordinates. Therefore, the results obtained from each viewpoint 

cannot be directly used as they are. The key step is to reasonably select the best view-

point for each tooth landmark by using prior matching cost from training dataset. 

The inverse mapping of the 2D landmarks from the five viewpoints to the final 3D 

landmarks can essentially be reduced to a maximum matching problem in a bipartite 

graph, which is solved using a greedy algorithm. The key lies in defining the matching 

cost between each 2D landmarks and the 3D landmarks. We estimate the matching cost 

using the following method: First, we use the HTLNet network to predict the 2D land-

mark coordinates from each of the five 2D images of the teeth in the training set. We 

then map these 2D coordinates back to the 3D tooth surface to form five sets of 3D 

coordinates (with known camera parameters). We use the error between these coordi-

nates and the ground truth coordinates as the matching cost, and sort them in ascending 

order. After statistics are collected for all data in the training set, We can then obtain 

the matching cost of each landmark with the five viewpoints. For each 2D landmark, 

we choose the 2D coordinate from the viewpoint with the lowest matching cost as the 

resulting coordinate. By utilizing this matching cost, we can select the most suitable 2D 

coordinates in other datasets.If the z-axis of a landmark significantly differs from its 

neighbors, we treat it as an outlier and replace its coordinates with those from the sec-

ond most likely viewpoint. 



3 Experimental setup and environment 

3.1 Dataset 

The definition of anatomical landmarks on tooth is very important in dental anatomy 

and orthodontics. We adopted the same annotation standards as described in refer-

ence[17], where each tooth has 6 landmarks defined as shown in Table 1, and the over-

all tooth landmarks are shown in Fig. 3. Following this study[17], our method does not 

differentiate between upper and lower jaws, allowing for direct prediction of 84 land-

marks for the 14 teeth. 

Since there is currently no publicly available 3D tooth landmark localization dataset, 

we created a dataset called LandMark-Teeth3DS for experimentation and will make it 

publicly available. This dataset consists of two parts: 3D dental models and tooth land-

mark 3D coordinates. It covers a variety of dental types, including normal tooth models, 

missing tooth models, crowded tooth models, and models with missing and crowded 

tooth, among others. Some examples are shown in Fig. 4, covering these four types of 

dental models. We display them from five different viewpoints, with the camera per-

spectives defined in Table 2. The 3D tooth models come from two sources: the first part 

is from a subset of the dataset in the MICCAI 2022 competition data, namely 

Teeth3DS[17], and the second part comes from real cases from dental clinics, including 

752 upper or lower tooth models in total, of which 693 are normal tooth models and 59 

are abnormal tooth models. Among the normal tooth models, 668 are from Teeth3DS 

and 25 are collected by us. Among the abnormal tooth models, 30 are from Teeth3DS 

and 29 are collected by us. The annotation of the tooth landmark coordinates is carried 

out by three participants, and the process, guided by dental professionals, took a total 

of 20 days to complete. We adopt the same approach as Wang et al.[29], dividing the 

693 normal tooth models in the dataset into training, testing, and validation sets with a 

7:2:1 ratio. This results in 489 samples in the training set, 143 samples in the testing set 

and 61 samples in the validation set, and the test set includes 25 tooth model that col-

lected by us. The 59 abnormal tooth models are used to test the stability of our method 

in dealing with abnormal dental conditions. 

Since our experiment involves predicting 2D landmarks based on 2D images, we 

need to project the 3D tooth models in LandMark-Teeth3DS onto 2D images. This gen-

erates a 2D image tooth landmark dataset, we call it LandMark-Teeth2D, which will be 

used for training and testing our network. For angle selection, considering the visibility 

of different landmarks and minimizing computational cost, we adjusted the camera’s 

elevation, azimuth, and distance to select five different views, and render the 2D image 

using Pytorch3D, the specific definitions and explanations provided in Table 2. Here, 

dist refers to the distance from the camera to the centroid of the mesh model, elev refers 

to the angle between the vector from the mesh model's centroid to the camera and the 

𝑋𝑧 plane, and azim refers to the angle between the projection of the vector from the 

mesh model's centroid to the camera onto the 𝑋𝑧 plane and the (0,0,1) vector. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Fig. 3. Schematic diagram of tooth landmarks. 

Table 1. Tooth landmark description. 

Index 𝑁𝑎𝑚𝑒 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 

1 Occlusal point 
The midpoint of the edge of the 

incisors. 

2 FA point 
The midpoint of the facial axis of the 

clinical crown. 

3 
Buccocervical 

point 
The lowest and most concave point in 

the buccogingival line. 
4 Mesial point The most mesial point. 
5 Distal point The most distal point. 

6 
Linguocervical 

point 
The lowest and most concave point in the lin-

guogingival line. 

Table 2. Tooth landmark description. 

Index 𝑁𝑎𝑚𝑒 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 
1 Top view dist=7, elev=0, azim=0 
2 Front view dist=7, elev=-45, azim=0 
3 Rear view dist=7, elev=45, azim=0 
4 Right view dist=6, elev=0, azim=40 
5 Left view dist=6, elev=0, azim=-40 

To enhance the LandMark-Teeth2D, we employed data augmentation techniques. 

Since our training data are derived from 3D mesh models mapped to 2D images, we 

applied augmentation from both 3D and 2D perspectives. For 3D augmentation, we 

referenced methods from literature[10][30] for point cloud augmentation, adjusting 

camera-to-model distances to generate different-sized 2D images. For 2D 



augmentation, we followed techniques summarized in literature[31], performing verti-

cal and horizontal mirroring of original images. After projecting from 5 viewpoints and 

applying both forms of augmentation, we obtained a total of 10,395 2D dental images, 

with 7335 images used for training and 3060 images for testing. 

 

Fig. 4. Part of the LandMark-Teeth3DS dataset examples. The dataset displays five columns, 

where columns (a) and (b) show instances of normal upper and lower jaw models, column (c) 

shows instances of models with missing teeth, column (d) shows instances of models with 

crowded teeth, and column (e) shows instances of models with both missing and crowded teeth. 

3.2 Experimental Setup and Evaluation Metrics 

The training environment for the proposed dental key point detection method is as fol-

lows: 11th Gen Intel® Core™ i7-11700@2.50GHz CPU, 135.1 GB RAM, 4 GeForce 

RTX 3090 GPUs with 24GB VRAM each. The operating system is Ubuntu 18.04.5 

LTS, programming language is Python 3.8, and Pytorch framework version is 2.0. The 

training details are show in Table 3. 

This paper employs two metrics to evaluate experimental results. The first metric is 

the distance loss, which measures the mean Euclidean distance between the coordinates 
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of predicted and actual tooth landmarks, quantifying the degree of deviation between 

predicted and actual landmarks. The second metric is the standard deviation, which 

represents the sample standard deviation of all tested landmark loss values. 

Table 3. Training details and GPU memory usage. 

Model 
𝐼𝑛𝑝𝑢𝑡 
𝐼𝑚𝑎𝑔𝑒 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
𝑊𝑒𝑖𝑔ℎ𝑡𝑠 

𝐵𝑎𝑡𝑐ℎ 
𝑆𝑖𝑧𝑒 

GPU 
Memory 

Usage 
𝐸𝑝𝑜𝑐ℎ𝑠 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 
time 

PointNet-Reg[9] NA 5.59MB 65 48G 150 4h 
Wei et al. [14] NA 5.4MB 64 48G 150 8h4m 
ConvNeXt[23] 10242 827.5MB 8 48G 80 3d1h 

ViT[24] 10242 167.2MB 128 48G 80 8d2h 
ViTHeatmap 10242 624.5MB 2 72G 42 12d 

TeethHourglass-
512 

10242 109MB 24 48G 109 5d2h 

TeethHourglass-
1024 

10242 110MB 3 48G 90 15d 

TeethDSNT 10242 115.4MB 3 48G 24 1d1h 
TeethAttention 10242 115.5MB 2 48G 24 1d2h 

TeethPConv 10242 216MB 2 48G 24 1d4h 
HTLNet 10242 216MB 2 48G 24 1d5h 

4 Experimental results and analysis 

4.1 Results of HTLNet 

To further validate the superiority of the HTLNet network proposed in this paper, a 

series of comparative experiments were conducted. All experiments were performed 

under the same hardware and software, using the same dataset. PointNet-Reg[9] is a 

method based on 3D heatmap regression and is currently a widely used approach. Wei 

et al.[14] introduced an improved method by adding preprocessing on top of point cloud 

networks. In our method, an important process is predicting tooth landmarks on the 2D 

image, specifically in the structure of HTLNet in Fig. 1. We compared our network 

with five existing networks. TeethHourglass-512 and TeethHourglass-1024 apply the 

Hourglass[20] network for heatmap regression, with output resolutions of 512x512 and 

1024x1024, respectively, to generate 2D heatmaps. The argmax method is applied to 

the heatmap to find the 2D tooth landmark coordinates with the highest heat value. 

Vision Transformer (ViT)[24] is a popular deep learning model for image processing 

in recent years. We adopted both point coordinate regression and heatmap regression 

methods to predict landmarks on the 2D image of teeth, corresponding to experiments 

named ViT and ViTHeatmap. Finally, we also tested the latest ConvNeXt[23] network 

for point regression to predict keypoints on the 2D image of teeth. The training details 

are shown in Table 3. 

To demonstrate the general applicability of the method proposed in this paper, we 

prepared two sets of validation data. The first set consists of normal tooth models, 



sourced from the normal tooth validation set of LandMark-Teeth3DS, with a total of 

61 samples. The second set consists of abnormal tooth models, sourced from the abnor-

mal tooth validation set of LandMark-Teeth3DS, with a total of 59 samples. The ex-

perimental results are shown in Table 4 and Table 5. From Table 4, it can be seen that 

our HTLNet has a significant advantage in both average loss and standard deviation, 

showing the best performance. From Table 5, it is clear that when dealing with abnor-

mal teeth data, our HTLNet achieves significantly lower distance loss and standard de-

viation compared to other methods, demonstrating a considerable advantage in han-

dling abnormal data as well. 

Table 4. Evaluation of normal tooth landmarks prediction. 

Model 𝑀𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒  

𝑙𝑜𝑠s 
Standard  
deviation 

PointNet-Reg[9] 3D heatmap regression 3.38 23.38 
Wei et al.[14]  3D heatmap regression 3.23 29.23 
ConvNeXt[23] 2D point regression 26.56 215.82 

ViT[24] 2D point regression 30.82 148.74 
ViTHeatmap 2D heatmap regression 2.29 7.74 

TeethHourglass-512 2D heatmap regression 1.51 3.70 
TeethHourglass-1024 2D heatmap regression 1.18 2.63 

HTLNet 
2D Numerical 

Coordinate Regression 
0.45 1.01 

Table 5. Evaluation of abnormal tooth landmarks prediction. 

Model 𝑀𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒  

𝑙𝑜𝑠s 
Standard  
deviation 

PointNet-Reg[9] 3D heatmap regression 22.81 94.15 
Wei et al.[14]  3D heatmap regression 22.67 91.56 
ConvNeXt[23] 2D point regression 23.96 175.43 

ViT[24] 2D point regression 23.41 164.12 
ViTHeatmap 2D heatmap regression 3.56 9.71 

TeethHourglass-512 2D heatmap regression 2.49 9.11 
TeethHourglass-1024 2D heatmap regression 2.77 11.77 

HTLNet 
2D Numerical 

Coordinate Regression 
0.84 5.98 

In addition, we have also visualized the experimental results for comparison, as 

shown in Fig. 5 and Fig. 6. Fig. 5 presents the results on the normal tooth model, where 

it can be seen that HTLNet outperforms other methods and is closest to the real tooth 

landmarks. Fig. 6 shows the results on the abnormal tooth model, where HTLNet still 

achieves the best performance. Even in cases of missing teeth, fewer teeth, or dental 

misalignment, it still yields results close to the real tooth landmarks. Furthermore, the 

poor tooth segmentation does not affect the performance of our method, demonstrating 

better robustness. On the other hand, the 3D methods such as PointNet-Reg[9] and the 

approach by Guangshu Wei et al.[18] show strong dependency on the tooth segmenta-

tion results. Poor segmentation significantly affects their detection performance, even 

leading to detection failure in some cases. 
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To demonstrate the validity of the data in this paper, we randomly selected a portion 

of the data from LandMark-Teeth3DS, consisting of 300 samples, including 280 normal 

tooth models and 20 abnormal tooth models. The above mentioned method was used to 

predict the tooth landmarks, and the results are shown in Table 6. The table displays 

the prediction errors for each tooth landmark. From the results, it can be observed that 

our method maintains relatively stable errors across different tooth types, which, on the 

other hand, indicates that our data does not show a significant bias towards any specific 

type of tooth. 

 

Fig. 5. Comparison of experimental results of different methods under normal dental condi-

tions. 



 

Fig. 6. Comparison of experimental results of different methods under abnormal dental condi-

tions. 

4.2 Ablation Study 

To verify the performance of each module, detailed ablation studies were conducted 

using validation set of the LandMark-Teeth3DS dataset. The application of DSNT[28] 

for tooth landmark localization is used as the baseline, as shown in Experiment 1. And 

experiments were carried out under the same environment and parameter settings. In 

each experiment, different modules are added to evaluate the impact of each module on 

detection performance. We also visualized the results of the ablation study, the visual-

ization results on the normal tooth models are shown in the Fig. 5, and the visualization 

results on the abnormal tooth models are shown in the Fig. 6. 

We conduct four experiments, and the results are presented in Table 7 and Table 8. 

Experiment 1 demonstrates the performance of the DSNT network in tooth landmark 

localization task, providing a reference for evaluating the effects of the improvements 

introduced by each module. 
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Experiments 2 and 3 demonstrate the individual performance of each module within 

the DSNT network. Experiment 2 introduces the HP Block with EMSA module to focus 

attention on the key parts of the input data. Experiment 3 reconstructs the feature ex-

traction module in the backbone network with an HP Block that contains the FasterNet 

block, which can extract features more effectively. Compared to Experiment 1, HP 

Block with EMSA module significantly reduce the loss and deviation, especially on 

abnormal teeth. This suggests that the block focuses attention on the key parts of the 

input data, which helps subsequent modules perform better feature extraction. Experi-

ment 3 show a significant reduction in loss and deviation, especially on abnormal teeth, 

indicating that the module composed of HP Blocks has better feature extraction capa-

bilities. 

Experiment 4 represents the HTLNet network proposed in this paper. It can be ob-

served that this network integrates the advantages of each module,and further reduce 

the loss and deviation,especially on abnormal teeth. Compared to Experiment 1, the 

loss decreased by 0.09 and the deviation decreased by 0.5 for normal teeth, and it is 

more pronounced in abnormal teeth, the loss decreased by 0.86 and the deviation de-

creased by 7.23. 

Table 7. Result of ablation studies on normal teeth. 

Experiment 𝑀𝑜𝑑𝑒𝑙  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠s  Standard deviation 
1 DSNT 0.54 1.48 
2 DSNT+EMSA 0.50 1.39 
3 DSNT+FasterNet 0.50 1.01 
4 Ours 0.45 0.98 

Table 8. Result of ablation studies on abnormal teeth. 

Experiment 𝑀𝑜𝑑𝑒𝑙  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠s  Standard deviation 
1 DSNT 1.80 13.21 
2 DSNT+EMSA 1.39 8.32 
3 DSNT+FasterNet 1.38 7.46 
4 Ours 0.94 5.98 

4.3 Practical Application – Dental Arch Estimation 

In the process of dental orthodontics, the calculation of dental arches is a crucial step 

used to determine the correct alignment and positioning of teeth, providing a reliable 

basis for developing effective orthodontic treatment plans. The dental arch refers to the 

longitudinal axis of the teeth, typically an imaginary line from the top of the crown to 

the tip of the root. Accurately calculating and adjusting the dental arch is essential for 

achieving ideal occlusion and aesthetic outcomes. 

We used the predictions from HTLNet, which includes 6 predicted landmarks for 

each tooth, to establish local coordinate systems for teeth. For visualization purposes, 

we projected the estimated dental arch onto the tooth surface, as shown in Fig. 7. It can 

be observed that our method achieved good results across different dental samples, 
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accurately estimating the direction of the dental arch based on the predicted 3D land-

marks. 

 

Fig. 7. The visualization of tooth axis estimation results. There are four distinct instances, each 

with estimated landmarks and axes. 

5 Conclusions and Prospective 

For the task of tooth landmark localization, the majority of previous studies have used 

three-dimensional methods for prediction. While these methods have achieved certain 

effectiveness, their results are often influenced by the precision of the 3D tooth model 

(e.g., due to downsampling). Moreover, they typically require tooth segmentation as a 

preprocessing step, where the quality of segmentation directly impacts the final land-

mark localization accuracy. Tooth segmentation processes are prone to issues such as 



dental caries, missing teeth, and misalignment, significantly affecting the accuracy of 

tooth segmentation and thereby hindering ideal tooth landmark localization. 

We present a novel segmentation-free multi-view framework for 3D tooth landmark 

localization. We manually constructed a high-quality 3D dental landmark dataset and 

developed the HTLNet network architecture, which predicts 2D landmarks from five 

rendered views of a 3D tooth model. A maximum matching strategy, combined with an 

error detection mechanism, is employed to select the optimal viewpoint for each land-

mark. The predicted 2D coordinates are then accurately mapped back to 3D space. 

Through extensive experiments, including comparisons with state-of-the-art 2D and 3D 

methods, as well as ablation studies, we demonstrate that our approach significantly 

improves localization accuracy and exhibits strong robustness against dental abnormal-

ities such as missing and misaligned teeth. 

However, the localization accuracy of our method is also affected by image resolu-

tion; lower resolutions can introduce certain deviations. Higher image resolutions re-

quire larger storage space, and correspondingly increase GPU requirements and train-

ing time. The datasets used in this paper were annotated by ourselves, and due to limi-

tations in human resources and time, the dataset size is currently relatively small. Future 

work could consider expanding the dataset further. Our network can only perform end-

to-end processing for a single view, which has certain limitations. In future work, we 

will continue to research and make further improvements to the network to enable end-

to-end processing with multiple view selections. 
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