
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

HICCNN: A Hierarchical Approach to Enhancing 

Interpretability in Convolutional Neural Networks 

Yinze Luo1, Yuxiang Luo1, Bo Peng2, Lijun Sun1 

1Tongji University, Shanghai 201804, China 
2Shanghai Municipal Bureau of Public Security, Shanghai, China 

2250409@tongji.edu.cn 

Abstract. Convolutional Neural Networks (CNNs) frequently exhibit limited in-

terpretability, which presents significant challenges to their deployment in high-

stakes applications. Although existing methods such as ICCNN incorporate in-

terpretability mechanisms, these approaches are typically confined to a single 

network layer and thus fail to capture the hierarchical nature of visual semantics. 

To overcome this limitation, we propose Hierarchical Interpretable Composi-

tional Convolutional Neural Networks, a novel approach that facilitates layer-

wise hierarchical interpretability without requiring any modifications to the orig-

inal network architecture. Specifically, our method allows CNNs to learn seman-

tically meaningful and fine-grained features in a structured hierarchy, thereby 

enhancing the model’s interpretability. Extensive quantitative experiments 

demonstrate that our model not only offers superior interpretability compared to 

existing methods, but also enhances classification performance—particularly in 

complex multi-class tasks—by effectively leveraging the hierarchical composi-

tional structure of the learned features. Moreover, we compare our method 

against Grad-CAM and demonstrate that our model achieves comparable seman-

tic localization quality while offering built-in interpretability during inference, 

thereby eliminating the need for additional post-hoc explanation modules. 

Keywords: Hierarchical interpretability, Neural network interpretability, Con-

volutional neural networks 
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Fig. 1. Comparison of three models—(a) a standard CNN, (b) ICCNN, and (c) the proposed 

HICCNN—on distinguishing two visually similar bird species. The CNN and ICCNN models 

often fail to accurately highlight key semantic regions such as the Crested Auklet’s unique feather 

crest, leading to misclassification. HICCNN leverages a hierarchical semantic structure to con-

sistently capture discriminative parts. 

1 Introduction 

Convolutional Neural Networks (CNNs) have achieved remarkable success in visual 

recognition tasks largely owing to their hierarchical architecture, which facilitates the 

learning of multi-level feature representations. However, their limited interpretability 

remains a significant obstacle, especially in critical domains where model transparency 

and trustworthiness are paramount. 

Existing efforts to enhance CNN interpretability primarily focus on visualizing net-

work activations or identifying pixel-level input-output correlations. Despite these ad-

vances, rendering the intermediate features semantically interpretable remains a funda-

mental challenge. Addressing this issue is crucial for aligning learned representations 

with human cognition, thereby yielding explanations that are both intuitive and verifi-

able. 

Building upon the Interpretable Compositional CNN (ICCNN) proposed by Shen et 

al. [1], which learns meaningful patterns in a single intermediate layer without relying 

on part or region annotations, we propose a novel approach that extends interpretability 

across multiple layers of a CNN. Specifically, we introduce a hierarchical interpreta-

bility framework that enables the model to capture fine-grained and compositional se-

mantics from shallow to deep layers, thereby mirroring the human perceptual pro-

cesses. This not only enhances interpretability but also improves performance, particu-

larly in fine-grained multi-class classification tasks. 

As illustrated in Figure 1(c), our method enables deeper layers to focus on broader 

object parts (e.g., bird head or body), while shallower layers attend to more localized 

details (e.g., eyes or beak). Feature maps across different layers are organized into dis-

tinct semantic clusters, forming a coherent hierarchical structure that enhances both 

transparency and reasoning. For instance, in distinguishing Crested Auklet from Para-

keet Auklet, the model effectively captures the presence of the Crested Auklet’s unique 

feather crest—a key discriminative feature—without relying on any part-level supervi-

sion. 

To achieve this, we incorporate an end-to-end training framework that introduces a 

novel hierarchical loss on top of ICCNN’s original objective. This loss leverages acti-

vation regions from deep layers to guide shallow-layer feature grouping, ensuring that 

low-level features align with higher-level semantics. As a result, the model learns to 

organize semantic features across layers automatically, without requiring any manual 

annotations. 

We evaluate our approach on multiple CNN backbones, including VGG, ResNet, 

and DenseNet, and validate its effectiveness on the CUB-200-2011 and NABirds da-
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tasets. Ablation experiments were conducted by removing the hierarchical interpreta-

bility and semantic clustering modules to produce ICCNN and standard CNN variants. 

These variants, along with the full model, were then trained and evaluated on the same 

datasets under identical conditions. Experimental results demonstrate that our model 

not only significantly enhances interpretability—measured by quantitative metrics—

but also substantially improves accuracy compared to standard CNN baselines in fine-

grained classification tasks. 

In summary, this paper makes three key contributions: 

1) We propose a hierarchical interpretability framework that aligns semantic 

features across layers, without modifying the network architecture. 

2) Our model learns finer-grained semantic representations, leading to im-

proved performance on multi-class classification tasks. 

3) We design a hierarchical loss function that guides shallow-layer features using 

deep-layer activations, eliminating the need for part-level annotations. 

2 Related Work 

Learning interpretable features has long been a key focus in deep learning research. 

Early efforts approached this problem by introducing architectural innovations aimed 

at disentangling semantic representations. For example, Capsule Networks (CapsNets) 

[2] employed dynamic routing mechanisms between capsule structures to capture part-

whole relationships. This design offers a degree of interpretability grounded in spatial 

hierarchies. Similarly, InfoGAN [3] and β-VAE [4] focused on generative models, 

learning disentangled latent variables that encode interpretable semantics. However, 

these models do not ensure that individual convolutional filters correspond to specific, 

localized visual patterns, limiting their applicability to standard CNN-based vision 

tasks. 

To bridge this gap, researchers turned to filter-level interpretability in CNNs. One 

line of work proposed training class-specific filters [5][6], where each filter is encour-

aged to activate for a particular object category. Although this strategy improved dis-

criminability and brought interpretability closer to task semantics, it remained insuffi-

cient for fine-grained understanding, as filters often failed to capture meaningful object 

parts or localized image regions. To address this, Zhang et al. [7] proposed Interpretable 

CNNs (ICNNs), which introduced an information-theoretic loss to enforce each inter-

mediate-layer filter to correspond to a distinct object part. This approach significantly 

improved the part-level interpretability of CNNs, but it was constrained by its reliance 

on compact, blob-like activations, and struggled to model spatially diffuse or structur-

ally ambiguous regions. 

Building on these insights, Shen et al. [1] introduced the Interpretable Compositional 

CNN (ICCNN), which extends interpretability beyond object parts to more general vis-

ual regions without requiring part or region annotations. By learning compositional fea-

tures across filters in intermediate layers, ICCNN overcame the structural rigidity of 

ICNNs and marked a significant advancement in aligning CNN representations with 



human-recognizable patterns. Complementing this compositional perspective, hierar-

chical feature learning has also emerged as an effective paradigm for enhancing inter-

pretability. Rangadurai et al. [9] proposed the Hierarchical Structured Neural Network 

(HSNN), which incorporates Modular Neural Networks (MoNNs) and a hierarchical 

indexing scheme to support efficient feature interaction and computation reuse. This 

architecture has demonstrated strong performance in handling occlusion, multi-scale 

structures, and large-scale retrieval tasks, underscoring the potential of hierarchical de-

signs in complex real-world scenarios. 

3 Method 

The method enhances the interpretability of convolutional neural networks (CNNs) by 

enabling the network to automatically learn specific semantic patterns from intermedi-

ate feature maps.  

The approach consists of three key components: (1) Grouping and clustering feature 

maps in intermediate layers to associate them with interpretable visual patterns. (2) 

Propagating deeper-layer group semantics to guide clustering in shallower layers, cre-

ating a hierarchical structure. (3) Using a surrogate loss function to enforce this hierar-

chical interpretability while maintaining the network’s performance. 

 
Fig. 2. (a) The architecture of the VGG16 convolutional network is shown here. We perform 

group clustering on the feature maps of layers conv4-3 and conv5-3, which enhances the inter-

pretability of these feature maps. Additionally, the feature map information from earlier layers is 

allocated into corresponding deep-layer feature groups, achieving a hierarchical interpretability 

effect. (b) The detailed visualization of activated regions shows that different parts of the image 

trigger specific patterns. The conv5-3 layer captures coarse semantic regions like the head and 

body, while the conv4-3 layer focuses on finer details such as the beak and wings within those 

regions. 

 

3.1 Grouping and Clustering 

Our approach builds upon the methodology introduced by Shen et al. [1], which focuses 

on enhancing the interpretability of convolutional neural networks (CNNs) by learning 
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compositional features. We modify intermediate layers of the CNN by performing 

group clustering on the feature maps. This ensures that filters within the same group 

activate similar visual patterns, while filters across different groups represent distinct 

patterns. 

Using VGG16 as an example, we perform filter clustering on the conv4-3 and conv5-

3 layers. As the depth of CNNs increases, learned semantics become more abstract, and 

the focus shifts from local details to global structures. These layers are selected for 

group clustering to strike a balance between fine-grained feature capture and high-level 

semantic representation. Filters in deeper layers (e.g., conv5-3) capture global object 

parts (e.g., head or body), while those in shallower layers (e.g., conv4-3) focus on finer 

details (e.g., eyes or wings). A custom similarity metric ensures that filters within the 

same group correspond to similar visual concepts. 

The filters in each layer are divided into K groups (𝐴1, 𝐴2, … , 𝐴𝐾), where 𝐴1 ∪ 𝐴2 ∪

… ∪ 𝐴𝐾 = Ω(the set of all filters), and 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗 . To enforce semantic co-

herence, we first define the normalized cross-correlation between filters 𝑖 and 𝑗 across 

all training images ℐ:   

𝑠𝑖𝑗 =
cov(𝑋𝑖 , 𝑋𝑗)

𝜎𝑖𝜎𝑗

+ 1 (1) 

Where Xi = {xi
I}I∈ℐ represents the activation maps of filter 𝑖 after ReLU and spatial av-

erage pooling, cov(Xi, Xj)is the empirical covariance, and σi, σj are the standard devia-

tions of Xi and 𝑋𝑗, respectively. This metric quantifies co-activation patterns, with sij >

1 indicating semantic synergy.   

The grouping loss maximizes intra-group cohesion while suppressing inter-group 

interference: 

𝐿group(θ, 𝐴) = − ∑
𝑆within,𝑘

𝑆all,𝑘

𝐾

𝑘=1

(2) 

Where measures intra-group similarity for cluster 𝐴𝑘: 

𝑆within,𝑘 = ∑ 𝑠𝑖𝑗

𝑖,𝑗∈𝐴𝑘

(3) 

and 𝑆all,𝑘 quantifies inter-group divergence by aggregating similarities between 𝐴𝑘 

and all filters: 

𝑆all,𝑘 = ∑ 𝑠𝑖𝑗

𝑖∈𝐴𝑘,𝑗∈Ω

(4)
 

This loss encourages filters within the same group to have high similarity and filters 

from different groups to have low similarity. 

 

For multi-category classification, the loss is adjusted to ensure that filters in different 

groups represent object parts or image regions specific to different categories. The 

multi-category loss is: 

𝐿multi(𝜃) = − ∑ ∑
𝑠𝑝𝑞

∑ 𝑠𝑝𝑞𝑝∈𝐼𝑐,𝑞∈𝐼
𝑝,𝑞∈𝐼𝑐

𝐶

𝑐=1

(5) 



where spq = (z(p))
⊤

z(q) measures activation consistency between images 𝑝 and 𝑞, 

with z(p) being the normalized group activation vector for image 𝑝: 

𝑧𝑘
(𝑝)

=
1

|𝐴𝑘|𝑚
∑ ∑ 𝑥𝑖,𝑢

(𝑝)

𝑚

𝑢=1𝑖∈𝐴𝑘

(6) 

The final objective function combines the classification loss 𝐿clswith the grouping 

loss: 

𝐿(𝜃, 𝐴) = 𝜆 ⋅ Loss(𝜃, 𝐴) + 𝛽 ⋅ 𝐿multi(𝜃) +
1

𝑛
∑ 𝐿cls(𝑦𝐼 , 𝑦𝐼

∗; 𝜃)

𝐼∈𝐼

(7) 

This method enables us to meaningfully group filters while maintaining the net-

work’s performance, ultimately improving the interpretability of CNNs by ensuring 

that each group of filters corresponds to a specific, interpretable visual concept. 

 

3.2 Hierarchical construction 

 
Fig. 3. (a) The hierarchical operation steps. (b) Grouped feature maps, each column representing 

a semantic group. The results highlight the model’s ability to learn consistent and interpretable 

patterns. 

As shown in Figure 3, the hierarchical implementation is achieved by constraining shal-

lower feature maps with the grouped deeper feature maps. Specifically, grouping infor-

mation from the deep feature maps of the previous training round is used to mask the 

shallow feature maps, guiding them to focus on regions corresponding to each deep-

layer group. The shallow feature maps are then clustered within these regions to learn 

more refined semantic groups. 

Initial Group Clustering in Deeper Layers The initial group clustering in deeper lay-

ers is accomplished using formula (1), which ensures that filters within each group ac-

tivate similar visual patterns, thereby optimizing the clustering outcome. This results in 

the deep feature maps 𝑭𝒅.  

In the following,  𝑭𝒅  denotes the deep feature maps obtained from the previous 

training round of the deep neural network. 
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Masking Shallow Layer Feature Maps After performing the initial clustering in the 

deep layers, we apply a mask to the shallow layer feature maps. Let 𝑴 represent the 

masks generated from the deep feature maps 𝑭𝒅, obtained by selecting regions with 

activation values exceeding a threshold. The shallow feature maps 𝑭𝒔 are masked by 

the masks to ensure that only the relevant parts of the shallow feature maps are used in 

the subsequent operations. This masking operation is defined as: 

𝑴𝒔 = 𝑴 × 𝑭𝒔 (8) 

This ensures that each shallow feature map only contributes to the deep-layer clus-

ters that are semantically aligned with it. 

Refining Group Clustering in Deeper Layers After applying the mask to the shallow 

feature maps, the next step is to refine the group clustering in the deeper layers using 

the masked shallow feature maps. By doing so, the deep layers are encouraged to acti-

vate regions that are aligned with the semantic features defined by the shallow layers. 

The updated deep-layer feature map, after applying the mask and re-clustering, is cal-

culated by: 

𝑭refined = 𝑴channel(𝑪deep, 𝑭𝒔) (9) 

Where 𝑪deep defines the rough cluster mapping for the deeper layers, and 𝑴channel is 

the masking operation applied to the deep-layer feature map using the shallow features 

as guidance. 

 

Weighted Loss Computation After the hierarchical clustering and masking, the loss 

function computes a weighted loss for each cluster. The final loss is the sum of the 

individual cluster losses, each of which accounts for both intra-group consistency and 

the semantic relevance of the features: 

𝐿(θ, 𝐴) = ∑ 𝐿cluster,𝑘

𝐾

𝑘=1

(10) 

Each cluster loss Lcluster,k is defined as: 

𝐿cluster,𝑘 =
𝑆within,𝑘

𝑆all,𝑘

× 𝐹normed (11) 

Where Fnormed is the normalized version of the masked feature map across the clusters. 

Final Hierarchical Loss The total hierarchical loss is the weighted sum of all individ-

ual cluster losses, where each cluster's loss is weighted based on its importance. The 

final loss function is given by: 

𝐿final = ∑ (𝐿cluster,𝑖 ×
𝐹normed,𝑖

∑ 𝐹normed

)

𝐾

𝑖=1

(12) 

This ensures that clusters with higher activations and greater semantic relevance 

contribute more significantly to the final loss, leading to the learning of more interpret-

able feature maps. 

 

3.3 Algorithm 

Based on the grouping and hierarchical construction methods described above, our al-

gorithm proceeds in three main stages: (1) Clustering feature maps in selected layers to 



learn interpretable group representations. (2) Constructing hierarchical correspond-

ences between shallow and deep layers by applying masks and refining the groupings. 

(3) Computing Loss Functions and Training via Backpropagation. The pseudocode is 

provided in Algorithm 1. 

Algorithm1 Hierarchical Group Clustering for Interpretable CNNs 

Initialize network parameters 𝜃 
Repeat until convergence 

Group clustering on deeper layer 𝑙𝑑: 
1  Extract feature map 𝐹𝑑 
2  Cluster filters into 𝐾  groups {𝐴1, 𝐴2, … , 𝐴𝐾} 
3  If multi-class: 

4   Compute: 𝐿multi = − ∑ ∑
𝑠𝑝𝑞

∑ 𝑠𝑝𝑞𝑞∈𝐼
𝑝,𝑞∈𝐼𝑐

𝐶
𝑐=1  

5      Compute: 𝐿group = − ∑
𝑆within,𝑘

𝑆all,𝑘

𝐾
𝑘=1  

  Hierarchical constraint on shallow layer 𝑙𝑠: 
6  Extract feature map 𝐹𝑠 
7  Compute average activation maps from 𝐹𝑑 
8  Generate mask 𝑀 , apply to shallow map: 𝑀𝑠 = 𝑀 × 𝐹𝑠 
9  For each cluster  𝑘 , compute: 

(𝐿cluster,𝑘 =
𝑆within,𝑘

𝑆all,𝑘

× 𝐹normed,𝑘) 

10  Compute hierarchical loss: 𝐿hier = ∑ (𝐿cluster,𝑘 ⋅
𝐹normed,𝑘

∑ 𝐹normed
)𝐾

𝑘=1  

 Joint optimization: 
11     If multi-class: 
12   Compute total loss:  𝐿total-multi = 𝜆𝐿group + 𝛽𝐿multi + 𝛾𝐿hier + 𝐿cls 

13  else: 
14   Compute total loss:  𝐿total = 𝜆𝐿group + 𝛾𝐿hier + 𝐿cls 

15  Update 𝜃 via backpropagation   

We successfully applied this algorithm in our experiments to CNNs with hierarchical 

structures (such as VGG16, VGG19, ResNet, and DenseNet). By identifying the corre-

sponding deep ( 𝑙𝑑) and shallow (𝑙𝑠) layers, this method can constrain the network to 

learn hierarchical interpretable representations.  

4 Experiments 

In this section, we conduct a series of quantitative experiments to evaluate the inter-

pretability and classification performance of the proposed approach. Specifically, we 

present three types of evaluations: (1) direct comparison with conventional CNNs and 

ICCNNs to assess the impact of hierarchical constraints on filter interpretability; (2) 

benchmarking against Grad-CAM-based methods to demonstrate the superiority of our 

model in producing semantically consistent and structured visual explanations; and (3) 

analysis on multi-category classification tasks to investigate the scalability and gener-

alization capabilities of the approach in more complex scenarios. 
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To this end, the proposed hierarchical interpretability approach was integrated into 

four widely used CNN architectures—VGG-13, VGG-16, ResNet-18, and DenseNet-

121—and evaluated on both single-category binary and multi-category classification 

tasks. Throughout all experiments, we performed ablation comparisons by varying the 

loss terms in 𝐿total = 𝜆𝐿group + 𝛾𝐿hier + 𝐿cls . In particular, setting 𝛾 = 0 reduces the 

model to the original ICCNN, and setting 𝛾 =  𝜆 = 0 reduces it to a standard CNN. 

When training the HICCNN in the single-category setting, the compositional loss 

weight 𝜆 was set to 1.0 for most models. A smaller value (𝜆 = 0.1) was used for VGG-

16 due to its lack of residual connections, which makes it more challenging to optimize 

and more sensitive to large loss weights. In the multi-category setting, both 𝜆 and the 

multi-task loss weight 𝛽 were uniformly set to 0.1 across all architectures. The hierar-

chical constraint was assigned a fixed loss weight 𝛾 = 0.01 to ensure its magnitude re-

mained comparable to other loss terms and contributed meaningfully without dominat-

ing the optimization process. 

All models were trained using the Adam optimizer with an initial learning rate of 

1×10⁻⁴, which decayed by a factor of 0.8 every 100 epochs. Training was performed 

for a total of 2000 epochs with a mini-batch size of 64, using a single NVIDIA RTX 

A6000 GPU. To facilitate fair comparisons, we also trained ICCNN variants for each 

architecture by removing the hierarchical loss component, while keeping all other set-

tings unchanged. This consistent experimental setup enabled rigorous comparisons 

among baseline CNNs, ICCNNs, and the proposed HICCNNs, allowing us to system-

atically assess the effectiveness of the hierarchical interpretability framework. 

 
Fig. 4. The inconsistency-diversity curves across four mainstream network architectures (VGG-

13, VGG-16, ResNet-18, and DenseNet-121). 

 

4.1 Quantitative Evaluation of Diversity and Inconsistency 

To quantitatively assess the interpretability of filters in convolutional networks, we 

conducted a comprehensive comparative study across four representative CNN archi-

tectures: VGG-13, VGG-16, ResNet-18, and DenseNet-121. We evaluated three types 

of models: (1) standard convolutional neural networks (CNNs), (2) interpretable CNNs 

 
 
 
 
 
 
  
 
  
  
  
 
  

  
 
 
 
 
  
  
 
 
 

         

            

                     

 
 
  
 

  
 
 
 
 
  
  
 
 
 

  
 
 
 
 
  
  
 
 
 

  
 
 
 
 
  
  
 
 
 

  
 
 
 
 
  
  
 
 
 

  
 
 
 
 
  
  
 
 
 

  
 
 
 
 
  
  
 
 
 

  
 
 
 
 
  
  
 
 
 

         

         

         

         

         

         

         

            

                     

  

  

  

  

  

  

  

  

   

   

   

   

   

   

   

   

   

   

   

   

   

    

   

   

   

   

   

    

   

   

   

   

                          



(ICCNNs), and (3) our proposed Hierarchical Interpretable Compositional CNNs (HIC-

CNNs). All models were trained on the PASCAL-Part dataset under the setting of bi-

nary classification for a single object category. 

In the HICCNN models, we incorporate the proposed compositional loss into the top 

convolutional layers of each backbone. Specifically, the loss was added to the conv4-2 

and conv5-2 layer in VGG-13 and ResNet-18, conv4-3 and conv5-3 layer in VGG-16, 

the third dense block and final dense block in DenseNet-121. For fair comparison, all 

HICCNN models were trained under identical initialization schemes and data condi-

tions as their corresponding traditional CNNs, and pre-trained weights were loaded for 

all non-target layers. 

We employed two complementary quantitative metrics to evaluate filter interpreta-

bility: (1) Inconsistency of visual patterns, which measures the semantic stability of a 

filter’s activation across different images and is computed as the entropy of the filter’s 

activation distribution over ground-truth semantic concepts; and (2) Diversity of visual 

patterns, defined as the proportion of pixels that are covered by activations from any 

filter in the model, thereby approximating the model’s semantic coverage. Lower in-

consistency values indicate that filters activate consistently on specific semantic parts 

or regions, while higher diversity reflects broader semantic representation capability. 

To obtain a set of inconsistency-diversity values, we varied the activation threshold τ 

and plotted the resulting curves for each model. 

As illustrated in Figure 4, across all four network backbones, the HICCNN consist-

ently outperformed both traditional CNNs and ICCNNs by achieving lower incon-

sistency under comparable diversity levels. Traditional CNNs exhibited relatively high 

inconsistency, indicating that their internal features lacked semantic stability. Although 

ICCNNs improved consistency to some extent, they demonstrated significantly lower 

diversity due to their restricted capacity to represent only a single layer’s part-level 

semantics. In contrast, our proposed HICCNNs achieved a favorable trade-off between 

consistency and diversity, preserving broad semantic coverage while maintaining low 

inconsistency. These results substantiate the effectiveness and general applicability of 

HICCNNs in learning both stable and diverse interpretable visual representations across 

various CNN architectures. 

 

4.2 t-SNE Visualization of Feature Space 

To further evaluate the structural organization and semantic consistency of the learned 

representations in the feature space, we employ t-SNE (t-Distributed Stochastic Neigh-

bor Embedding) to visualize the feature maps from intermediate convolutional layers 

of different models. Specifically, we select three models—traditional CNN, ICCNN, 

and our proposed HICCNN—all based on the VGG-16 architecture and trained on the 

bird category of the PASCAL-Part dataset. We extract the filter responses from the test 

images at designated convolutional layers and embed them into a two-dimensional 

space. 
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Fig. 5. t-SNE embeddings of feature maps from HICCNN, ICCNN, and traditional CNN models. 

 

As shown in Figure 5, each point represents the activation response of a filter across 

different test images, treated as a high-dimensional vector. These vectors are embedded 

using t-SNE, and points are colored according to their assigned filter group. The results 

show that HICCNN yields a clear and structured clustering of filter features: filters 

within the same group form compact clusters, while distinct groups are well-separated. 

Notably, such structured groupings are observed not only in high-level convolutional 

layers but also consistently across lower layers, indicating that HICCNN is capable of 

learning semantically consistent filter groupings throughout the network hierarchy. 

In contrast, ICCNN exhibits distinguishable feature groups only in the specific high-

level layer where the interpretability loss is applied. Although certain shallow layers 

show weak grouping tendencies, they lack clear and consistent group representations. 

Traditional CNNs, on the other hand, present highly entangled and disordered distribu-

tions, with filter activations overlapping significantly and lacking any discernible se-

mantic structure. 

These results further validate the effectiveness of our proposed grouping constraint. 

Unlike models that impose interpretability only at a single layer, HICCNN enforces 

hierarchical grouping across multiple layers, leading to more consistent, semantically 

meaningful, and structurally organized feature representations in the embedding space. 

 

4.3 Evaluation of Activation Accuracy Based on Semantic Masks 

To further assess the spatial alignment between model activations and semantic regions, 

we introduce the Standard-Region Activation Score (SRAS) as a metric to quantify 

whether intermediate-layer activations are concentrated within human-annotated se-

mantic regions. This metric reflects the model’s ability to attend to semantically mean-

ingful areas in a spatially interpretable manner. 

Given a set of intermediate feature maps 𝐹 ∈ 𝑅𝐶×𝐻×𝑊 , where 𝐹𝑐 ∈ 𝑅𝐻×𝑊 denotes 

the activation map of the 𝑐 − 𝑡ℎ  channel, and a binary semantic mask 𝑀standard ∈
{0,1}𝐻×𝑊 indicating the target semantic region, the activation score of channel 𝑐 within 

the standard region is defined as: 

⟨𝐹𝑐, 𝑀standard⟩ = ∑ ∑ 𝐹𝑐(𝑥, 𝑦)

𝑊

𝑦=1

𝐻

𝑥=1

⋅ 𝑀standard(𝑥, 𝑦) (13) 

 
 
 
 
  

 
 

 
 
 
 
  

              

                                                                                                         



This measures the total activation of  𝐹𝑐 that falls within the semantic region. The 

total activation of the same channel is computed as: 

||𝐹𝑐||1 = ∑ ∑ 𝐹𝑐(𝑥, 𝑦)

𝑊

𝑦=1

𝐻

𝑥=1

(14) 

The SRAS is then defined as the average normalized activation over all channels: 

𝑆activation(𝐹, 𝑀standard) =
1

𝐶
∑

⟨𝐹𝑐, 𝑀standard⟩

|𝐹𝑐|1

𝐶

𝑐=1

(15) 

This score lies in the range [0,1], where a higher value indicates that the model's 

activation is more concentrated within the desired semantic region, while a lower value 

suggests that the activations are scattered or misaligned. 

 

 
Fig. 6. Visualization of activation maps and corresponding semantic regions on face datasets. 

 

We conduct SRAS-based evaluations on two high-quality facial segmentation da-

tasets: CelebAMask-HQ. The datasets provide precise pixel-level semantic masks for 

facial components such as eyes, nose, mouth, cheeks, and background, which serve as 

𝑀standard  in our evaluation. For each test image, we extract intermediate-layer feature 

maps from three different models—traditional CNN, ICCNN, and our proposed 

HICCNN—and compute their SRAS scores using the above formulation. 

In addition, we also compute SRAS scores based on Grad-CAM heatmaps generated 

from the output of the final classification layer of each model. This allows us to directly 

compare our method with an established post-hoc explanation technique in terms of 

semantic alignment. 

As illustrated in Figure 6, the bar charts on the right report SRAS scores across dif-

ferent facial regions for all methods. The results demonstrate that HICCNN consistently 

achieves higher SRAS scores across most key semantic regions, indicating that its ac-

tivations are highly aligned with human-annotated semantic structures. While ICCNN 

achieves moderately high SRAS in certain regions, its interpretability is mostly con-

fined to the high-level layer where constraints are explicitly applied. Traditional CNNs, 

by contrast, show overall lower SRAS scores, suggesting unfocused and poorly aligned 

activation patterns. 

Notably, the Grad-CAM heatmaps exhibit SRAS scores that are close to those of 

HICCNN, especially in salient regions such as the nose and eyes. This suggests that our 

model’s internal activations inherently capture similar semantic alignment to what 

Grad-CAM highlights post-hoc, but without relying on backpropagation or external 

visualization modules. 
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This experiment validates the effectiveness of HICCNN in achieving precise spatial 

localization of semantic regions. The activations it learns are not only semantically con-

sistent but also inherently interpretable at the feature level, offering comparable locali-

zation quality to Grad-CAM while providing built-in interpretability during forward 

inference. 

 

4.4 Performance on Multi-Class Classification Tasks 

To assess the effectiveness of HICCNN in multi-class classification settings, we eval-

uate its performance on two widely used fine-grained datasets, CUB-200-2011 and 

NABirds, along with a proposed dataset specifically designed to reflect more challeng-

ing classification scenarios. We compare three models: the original CNN (Ori CNN), 

the interpretable compositional CNN (ICCNN), and our hierarchical CNN (HICCNN). 

Table 1. Comparisons of Multi-Class classification accuracy between ICCNNs and HICCNNs 

revised from different classic CNNs. 

Dataset Model Ori CNN ICCNN HICCNN  

CUB200 VGG16 77.21 77.32 78.01 

 ResNet18 78.87 78.05 79.22 

 DenseNet121 80.03 80.19 81.04 

Na-Birds VGG16 88.42 88.17 88.83 

 ResNet18 88.64 88.80 88.80 

 DenseNet121 89.56 89.49 90.11 

Proposed Dataset VGG16 10.22 12.19 49.32 

 ResNet18 10.98 11.22 48.01 

 DenseNet121 11.01 10.92 48.65 

 

As shown in Table 1, HICCNN consistently outperforms both Ori CNN and ICCNN 

across all backbone architectures on the CUB200 and NABirds datasets. These results 

indicate that the introduction of hierarchical grouping and compositional constraints 

not only enhances interpretability, but also improves the model's ability to capture dis-

criminative features, leading to better classification performance in standard fine-

grained tasks. 

To further validate the advantages of HICCNN under more difficult conditions, we 

construct a proposed dataset by collecting images that were misclassified by either Ori 

CNN or ICCNN in the CUB200 and NABirds datasets. This curated dataset emphasizes 

challenging cases such as subtle inter-class differences, occlusion, or ambiguous part 

configurations. 

Experimental results show that HICCNN significantly outperforms the other models 

on the proposed dataset, demonstrating its superior robustness and generalization abil-

ity in more complex multi-class classification tasks. The performance gap is especially 

evident in scenarios where traditional CNNs and ICCNNs struggle, highlighting the 

practical benefits of our hierarchical compositional design. 



5 Limitations 

The proposed method is inherently tailored for convolutional neural networks and lev-

erages the spatial hierarchies in CNN feature maps. Consequently, it is not directly ap-

plicable to recent non-convolutional architectures such as Vision Transformers (ViTs), 

which do not exhibit the same hierarchical spatial structure. This limitation arises from 

the methodological focus on CNN-based interpretability. 

6 Conclusion 

In this work, we propose HICCNN, a hierarchical interpretable compositional frame-

work that enables layer-wise semantic grouping without requiring any modifications to 

the original CNN architecture. By introducing a hierarchical loss that aligns shallow 

features with deep-layer semantics, our approach learns structured and semantically 

consistent representations across multiple layers. Extensive experiments demonstrate 

that HICCNN significantly enhances interpretability and delivers notable performance 

improvements on fine-grained and challenging multi-class classification tasks. Further-

more, it achieves semantic localization quality comparable to Grad-CAM while provid-

ing built-in interpretability. These findings highlight the potential of HICCNN as a 

practical and scalable solution for interpretable deep learning in CNN-based models. 
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