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Abstract. Spiking Neural Networks (SNNs), as the third generation of neural 

networks, hold great promise for enhancing the energy efficiency of large lan-

guage models (LLMs) due to their event-driven computation. However, their na-

ive application in large-scale models typically depends on binary spike simula-

tions over long time steps, making it challenging to balance performance and 

energy consumption. To address this issue, we propose a Multi-head Spike En-

coding scheme with three advantages. First, it enables parallel spike processing 

to accelerate computation; Second, it supports precise representation of positive 

and negative spikes; Third, it mitigates energy surges caused by high-frequency 

spikes through hierarchical spike decomposition. To demonstrate the effective-

ness of our encoding scheme, we introduce SpikeRWKV, an SNN-based adapta-

tion of the RWKV language model. Experimental results demonstrate that Spik-

eRWKV significantly enhances performance on natural language understanding 

(NLU) tasks, achieving a 3.15× reduction in energy consumption compared to 

the baseline, along with an 8.3% lower perplexity and 5.7% improvement in bits-

per-character (BPC). Furthermore, SpikeRWKV is 3.88× more energy-efficient 

than its non-spiking counterpart. 

Keywords: Spiking neural networks · Energy efficiency · Spike encoding 

scheme. 

1 Introduction 

The rapid advancement of deep learning has driven remarkable progress in Artificial 

Neural Networks (ANNs) [1], particularly in the development of Large Language Mod-

els (LLMs) [2]. However, as task complexity grows and datasets scale up [3], ANNs 

face increasing challenges in terms of energy consumption [4]. Biologically inspired 

Spiking Neural Networks (SNNs) have emerged as a promising alternative, offering 

greater energy efficiency [5]. In contrast to ANNs that rely on continuous signal trans-

mission [6], SNNs communicate via discrete binary spikes, substantially reducing both 

computational and memory overhead [7]. Moreover, spiking neurons inherently exhibit 
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spatiotemporal dynamics, making SNNs well-suited for LLM tasks that involve com-

plex sequential dependencies. 

Despite the potential of SNNs for energy-efficient computation, their application to 

LLM tasks remains limited by fundamental representational challenges. A widely used 

approach, repetitive spike coding, encodes inputs over multiple time steps using iden-

tical spike patterns. However, this method often fails to preserve fine-grained semantic 

distinctions, particularly when high-frequency spike activity dominates, leading to re-

duced model accuracy [8]. This limitation becomes especially pronounced in deep LLM 

architectures, where such representational errors can propagate through multiple layers 

and amplify downstream inaccuracies [9]. Moreover, the long latency associated with 

encoding high-precision input values into spike trains introduces both computational 

overhead and energy inefficiency [10]. 

To address the aforementioned challenges, we propose a novel Multi-head Spike 

Encoding scheme tailored for SNN-based large language models. This scheme intro-

duces several key innovations to enhance both computational efficiency and represen-

tational fidelity. 

First, the proposed encoding scheme supports parallel spike processing by enabling 

the simultaneous expression of multiple spike streams across different layers. This par-

allelism allows for concurrent spike computations, significantly reducing inference la-

tency. 

Second, the encoding framework introduces a flexible mechanism for representing 

both positive and negative spikes. By incorporating a spike polarity flag, the scheme 

effectively distinguishes excitatory and inhibitory signals. Furthermore, it allows for 

fine-grained control over spike conversion accuracy by adjusting key parameters such 

as the number of spike layers and time steps during the encoding process. 

Third, the scheme mitigates energy surges associated with high-frequency spike 

events by decomposing spike activity hierarchically across multiple layers, thereby en-

hancing signal stability and efficiency. To demonstrate the effectiveness of our encod-

ing scheme, we integrate the Multi-head Spike Encoding mechanism into the RWKV 

architecture. Experimental results demonstrate that our method achieves both high per-

formance and low energy consumption. The key contributions of this work are summa-

rized as follows:  

⚫ We propose a Multi-head Spike Encoding scheme that effectively improves the 

representation capability and efficiency over repetitive spike coding. 

⚫ We introduce SpikeRWKV, an SNN-based variant of the RWKV model, which 

achieves low energy consumption while preserving high performance. 

⚫ Experiments on both natural language generation (NLG) and natural language un-

derstanding (NLU) tasks demonstrate the effectiveness of SpikeRWKV. Remark-

ably,  SpikeRWKV surpasses the baseline with repetition coding in terms of both 

bits-per-character (BPC) and perplexity (PPL). Moreover, SpikeRWKV reduces 

energy consumption by a factor of 3.88× compared to the non-spiking RWKV 

model. 
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2 Related Work 

2.1 Spiking for LLM 

Currently, ANN-SNN conversion and direct training are the main methods for training 

SNNs [11]. The ANN-SNN conversion technique facilitates the transition from ANNs 

to SNNs by substituting the traditional ReLU activation function [12] with the average 

firing rate of spikes. However, this approach typically necessitates hundreds or even 

thousands of time steps, resulting in increased computational costs. To address this is-

sue, SpikingBERT [13] has optimized the conversion process and successfully applied 

it to the BERT model. Nevertheless, these methods still encounter challenges related to 

resource inefficiency due to the prolonged time steps required during the input value 

transformation process. 

Aiming at the semantic loss problem caused by the discreteness of the temporal en-

coding in the above encoding methods and the inefficient computational resources 

caused by the long time steps in the conversion process, this paper proposes an im-

proved ANN-SNN conversion method——the multi-head spike encoding model. The 

expression accuracy per unit time is enhanced by expressing multiple bits simultane-

ously, which effectively improves the accuracy while reducing resource waste, provid-

ing a more efficient and accurate solution for SNN-based LLM tasks. 

 

2.2 Spiking Encoding 

Spiking neurons have the capacity to embed and process information within the spati-

otemporal domain, enabling them to theoretically encode data across multiple levels 

and spatiotemporal scales. Temporal encoding represents information based on the tim-

ing of the first spike’s arrival [14][15]. While this method relies on precise spike timing, 

it is highly sensitive to temporal errors and noise [16].  

To address these limitations, [17] introduced a direct encoding method that bypasses 

additional transformations by directly feeding the input signal into the network. While 

direct encoding has demonstrated effectiveness in computer vision applications, its ap-

plication to LLM incurs significant computational overhead [18].  

As can be seen, too short a time step leads to poor accuracy, while too long a time 

step leads to excessive energy consumption. Therefore, this study developes a new en-

coding scheme based on repetition coding that was tailored for the LLM tasks. This 

new method improves the expressive energy per unit time by controlling the expression 

precision during the transformation process, while also reducing the large computa-

tional overhead caused by the long steps in the precise expression process. 

3 Method 

3.1 SpikeRWKV 

SpikeRWKV is RWKV6 [19] converted spiking neural networks. In SpikeRWKV, we 

add a spiking neural network to save the computing resources of RWKV. Fig. 1 shows 



the architecture of the SpikeRWKV model. First, a spiking flag is introduced to record 

the positive and negative values of the conversion value. Then, the pre-trained input in 

RWKV is directly converted into spikes through a multi-head spike encoding scheme, 

and a spiking flag is added during the conversion process to increase the accuracy of 

the expression. Next, the converted spikes are weighted to complete the Spiking Time 

Mixing operation.  

 

Fig. 1. SpikeRWKV architecture: First, a spiking flag is introduced to record the positive and 

negative values of the conversion value. Then, the pre-trained input in RWKV is directly con-

verted into spikes through a multi-head spike encoding scheme, and a spiking flag is added during 

the conversion process to increase the accuracy of the expression. Next, the converted spikes are 

weighted to complete the Spiking Time Mixing operation. 

3.2 Spiking Neural Network 

In SNN, the Integrate-and-Fire (IF) spike neuron is often used to transform ANN to 

SNN. The expression of the IF spike neuron is: 

 𝑣𝑖
𝑗

= 𝑣𝑖
𝑗−1

+ 𝑊𝑖𝜃𝑖−1𝑑𝑖−1
𝑗

− 𝜃𝑖𝑑𝑖
𝑗
  (1) 

𝑣𝑖
𝑗
 represents the neural membrane potential of the i-th layer neuron at time step j, 

𝜃𝑖−1 is the threshold of the i-1 layer neuron, 𝑊𝑖 is the linear transformation matrix of 

the i-th layer, and 𝑑𝑖−1
𝑗

 is the output value of the spike neuron of the i-1 layer. It is 

defined as: 

 𝑑𝑖
𝑗

= 𝐻(𝑢𝑖
𝑗

− 𝜃𝑖)  (2) 

And here 𝑢𝑖
𝑗

= 𝑣𝑖
𝑗−1

+ 𝑊𝑖𝜃𝑖−1𝑑𝑖−1
𝑗

 represents the spike neuron membrane potential 

when the spike neuron has not been stimulated at the j time step. H() represents the step 

function. When the membrane potential 𝑢𝑖
𝑗
 exceeds the threshold 𝜃𝑖, the neuron gener-

ates an output spike and resets the membrane potential by subtracting the threshold to 

reduce information loss. 
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3.3 Spiking Flag 

In the spiking neural network, we set a flag called "spiking flag" to record the positive 

and negative conditions of the spiking neurons when converting the input signal. The 

main function of this flag is to determine the nature of the input value by controlling 

the emission of spikes. Specifically, when the input value is positive, the spiking flag 

will indicate that the spike is not output, indicating that the input signal is a positive-

going spike. In contrast, when the input value is negative, the spiking flag will trigger 

the output of the spike, indicating that this is a negative spike. 

In conventional SNNs, positive and negative signals are typically distinguished via 

excitatory and inhibitory synapses, which necessitates maintaining two distinct synapse 

types and complicates hardware implementation. Moreover, inhibitory and excitatory 

spikes lack explicit differentiation and rely on predefined synaptic configurations. In 

contrast, the "spiking flag" serves as a binary marker that directly encodes the polarity 

of input signals within a single spike train. This design eliminates the need for separate 

synapse types, circumvents dual synaptic mechanisms, and unifies all synaptic weights 

as positive values, thereby significantly simplifying circuit design. 

 

3.4 Multi-head Spike Encoding scheme 

Adding a time window to the text introduces the time dimension. As shown in Fig.2, 

by setting a fixed time window, the input is converted into a spike signal within this 

window, and then the relevant spike calculation is performed.  

In this process, the average spike intensity of T time steps represents the value of the 

input value. As shown in the Fig.2, the input is converted into the average spike inten-

sity of 𝑙 layers of neurons within T time steps, and the number of neurons in each layer 

of the neuron model corresponds to the characteristic dimension of the input vector. 

During the conversion process, the spiking flag is also initialized to ensure that its state 

can accurately reflect the characteristics of the input signal. 

 

Fig. 2. spiking conversion framework. 

The spike intensity of each layer per time step in T time steps is different, which 

represents different spike intensities and enhances the robustness of the model. The 

equivalent relationship is: 



 𝑥𝑡 =
∑ ∑ 𝑑𝑤′𝑖

𝑗
(𝑥𝑡) ⨀ 𝑑′𝑓(𝑥𝑡)𝑙

𝑖=1
𝑇
𝑗=1

𝑇
  (3) 

 𝑑𝑤′𝑖
𝑗
(𝑥𝑡) = 𝑑′𝑖

𝑗
(𝑥𝑡) ∗ 𝑊𝑖  (4) 

Where, 𝑑𝑤′𝑖
𝑗
(𝑥𝑡) represents the weighted spike output intensity of the i-th layer j-th 

time step for the input 𝑥𝑡 at time t. 𝑑′𝑓(𝑥𝑡) represents the spiking flag bit for the input 

𝑥𝑡 at time t. T is the set spike statistical time, the value of the time window. 𝑑′𝑖
𝑗
(𝑥𝑡) is 

the spike output of the i-th layer j-th time step for the input 𝑥𝑡 at time t, and the 𝑊𝑖 is 

the numerical compression weight in the expression process. 

 

Fig. 3. Multi-head spike conversion example. 

During the input conversion process, the transformation is performed according to 

Eq.(3) and Eq.(4), employing the multi-head spike encoding method to convert the first 

𝑙 digits of the numerical value. This ensures an 𝑙-digit precision, where the value is 

represented by 𝑙 layers of spikes over T time steps to guarantee accuracy. For instance, 

in Fig.3, the number -0.234567… is encoded using 6 layers of spikes (𝑙=6) over T time 

steps to represent the 6-digit value 0.23456, while the negative sign is converted into a 

spiking flag. 

The parameter 𝑙 denotes the bit-width for input value decomposition. For instance, 

when 𝑙=6, the input value is decomposed into 6 bit segments (2 integer bits and 4 frac-

tional bits), with each segment encoded via distinct spike trains. The product T×𝑙 

quantifies the precision level of the spike-based representation, where a larger T×𝑙 

value corresponds to higher encoding precision while inducing linear growth in energy 

consumption. 

In rate coding, the "average frequency" represents a temporal statistic (e.g., spike 

count per 100ms window), whereas SpikeRWKV's "average intensity" constitutes a 

spatial statistic (e.g., mean amplitude across multiple spike layers). When T=10ms and 

𝑙=3, the three spike layers fire in parallel within the 10ms window rather than sequen-

tially over 30ms. SpikeRWKV dynamically balances precision and energy consump-

tion by adjusting the layer depth (𝑙). Furthermore, the spiking flag mechanism replaces 

traditional inhibitory pathways, thereby conserving synaptic resources. 
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3.5 Spiking Time Mixing 

The token shift enables the model to independently and uniquely allocate new and old 

information to the reception channels, keys, values, and gating vectors (denoted as r, k, 

v, and g, respectively) at each time step for each head. First, a token shift operation is 

performed on the input, and then linear interpolation is performed on the input data. 

The data dependent linear interpolation (ddlerp) [19] between 𝑥𝑡 and 𝑥𝑡−1 used in token 

shift is be computed. Then, we still use the subsequent Time Mixing method in RWKV6 

for calculation.  

In the actual process of spiking token shift, the input value is first converted into an 

input spike signal by Multi-head Spike Encoding scheme, and then when the input spike 

signal is transmitted to the spiking neuron, it is multiplied by the synaptic weight of the 

input to become a weighted spike signal. Finally, the weighted sum of the spike output 

of the layer 𝑙-th time step is counted by the weighted spike counters, and then the 

weighted sum of the spikes of each layer in the time period from 0 to T time steps is 

counted. 

4 Experiment 

4.1 Experimental Setup 

We evaluate the performance of SpikeRWKV on Natural Language Understanding 

(NLU). We evaluated the effectiveness of the model by the performance of ablation 

experiments on Natural Language Generation (NLG). For NLU tasks, we assess its 

performance on four benchmark datasets: AI2 Reasoning Challenge (ARC) [20], 

Choice of Plausible Alternatives (XCOPA) [21], Physical Interaction QA (PIQA) [22], 

and Winogrande (Wino) [23]. For NLG tasks, we chose the following 2 classic text 

classification datasets to evaluate the text generation performance of SpikeRWKV: 

WikiText-2 [24] and WikiText-103 [24].  

For NLU evaluation, we employed a 5-shot method [25], where questions were 

grouped into sets of five. Each group contained four answered questions followed by 

one test question, designed to explicitly demonstrate the expected response pattern to 

the model. This approach ensures reliable assessment of the model's practical capabili-

ties by providing contextual examples while maintaining evaluation rigor. 

We evaluated three SpikeRWKV configurations,noted as SpikeRWKV-3L (T×

𝑙=1*3) , SpikeRWKV-4L (T×𝑙=1*4) and SpikeRWKV-5L (T×𝑙 =1*5) numerical 

precisions of 3-digit, 4-digit and 5-digit representations. All operations assume a 32-bit 

floating-point implementation on 45nm technology. To evaluate the performance of our 

model, we calculate its bits-per-character (BPC) and perplexity (PPL) metrics. 

 

4.2 Ablation Studies 

A summary of results are provided in Table 1. This includes the BPC and PPL achieved 

on NLG tasks using SpikeRWKV tested on WikiText-103 and WikiText-2 compared 



to several baselines, including RWKV and SNN-RWKV. The RWKV model is a base-

line model. The SNN-RWKV model is the result of simulating RWKV using traditional 

SNN. 

The experimental results demonstrate significant variations in model performance 

across different architectural configurations in Table 1, as measured by both perplexity 

(PPL) and bits-per-character (BPC) metrics. We believe that in SpikeRWKV, T×𝑙 is 

an indicator of expression accuracy, so the expression accuracy of T=3, L=1 is con-

sistent with that of T=1, L=3. The baseline RWKV model establishes the performance 

upper bound with 12.73 PPL and 3.4119 BPC on WikiText-103, showcasing the inher-

ent capability of continuous-value architectures in language modeling tasks. 

Notably, the SNN-RWKV exhibits substantial performance degradation, particu-

larly in the SNN-RWKV-3 configuration which yields a 31% higher PPL (16.67) com-

pared to the baseline. This performance gap gradually narrows with increased model 

depth, as evidenced by the SNN-RWKV4 variant's improved 13.59 PPL, suggesting 

partial mitigation of information loss through deeper network architectures. 

The proposed SpikeRWKV architecture achieves remarkable performance recovery, 

with the 4-bits configuration (SpikeRWKV-4L) attaining 12.12 PPL - merely 4.8% 

higher than the continuous baseline while maintaining comparable BPC performance 

(3.4118 vs 3.4119). It demonstrates the efficacy of the proposed Multi-head Spike En-

coding scheme in preserving fine-grained linguistic information during spike-based 

computation. The results further reveal an optimal depth configuration, where the Spik-

eRWKV-4L outperforms both shallower and deeper variants across both evaluation 

metrics. 

 

4.3 Result on Natural Language Understanding 

 

Our comprehensive evaluation across multiple NLU benchmarks reveals critical in-

sights into the performance characteristics of various neural architectures in Table2. 

The SNN-RWKV implementations reveal important transitional characteristics, with 

the SNN-RWKV-3 variant maintaining competent linguistic task performance (56.38% 

on Winograd_dev) while struggling with knowledge-intensive tasks (25.93% on 

ARC_test), and the SNN-RWKV-4 version showing measurable improvements in com-

monsense reasoning (+3.2% on PIQA_train) but demonstrating instability in other do-

mains. 

Our proposed SpikeRWKV architecture demonstrates significant advancements, as 

the SpikeRWKV variant matches or exceeds baseline performance in 50% of evalua-

tion metrics, while the 5t model establishes new state-of-the-art performance on Wino-

grad_train (59.37%), outperforming all baseline models including RWKV. Crucially, 

SpikeRWKV achieves superior stability compared to traditional SNNs and shows par-

ticular strength in linguistic tasks, outperforming Mamba-2.8b by 37.37 absolute per-

centage points on Winograd benchmarks. These results demonstrate clear architectural 

trade-offs: deeper 5-layer spiking models excel in syntactic processing through en-

hanced temporal integration, shallower SpikeRWKV-3L versions better handle  
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Table 1. Performance comparison on WikiText-2 and WikiText-103 in terms of token-level Per-

plexity (PPL) and Bits Per Character (BPC) (lower is better for both metrics). T denotes the spike 

encoding time during inference, and L indicates the number of spike layers used in the Spik-

eRWKV conversion process. RWKV refers to the original baseline model, while SNN-RWKV 

represents an SNN-based variant of RWKV using repetition coding. 

Method Spiking T L 
WikiText-103 WikiText-2 

PPL BPC PPL BPC 

RWKV × - - 12.73 3.4119 11.55 3.4789 

SNN-RWKV-3 √ 3 - 16.67 3.5243 13.67 3.7197 

SNN-RWKV-4 √ 4 - 13.59 3.5025 13.02 3.6874 

SpikeRWKV-3L √ 3 1 12.90 3.4115 11.71 3.4792 

SpikeRWKV-4L √ 4 1 12.12 3.4118 12.10 3.4789 

SpikeRWKV-5L √ 5 1 12.53 3.4119 12.18 3.4790 

Table 2. Accuracy results on Natural Language Understanding (NLU) tasks. 

Method 
ARC 

_test 

ARC 

_train 

XCOPA 

_test 

XCOPA 

_val 

PIQA 

_train 

PIQA 

_valid 

Wino 

_dev 

Wino 

_train 

RWKV 30.33 26.81 51.00 50.00 52.85 48.83 56.17 57.89 

Bloom 

-3b[26] 
18.20 21.23 45.00 50.00 29.50 29.90 45.70 45.50 

Mamba 

-2.8b[27] 
23.51 19.30 47.00 45.00 14.80 12.00 22.00 16.00 

SNN-

RWKV-3 
25.93 25.87 50.00 50.00 52.96 45.21 56.38 45.45 

SNN-

RWKV-4 
30.33 25.17 50.00 55.00 56.16 49.24 51.75 33.33 

Spik-

eRWKV-3L 
29.67 27.51 51.00 45.00 47.22 50.41 52.73 50.00 

Spik-

eRWKV-4L 
33.63 24.01 45.00 55.00 50.76 48.66 54.04 55.00 

Spik-

eRWKV-5L 
33.41 25.87 45.00 55.00 47.14 50.15 56.25 59.37 

 



knowledge tasks requiring precise timing, while intermediate SpikeRWKV-4L archi-

tectures offer optimal balance for general-purpose NLU applications. 

Table 3. Energy consumption on NLU tasks measured in  Picojoule (pJ). The metric EE =
EANN

ESNN
 

quantifies the energy efficiency ratio between ANN and its SNN counterpart. All operations as-

sume a 32-bit floating-point implementation on 45nm technology, with energy costs of 𝐸𝑀𝐴𝐶 = 

4.6 (pJ) and 𝐸𝐴𝐶 = 0.9 (pJ) [28]. 

 
ANN 

SNN-

RWKV-

3 

SNN-

RWKV-

4 

Spik-

eRWKV-3L 

Spik-

eRWKV-4L 

Spik-

eRWKV-5L 

E(pJ) E(pJ) E(pJ) E(pJ) EE E(pJ) EE E(pJ) EE 

ARC_test 11776 11165.8 11202.3 2472.4 4.76 4536.2 2.59 6612.6 1.78 

ARC_train 11776 9133.3 10786.3 2411.2 4.88 4474.6 2.63 6550.2 1.79 

XCOPA_test 11776 7935.2 11200.2 2401.0 4.90 4465.7 2.63 6540.5 1.80 

XCOPA_val 11776 10150.0 11018.2 2386.6 4.93 4451.0 2.64 6525.7 1.80 

PIQA_train 11776 10209.7 11068.1 2385.5 4.93 4452.5 2.64 6527.8 1.80 

PIQA_valid 11776 9991.4 9957.0 2376.0 4.95 4437.9 2.65 6512.5 1.80 

Wino_dev 11776 10685.0 11127.4 2429.5 4.84 4493.1 2.62 6567.6 1.79 

Wino_train 11776 10786.3 11494.2 2436.5 4.83 4501.4 2.61 6576.5 1.79 

Avg 11776 10007.0 10981 2412.3 4.88 4476.5 2.63 6551.6 1.79 

 

A detailed definition of energy consumption is given in [29]. Since the addition of 

SNN is mainly to simplify and replace the input weighting process, the energy con-

sumption of ANN is defined as: 

 𝐸𝑎𝑛𝑛 = 𝐶𝑖𝑛 × 𝐸𝑀𝐴𝐶   (5) 

Among them, 𝐸𝑎𝑛𝑛 is the total energy consumption of ann in this weighted process. 

𝐶𝑖𝑛 denotes the number of input channel. 𝐸𝑀𝐴𝐶  represents the multiplication and accu-

mulation energy consumption. 

 𝐸𝑠𝑛𝑛 = 𝐶𝑖𝑛 × 𝑓𝑟 × 𝑇 × 𝑙 × 𝐸𝐴𝐶   (5) 

𝑓𝑟 denotes the average spike firing rate. T is the time steps. 𝑙 denotes the number of 

layers of spikes. 𝐸𝐴𝐶  represents the accumulated energy consumption. It should be 

noted that the current energy estimation methodology only accounts for fundamental 

computational energy consumption, while excluding memory access energy and energy 

efficiency impacts from hardware architectural optimizations such as input-sharing or 

weight-sharing mechanisms [30].To facilitate comparison between 𝐸𝑎𝑛𝑛 and 𝐸𝑠𝑛𝑛, we 
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define an energy efficiency ratio (EE = 𝐸𝑎𝑛𝑛/𝐸𝑠𝑛𝑛) to quantify their relative energy 

consumption. All operations assume a 32-bit floating-point implementation on 45nm 

technology, where 𝐸𝑀𝐴𝐶 =4.6pJ and 𝐸𝐴𝐶  = 0.9pJ [28].  

 
(a)ARC_test                                             (b)XCOPA_test 

 
(c)PIQA_valid                                             (d)Wino_dev 

Fig. 4. Energy consumption comparison between SNN-RWKV and SpikeRWKV on four da-

tasets. For each dataset, 20 samples were randomly selected to assess energy usage. 

In Table 3, traditional artificial neural networks (ANNs) exhibit the highest energy 

consumption, maintaining a constant energy usage of 11,776 pJ across all test tasks. In 

contrast, traditional spiking neural network implementations (SNN-RWKV series) 

demonstrate notable energy efficiency improvements. The SNN-RWKV-3 architecture 

achieves an average energy consumption of 10,007.0 pJ, while the SNN-RWKV-4 ar-

chitecture consumes 10,981 pJ. Notably, SNN-RWKV-3 achieves the lowest recorded 

energy consumption in the XCOPA_test task, validating the inherent energy efficiency 

advantages of spiking encoding for specific tasks. 

Second, the proposed SpikeRWKV architecture achieves breakthrough energy effi-

ciency ratios. The improved SpikeRWKV-3L reduces average energy consumption to 

2,412.3 pJ, equivalent to 20.5% of ANN energy consumption, while achieving an en-

ergy efficiency ratio (EE) of 4.88. This improvement is most pronounced in the 

ARC_train task, reaching an EE value of 4.88. Analysis of depth scaling shows that 

while absolute energy consumption increases with additional layers, all variants main-

tain energy efficiency ratios at least 1.79 better than the baseline ANN.  

In summary, the proposed SpikeRWKV architecture demonstrates remarkable en-

ergy efficiency while maintaining competitive task performance. The SpikeRWKV-4L 

variant achieves the most balanced efficiency-performance tradeoff, reducing energy 

consumption by nearly 80% compared to ANNs while delivering comparable accuracy. 



Notably, our architecture exhibits particularly strong performance on knowledge-inten-

sive tasks (ARC, PIQA), where it maintains over 4.8 higher energy efficiency than con-

ventional ANNs. 

5 Conclusion 

This paper proposes the SpikeRWKV model. The spikes are integrated into the large 

model through the encoding scheme of multi-head spike expression. Experimental re-

sults show that SNNs achieve significant energy efficiency improvements through spa-

tiotemporal sparsity and event-based processing while maintaining performance levels 

comparable to ANNs. By converting traditional multiplication operations into spike 

operations and introducing quantization processing, we successfully reduced energy 

consumption in model calculations, thereby improving computational efficiency. Spik-

eRWKV is expected to be applied to neural chips to solve more complex NLP tasks. 

Although the SpikeRWKV model can maintain a certain performance in LLM tasks, 

even better than the performance of the baseline model and significantly reduce energy 

consumption, our model still has limitations. How to choose a good enough time steps 

and apply it to brain-like chips is a direction that still needs to be solved. 
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