

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Adaptive Parameter Control in Particle Swarm

Optimization Based on Proximal Policy Optimization

Ruiqi Fan1[0009-0002-4230-665X] and Lisong Wang1[0000-0001-6482-3717] and Shaohan Liu1[0000-

0003-4290-6591] Liang Liu1[0000-0002-4903-2666] and Fengtao Xu2[0009-0009-6308-4946] and Yizhuo

Sun2[0009-0000-7755-8561]

1 Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 China Academy of Launch Vehicle Technology, Beijing 100076, China

wangls@nuaa.edu.cn

Abstract. The performance of Particle Swarm Optimization algorithms when

solving complex problems is highly dependent on parameter settings and prone

to premature convergence. This paper proposes a Reinforcement Learning-based

adaptive multi-subgroup PSO framework, termed PPOPSO, designed to enable

an RL agent to learn online and dynamically adjust the core behavioral parame-

ters of multiple parallel PSO subgroups.This framework utilizes Proximal Policy

Optimization as the RL agent. Its decision-making process is informed by a state

representation that incorporates rich historical performance indicators. Further-

more, it independently selects actions for each subgroup from a predefined set of

parameter configurations, each representing different search strategies. The con-

trolled multi-subgroup PSO system integrates a periodic elite particle migration

mechanism to foster information sharing and maintain diversity among the sub-

groups.This design transforms the parameter adaptation challenge into a sequen-

tial decision-making process. This allows the system to autonomously balance

exploration and exploitation based on the optimization stage and the state of each

subgroup. Preliminary experimental results on the CEC2013 standard test func-

tion set indicate that, through dynamic parameter adjustment empowered by re-

inforcement learning, the proposed PPOPSO framework can exhibit superior per-

formance compared to traditional methods, offering a promising new approach

for complex optimization problems.

Keywords: Particle Swarm Optimization , Reinforcement Learning , Proximal

Policy Optimization.

1 Introduction

Evolutionary algorithms represent a class of typical gradient-free black-box optimiza-

tion methods[1]. Based on Darwin's theory of evolution, they iteratively evolve solu-

tions. Over the past few decades, evolutionary algorithms have become a research

hotspot in both academia and industry due to their demonstrated high efficiency and

robustness in solving complex optimization problems. They have provided powerful

optimization tools for numerous fields, including material structure design[16], robot

path planning[10], and multi-objective scheduling[18].

Among these algorithms, Particle Swarm Optimization (PSO)[7] is widely used due

to its few parameters, simple structure, and ease of implementation. Proposed by Ken-

nedy and Eberhart in 1995, PSO was inspired by social behaviors such as bird flocking

and fish schooling, and explores the problem space by updating the velocity and posi-

tion of particles. However, research indicates that as the dimensionality of optimization

problems increases, PSO suffers from drawbacks such as premature convergence and

poor convergence performance. For instance, it is prone to converging to local optima

too early, and the population diversity rapidly decreases in the later stages of the search,

thereby affecting its global search capability[19].To overcome these shortcomings,

many methods have been proposed to adaptively set particle swarm parameters for im-

provement[15]. For example, the literature[17] designed two mutation operators to en-

hance the exploration ability of the particle swarm. However, these methods often re-

quire expert experience to design control rules, which limits their adaptability.

In recent years, Reinforcement Learning (RL)[14], with its ability to learn through

interaction with the environment in complex decision-making problems, has provided

a new perspective for the adaptive control of optimization algorithm parameters. Com-

pared with traditional adaptive methods, RL can autonomously learn control strategies,

reducing the dependence on prior knowledge[8]. Inspired by this, we propose an adap-

tive parameter control framework based on reinforcement learning, which uses the PPO

algorithm. By observing the running state of PSO[13], it selects appropriate parameter

configurations for multiple parallel evolving subpopulations (particle swarms), aiming

to balance global exploration and local exploitation capabilities in different optimiza-

tion stages, and to promote effective information sharing and migration among subpop-

ulations.

The main contributions of this paper can be summarized as follows:

1. We propose a novel multi-subgroup PSO parameter dynamic control framework

based on Proximal Policy Optimization. This framework allows the RL agent to in-

dependently and adaptively select and switch the core control parameters of PSO for

multiple parallel evolving subgroups based on real-time feedback of the optimization

state, rather than relying on fixed or predefined parameter decay strategies.

2. We design a reinforcement learning state representation method that includes rich

historical performance indicators. The state vector not only includes the current us-

age of function evaluation resources but also incorporates past historical infor-

mation. This temporal state representation provides the agent with deep insights into

search trends and the recent performance of each subgroup, helping it to learn longer-

term control strategies.

3. We divide the particle swarm into multiple subgroups and construct an integrated

periodic elite migration strategy. This migration mechanism aims to promote

knowledge sharing, maintain population diversity, and synergize with the dynamic

parameter regulation of the RL agent to jointly enhance the algorithm's global search

capability and convergence performance.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

These contributions collectively constitute a complete PSO system that can self-op-

timize through learning, providing a promising new approach for solving complex op-

timization problems. Furthermore, through experimental verification on the CEC2013

standard test function set, we demonstrate the potential and effectiveness of the pro-

posed RL control strategy compared to fixed-parameter PSO and some other adaptive

methods.

The remainder of this paper is organized as follows: Section 2, Related Work, intro-

duces particle swarm optimization and reinforcement learning. Section 3 introduces a

multi-particle swarm optimization based on Proximal Policy Optimization. Section 4

discusses and analyzes the experimental results. Section 5 summarizes the conclusions

and proposes directions for future work.

2 Related Work

2.1 Particle Swarm Optimization

PSO[7] explores the search space through a swarm of particles. Each particle represents

a potential solution to the optimization problem and adjusts its flight trajectory based

on its own experience and the experience of other particles in the swarm.

In the PSO algorithm, each particle 𝑖 in the swarm has its current position 𝑥𝑖 and

current velocity 𝑣𝑖 in the 𝐷-dimensional search space. Simultaneously, each particle

records the best position it has visited so far, known as the personal best solution

𝑝𝑏𝑒𝑠𝑡𝑖. Furthermore, the best position found by the entire swarm so far is tracked as

the global best solution 𝑔𝑏𝑒𝑠𝑡. The movement of each particle is influenced by three

factors: its current velocity, its personal best solution, and the global best solution.

The core of the PSO algorithm lies in iteratively updating the velocity and position

of each particle. In each iteration 𝑡, the velocity of particle 𝑖 in the 𝑑-th dimension is

updated according to the following formula:

𝑣𝑖𝑑(𝑡 + 1) = 𝑤 ⋅ 𝑣𝑖𝑑(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))

+𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))
(1)

where 𝑤 is the inertia weight, used to control the influence of the previous velocity

on the current velocity, thereby balancing global exploration and local exploitation ca-

pabilities. 𝑐1 and 𝑐2 are acceleration constants, representing the cognitive learning fac-

tor and the social learning factor, respectively. 𝑟1 and 𝑟2 are random numbers uniformly

distributed in the range [0, 1]. 𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) is the personal best position of particle 𝑖 in

the 𝑑-th dimension as of iteration 𝑡, and 𝑔𝑏𝑒𝑠𝑡𝑑(𝑡) is the global best position found by

the entire swarm in the 𝑑-th dimension as of iteration 𝑡.

Subsequently, the position of particle 𝑖 in the 𝑑-th dimension is updated based on its

updated velocity:

 𝑥𝑖𝑑(𝑡 + 1)  =  𝑥𝑖𝑑(𝑡)  +  𝑣𝑖𝑑(𝑡 + 1) (2)

This iterative process continues until a preset stopping condition is met, such as

reaching the maximum number of iterations or obtaining a sufficiently good fitness

value.

2.2 Reinforcement Learning

Reinforcement Learning (RL)[14] is a machine learning method where an agent learns

an optimal policy through interaction with an environment. In reinforcement learning,

after taking an action 𝑎 in a specific state 𝑠, the agent receives a reward 𝑟 from the en-

vironment and transitions to a new state 𝑠′. Its objective is to find a policy π(𝑎|𝑠) that

maximizes the cumulative reward obtained by the agent over the long term. The policy

in reinforcement learning can be updated based on value functions. Common value

functions include the state-value function 𝑉π(𝑠) and the state-action value function

𝑄π(𝑠, 𝑎), which represent the expected cumulative reward when following policy π in

state 𝑠, and the expected cumulative reward when taking action 𝑎 in state 𝑠 and then

following policy 𝜋, respectively. Typically, the value function update formula is the

Bellman expectation equation:

 𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑟 + 𝛾𝑉𝜋(𝑠′)|𝑠, 𝑎] (3)

where γ is the discount factor, used to balance the weight of current rewards and

future rewards. The policy can be updated based on the value function, for example,

using policy gradient methods, where the update formula is:

 ∇𝜃𝐽(𝜃) = 𝐸𝑠,𝑎[∇𝜃 ln 𝜋𝜃 (𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)] (4)

By continuously iterating through policy and value function updates, reinforcement

learning enables the agent to gradually learn the optimal behavioral policy in the envi-

ronment to maximize long-term cumulative rewards.

3 Methodology

3.1 The PPOPSO Framework

The novel optimization algorithm proposed in this paper, named PPOPSO, combines

Proximal Policy Optimization (PPO) with multi-subgroup Particle Swarm Optimiza-

tion , aiming to achieve dynamic adaptive control of PSO's core parameters. Firstly, a

random initialization method is employed to initialize PPO's policy network π𝜃 and the

multiple subgroups of PSO particles. Secondly, action selection is performed by the

PPO policy network based on the current state 𝑠𝑡, which predicts an optimal operator

configuration 𝑎𝑡 for each subgroup. Thirdly, according to the actions selected by the

PPO agent, each subgroup executes the corresponding particle update operations and

evaluates their fitness. Then, the historical experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) generated during

this decision cycle is recorded in the experience buffer ℬ. Subsequently, the PPO policy

network parameters are updated based on the data in the experience buffer. The pseu-

docode for PPOPSO is shown in Algorithm 1.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Algorithm 1 PPOPSO Algorithm:

Input：Fitness function 𝑓(⋅), Problem dimension 𝐷, Maximum number of

function evaluations 𝐹𝐸𝑠𝑚𝑎𝑥

Output：Best fitness value of the population 𝐺𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡

1: Initialize multi-subgroup particles (positions, velocities) and basic PSO

parameters; Initialize RL policy network π𝜃.

2: 𝐹𝐸𝑠𝑡 ← 0.

3: while 𝐹𝐸𝑠𝑡 < 𝐹𝐸𝑠𝑚𝑎𝑥 do

4: Calculate state 𝑠𝑡 according to Equation(5).

5: Obtain action 𝑎𝑡 based on policy network πθ and state 𝑠𝑡 using Equa-

tion(9).

6: for each subgroup 𝑗 ← 1 to 𝑁𝑠 do

7: Update particle velocity and position using 𝑎𝑡[𝑗] according to

Equations(1) and(2).

8: Update 𝑝𝑏𝑒𝑠𝑡 for all particles, 𝑔𝑏𝑒𝑠𝑡𝑗 for each subgroup, and global

𝐶𝑔𝑏𝑒𝑠𝑡
𝑡 .

9: if 𝑖𝑡𝑒𝑟 % 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 0

10: Perform particle migration.

11: Calculate reward 𝑟𝑡 based on global 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡 using Equations(7) and

(8).

12: Calculate next state 𝑠𝑡+1 according to Equation(5).

13: 𝑑𝑜𝑛𝑒 ← Check if 𝐹𝐸𝑠𝑡 ≥ 𝐹𝐸𝑠𝑚𝑎𝑥.

14: Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒) in buffer ℬ.

15: 𝑠𝑡 ← 𝑠𝑡+1.

16: if length(ℬ) ≥ 𝑁𝑐𝑜𝑙𝑙𝑒𝑐𝑡 or 𝑑𝑜𝑛𝑒：

17: Perform PPO Update {Train π𝜃 and 𝑉𝜃 networks}.

18: Clear buffer ℬ.

19: Return 𝐺𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡.

3.2 State Design

The state vector 𝑆𝑡 at decision step 𝑡 is a concatenation of several key pieces of infor-

mation. It can be represented as:

𝑆𝑡 = [𝐹𝐸norm(𝑡), 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡−1 , 𝐶𝑝̅𝑏𝑒𝑠𝑡,1

𝑡−1 , … , 𝐶𝑝̅𝑏𝑒𝑠𝑡,𝑁𝑠

𝑡−1 ,

…,
𝐶𝑔𝑏𝑒𝑠𝑡

𝑡−𝐻 , 𝐶𝑝̅𝑏𝑒𝑠𝑡,1
𝑡−𝐻 , … , 𝐶𝑝̅𝑏𝑒𝑠𝑡,𝑁𝑠]

𝑡−𝐻
(5)

Let 𝐻 be the history length and 𝑁𝑠 be the number of subgroups. Metrics from the 𝑘

RL steps preceding the current step 𝑡 are denoted with the superscript (𝑡 − 𝑘).

1. Normalized Function Evaluations (𝑭𝑬𝒔norm): This scalar value represents the pro-

portion of the total optimization budget (𝑀𝑎𝑥_𝐹𝐸𝑠) that has been consumed. It is

calculated as 𝐹𝐸𝑠𝑛𝑜𝑟𝑚(𝑡) =
𝐹𝐸𝑠𝑡

𝐹𝐸𝑠𝑚𝑎𝑥
, where 𝐹𝐸𝑠𝑡 is the number of function evalua-

tions consumed up to RL step 𝑡, and 𝐹𝐸𝑠𝑚𝑎𝑥 is the maximum allowed number of

function evaluations. This component helps the agent understand its current position

on the optimization timeline.

2. Historical Performance Metrics: To provide the agent with an understanding of

performance trends, the state includes a history of key metrics over a defined win-

dow of 𝐻 previous RL steps (where 𝐻 is history_len). For each of these 𝐻 steps, two

types of metrics are recorded:

─ Global Best Cost (𝑪𝒈𝒃𝒆𝒔𝒕): The global best fitness value found by any particle

across all swarms up to that historical point.

─ Average Personal Best Cost per Swarm (𝑪̅𝒑𝒃𝒆𝒔𝒕,𝒋)}: For each of the 𝑁𝑠 swarms

(where 𝑁𝑠 is num_swarms), this is the average of the personal best fitness values

of all particles within that swarm 𝑗.

During initialization, the historical components are populated with a predefined large

value to represent a poor initial state.

3.3 Action Design

The agent's action is the primary means by which it interacts with and exerts control

over the Particle Swarm Optimization process. The design of the action directly influ-

ences the agent's ability to adjust the PSO's behavioral strategy, thereby affecting over-

all optimization performance.

The action space includes five action configurations as shown in the table. Each

configuration contains specific PSO parameters, such as the inertia weight 𝑤, the cog-

nitive learning factor 𝑐1, and the social learning factor 𝑐2. Table 1 details these five

configurations and their specific parameter values.

Table 1. Predefined PSO Parameter Configuration Options

𝑤 𝑐1 𝑐2 Other Parameters Description

0.729 1.49445 1.49445 - Standard PSO parameters

0.9 1.8 1.2 - Strong Exploration

0.4 1.2 1.8 - Strong Exploitation

- 1.5 1.5 𝑤𝑟𝑎𝑛𝑔𝑒 = (0.9,0.4)
Linearly Decreasing Iner-

tia Weight

0.6 2.0 1.0 - Another parameter variant

These configurations can cover multiple strategies, allowing the agent to assign ap-

propriate exploration or exploitation strategies to each particle swarm based on its cur-

rent state and historical performance.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

The agent selects a specific PSO parameter configuration for each independent par-

ticle swarm in the environment. At each decision step 𝑡, the action 𝐴𝑡 selected by the

agent can be represented as a vector containing 𝑁𝑠 elements:

 𝐴𝑡 = [𝑖𝑑𝑥0, 𝑖𝑑𝑥1, … , 𝑖𝑑𝑥𝑁𝑠−1] (6)

where 𝑖𝑑𝑥𝑗 is an integer index representing the number of the predefined parameter

configuration selected for the 𝑗-th particle swarm.

By selecting from these preset configurations, after the action is executed, the chosen

configuration will guide each particle swarm to operate according to the parameters of

that action configuration. This mechanism enables the RL agent to periodically and

specifically adjust the operating parameters of the multi-swarm PSO to adapt to the

characteristics of the optimization problem at different stages.

3.4 Reward Design

The global best cost is denoted as 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡 . The global best cost at the end of the previous

RL decision step 𝑡 − 1 is denoted as 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡−1 . The improvement in cost, Δ𝐶𝑡, is calcu-

lated as the difference between these two:

 Δ𝐶𝑡 = 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡−1 − 𝐶𝑔𝑏𝑒𝑠𝑡

𝑡 (7)

A concise design is adopted to evaluate the immediate effect of the action selected

by the agent at step 𝑡. The specific rules for assigning the reward 𝑅𝑡 are as follows:

 𝑅𝑡 = {
+1.0, if Δ𝐶𝑡 > 0
−0.1, if Δ𝐶𝑡 = 0

 (8)

This penalty mechanism aims to encourage the agent to avoid selecting parameter

configurations that lead to algorithm stagnation or performance degradation.

`

Fig. 1. The PPOPSO Framework Workflow.

3.5 Training Process

As shown in

Fig. 1, in the reinforcement learning-controlled PSO framework proposed in this paper,

the PPO algorithm is used to train an agent. This agent dynamically selects the optimal

core control parameter configurations based on the real-time state of the PSO algorithm.

The training process of PPO is an iterative online learning process, where the agent

collects experience by interacting with the PSO environment and uses this experience

to update its policy network and value function network.

Fig. 2. Action Selection Mechanism via Policy Network.

At each RL decision time step 𝑡, the agent first observes the current state 𝑠𝑡 from the

PSO environment. As shown in Fig. 2, after the policy network receives the state 𝑠𝑡, its

output layer generates a corresponding "logit" value for each subgroup 𝑗 and each pos-

sible parameter configuration index 𝑘, denoted as 𝐿𝑗,𝑘(𝑠𝑡; θ). These logits are then in-

dependently transformed into probability distributions for each subgroup 𝑗 using the

Softmax function.

The probability of selecting the 𝑘-th parameter configuration for the 𝑗-th subgroup,

𝑃(𝑎𝑡,𝑗 = 𝑘|𝑠𝑡; θ), is calculated as follows:

 𝑃(𝑎𝑡,𝑗 = 𝑘|𝑠𝑡; 𝜃) =
exp (𝐿𝑗,𝑘(𝑠𝑡; 𝜃))

∑ exp (𝐿𝑗,𝑘′(𝑠𝑡; 𝜃))4
𝑘′=0

 (9)

After the PSO completes its evolution, the RL environment evaluates its perfor-

mance. Firstly, the environment returns an immediate reward 𝑟𝑡, based on the improve-

ment in 𝐶best compared to the best cost at the end of the previous RL step. Simultane-

ously, the environment generates and returns the next state 𝑠𝑡+1. This complete inter-

action data, i.e., the experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), along with the log probability of

the action 𝑎𝑡 under the old policy log πθold
(𝑎𝑡|𝑠𝑡) , are collected together. This serves

as the basis for the subsequent PPO algorithm to update the policy network parameters

θ.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Concurrently, a value function network 𝑉ϕ(𝑠𝑡) works in coordination. The goal of

this network is to learn to estimate the the state value 𝑉(𝑠𝑡) that can be obtained by

following the current policy given the PSO state 𝑠𝑡, where ϕ represents the parameters

of the value function network.

During the training process, the agent first uses the current policy πθold
 to interact

with the PSO environment and collect a batch of experience data. Then, using this data,

it performs multiple iterative updates on the parameters θ and ϕ through stochastic gra-

dient ascent and stochastic gradient descent, respectively.

3.6 Network Architecture

Both networks employ a Multi-Layer Perceptron structure. Specifically, both the policy

network and the value network consist of an input layer, two hidden layers each con-

taining 64 neural units (using Tanh as the activation function between hidden layers),

and an output layer. The common input for both networks is the state vector 𝑠𝑡, with a

dimension of 1 + 𝐻 × (1 + 𝑁𝑠), which is specifically determined by the state represen-

tation of the PSO environment.

For the policy network (Actor), its output layer is a linear layer with an output di-

mension of 𝑁𝑠 × 5. This output corresponds to the logit values for selecting one action

from the 5 predefined PSO parameter configurations for each of the 𝑁𝑠 subgroups.

These logits are then converted into probabilities for each action via the Softmax func-

tion (applied independently to the action selection for each subgroup). For the value

network (Critic), its output layer is also a linear layer, outputting a scalar value with a

dimension of 1, which is the value estimate 𝑉ϕ(𝑠𝑡) for the current state 𝑠𝑡.

Table 2. PPO Network Architecture

Layer No.
Value Network (Critic Network) Policy NetWork(Actor Network)

Operation Parameters Operation Parameters

1 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1 + 𝐻 × (1 + 𝑁𝑠), 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1 + 𝐻 × (1 + 𝑁𝑠), 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64

2 Tanh(Activation) - Tanh(Activation) -

3 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64

4 Tanh(Activation) - Tanh(Activation) -

5 Linear(ValueOutput) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1 Linear(PolicyLogits) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑁𝑠 × 5

3.7 Particle Migration

To enhance the global search performance of the proposed multi-subgroup particle

swarm optimization algorithm and effectively prevent individual subgroups from prem-

aturely converging to local optima, this study designs and implements an inter-sub-

group particle migration mechanism. The core objective of this mechanism is to pro-

mote the exchange and sharing of high-quality information among different subgroups.

The particle migration mechanism in this study is triggered at a predefined fixed

iteration interval 𝐼𝑚.

The migration process begins by selecting a predetermined number 𝑁𝑚𝑖𝑔,𝑗 of the

best individuals from each source subgroup 𝑗, based on their personal best fitness values

(𝑝𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡), to serve as migrating particles. These elite particles then migrate follow-

ing a unidirectional ring topology, i.e., from the source subgroup 𝑗 to the target sub-

group 𝑗′ = (𝑗 + 1)%𝑁𝑠, where 𝑁𝑠 is the total number of subgroups. In the target sub-

group 𝑗′, these incoming elite particles replace an equal number of particles with the

currently worst personal best fitness values. This "survival of the fittest" replacement

strategy helps to improve the overall solution quality of the target subgroup and may

introduce new effective search directions.

The velocity vectors of newly migrated particles are completely re-initialized ran-

domly within preset velocity limits. This velocity reset operation aims to eliminate the

flight inertia carried over from the particle's original subgroup, thereby enabling it to

adapt more quickly to the new subgroup's local search environment and the search dy-

namics currently guided by the parameters set by the reinforcement learning agent.

4 Experiments

4.1 Experimental Setup

The experiments utilize the CEC 2013 standard test function set for performance eval-

uation. For each test function, the problem dimension 𝐷 is set to 30. The total number

of particles in the Particle Swarm Optimization is set to 100, which are allocated to

𝑁𝑠 = 4 subgroups. A periodic elite migration strategy is employed within each sub-

group, with a migration interval set to 10 PSO iterations, a migration rate of 0.1, and a

velocity clamping factor of 0.5. The maximum number of function evaluations 𝐹𝐸𝑠𝑚𝑎𝑥

is set to 2 × 104.

The training of the PPO agent uses the following main hyperparameter settings:

The mini-batch size is 64; the number of PPO optimization epochs is 10; the discount

factor γ is 0.99; the GAE parameter λ is 0.95; the PPO clipping range clip_range is 0.2;

the entropy coefficient is 0.01 to encourage exploration.

The algorithm performance is primarily evaluated using metrics such as the mean

and standard deviation of the best objective function values obtained over multiple in-

dependent runs, and the average number of function evaluations required to converge

to a specific precision.

All experiments were executed in a specific computational environment. The oper-

ating system was Ubuntu 24.04.1; the CPU was an Intel(R) Xeon(R) Gold 6136 CPU

@ 3.00GHz; the GPUs were 8 NVIDIA Tesla V100-PCIE-32GB units; and the system

memory was 512GB. The method framework was implemented using Python 3.9 and

PyTorch.

4.2 Effectiveness of the involved strategies

To validate the effectiveness of our method, we designed three variants of the approach:

PPOPSO1: Sets the history length H to 1.

PPOPSO2: Sets the population size to 1 and does not use the migration mechanism.

PPOPSO3: Removes the control part of the PPO agent.

These variants aim to isolate and evaluate the impact of the key components in our

proposed PPOPSO method: historical information, population diversity and migration,

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

and PPO agent control. The four methods were run independently 51 times on each

function, and the average of these runs was taken as the result.

The rankings of the four algorithms on different test functions are presented in the

form of a heatmap. PPOPSO is displayed on the bottom row of the heatmap, showing

the most outstanding performance. This demonstrates the effectiveness of our proposed

method, indicating that the PPO agent is the core driver of performance. Historical in-

formation provides a basis for PPO's decisions, helping to improve performance. Sub-

groups and migration enhance the algorithm's exploration capabilities and robustness.

Fig. 3. Alogrithm Ranks Heatmap

Simultaneously, we conducted the Wilcoxon signed-rank test[4] for statistical anal-

ysis. The results of the Wilcoxon signed-rank test are shown in Table 3. Specifically,

all calculated p-values (7.07E-03, 4.73E-04, and 3.73E-08, respectively) are far below

the preset significance levels of α = 0.05 and α = 0.1. This clearly indicates that the

performance improvement demonstrated by PPOPSO over its three variants is highly

statistically significant.

Table 3. Wilcoxon Test Results

PPOPSO vs 𝑅+ 𝑅− 𝑍 𝑝-value α = 0.05 α = 0.1

PPOPSO1 319.0 87.0 -2.693 7.07E-03 yes yes

PPOPSO2 349.0 57.0 -3.496 4.73E-04 yes yes

PPOPSO3 403.0 3.0 -5.503 3.73E-08 yes yes

Fig. 4 shows the effect of the convergence curves for PPOPSO and its three variants.

It can be seen that it achieves the best results on different test functions.

Fig. 4. Convergence curves for PPOPSO and its variants on some functions.

4.3 Performance Comparison

The performance of PPOPSO was evaluated using the CEC 2013[9] benchmark test

set. For comparison, six algorithms were employed, including ABC[6], SHPSO[5],

QLPSO[11], SOA[2] , GWO-WOA[12] , and OOA[3]. The test results of the compar-

ison algorithms are listed in Table 4 . Each algorithm underwent an equal number of

evaluations on each function.

To reduce the impact of experimental errors, each function was run independently

51 times, and the average of these runs was taken as the result. The mean and standard

deviation for each function under the 30D dimension were recorded for all comparison

algorithms. The best value among all algorithms for each function is highlighted in

bold. The bold data represents the best result obtained for each function across all com-

parison algorithms. The comparison results show that PPOPSO achieved an average

rank of 1.78, the highest average rank among all algorithms.

Fig. 5. curves of some functions.shows the convergence curves of PPOPSO against

the comparison algorithms on some of the CEC 2013 test functions. It can be clearly

observed from the figure that PPOPSO exhibits excellent convergence performance on

most functions. This is mainly attributed to the reinforcement learning mechanism,

which enables the algorithm to adaptively adjust its strategy based on the current search

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

state, effectively avoiding the stagnation phenomenon that many other algorithms are

prone to.

Fig. 6. Boxplots of some functions.displays the box plots of the final fitness values

obtained by each algorithm. It can be seen from the figure that PPOPSO demonstrates

high stability on most functions. This stability benefits from the synergistic effect of

the PPO agent's learning ability and the population migration mechanism, allowing the

algorithm to more reliably converge to high-quality solution regions and effectively

reduce the likelihood of getting trapped in local optima.

Table 4. Running results of algorithms in the CEC2013 (30-D).

Function Metric ABC SHPSO QLPSO SOA OOA GWO-WOA PPOPSO

F1
Mean 2.90E+03 -1.29E+03 1.10E+02 4.19E+04 2.16E+04 8.84E+01 -1.34E+03

Std 7.87E+02 3.99E+02 1.77E+03 4.38E+03 6.40E+03 7.55E+02 2.23E+02

F2
Mean 3.00E+08 4.90E+07 1.38E+07 4.61E+08 1.76E+08 4.43E+07 2.71E+07

Std 5.62E+07 2.93E+07 7.11E+06 1.64E+08 9.40E+07 1.43E+07 1.09E+07

F3
Mean 5.42E+10 1.94E+10 1.74E+10 1.23E+15 2.83E+12 6.05E+09 6.40E+09

Std 5.20E+09 1.40E+10 1.47E+10 3.32E+15 1.08E+13 2.99E+09 7.17E+09

F4
Mean 1.10E+05 5.04E+04 3.81E+04 5.85E+04 4.58E+04 3.45E+04 5.81E+04

Std 1.16E+04 1.31E+04 1.08E+04 5.11E+03 7.81E+03 9.26E+03 1.57E+04

F5
Mean 1.03E+03 -7.84E+02 -5.22E+02 4.79E+04 1.05E+04 -1.28E+02 -9.89E+02

Std 3.34E+02 3.68E+02 6.55E+02 1.82E+04 4.47E+03 3.10E+02 3.47E+01

F6
Mean -4.62E+02 -8.02E+02 -7.57E+02 7.01E+03 1.68E+03 -7.26E+02 -8.32E+02

Std 6.74E+01 3.46E+01 9.10E+01 1.66E+03 1.02E+03 6.83E+01 2.90E+01

F7
Mean 1.67E+05 1.47E+05 9.82E+04 1.74E+07 2.36E+06 8.24E+04 1.10E+05

Std 1.08E+04 2.50E+04 2.75E+04 1.45E+07 5.53E+06 1.49E+04 2.83E+04

F8
Mean -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02

Std 5.89E-02 4.43E-02 5.40E-02 6.40E-02 4.83E-02 4.87E-02 8.60E-02

F9
Mean -5.60E+02 -5.68E+02 -5.79E+02 -5.63E+02 -5.65E+02 -5.76E+02 -5.72E+02

Std 1.07E+00 3.03E+00 4.48E+00 1.39E+00 2.13E+00 2.48E+00 3.65E+00

F10
Mean 1.32E+03 -3.23E+02 -2.23E+02 5.48E+03 2.43E+03 -1.06E+02 -4.30E+02

Std 2.60E+02 1.19E+02 2.21E+02 9.15E+02 7.07E+02 1.42E+02 5.99E+01

F11
Mean -8.29E+01 -3.07E+02 -2.88E+02 3.15E+02 1.28E+02 -1.74E+02 -3.01E+02

Std 1.60E+01 2.18E+01 2.67E+01 5.41E+01 9.55E+01 3.34E+01 3.49E+01

F12
Mean 4.98E+01 -8.44E+01 -1.78E+02 3.62E+02 2.12E+02 -4.23E+01 -1.80E+02

Std 1.96E+01 6.24E+01 3.76E+01 4.40E+01 8.22E+01 2.36E+01 3.44E+01

F13
Mean 1.35E+02 7.62E+01 5.84E-01 4.06E+02 2.80E+02 4.61E+01 -8.48E+00

Std 2.13E+01 3.72E+01 3.33E+01 5.50E+01 8.14E+01 2.11E+01 4.01E+01

F14
Mean 7.56E+03 2.94E+03 4.04E+03 7.21E+03 5.85E+03 7.26E+03 3.09E+03

Std 2.36E+02 5.57E+02 8.95E+02 2.63E+02 6.31E+02 5.76E+02 5.94E+02

F15
Mean 7.98E+03 5.66E+03 7.12E+03 7.76E+03 6.49E+03 7.81E+03 4.65E+03

Std 2.74E+02 6.41E+02 1.05E+03 2.76E+02 7.46E+02 3.75E+02 5.77E+02

F16
Mean 2.03E+02 2.02E+02 2.03E+02 2.03E+02 2.03E+02 2.03E+02 2.01E+02

Std 3.35E-01 5.95E-01 4.06E-01 4.09E-01 4.29E-01 4.29E-01 5.84E-01

F17
Mean 8.33E+02 4.32E+02 4.13E+02 1.06E+03 8.93E+02 5.55E+02 4.27E+02

Std 4.58E+01 2.73E+01 2.46E+01 5.17E+01 8.18E+01 2.38E+01 2.72E+01

F18
Mean 8.78E+02 5.09E+02 5.70E+02 2.42E+03 1.76E+03 7.05E+02 5.14E+02

Std 3.65E+01 3.35E+01 7.48E+01 1.55E+02 2.24E+02 4.05E+01 3.11E+01

F19
Mean 2.33E+03 5.28E+02 5.24E+02 4.05E+05 6.73E+04 5.65E+02 5.12E+02

Std 8.52E+02 2.08E+01 2.76E+01 1.47E+05 6.40E+04 9.14E+01 3.56E+00

F20
Mean 6.15E+02 6.14E+02 6.13E+02 6.15E+02 6.14E+02 6.13E+02 6.13E+02

Std 1.92E-01 6.02E-01 4.53E-01 1.59E-01 5.56E-01 7.55E-01 5.92E-01

F21
Mean 2.78E+03 1.61E+03 1.70E+03 3.18E+03 2.75E+03 1.94E+03 1.58E+03

Std 1.02E+02 2.96E+02 2.95E+02 1.49E+02 1.34E+02 1.23E+02 3.23E+02

F22
Mean 9.03E+03 4.08E+03 5.01E+03 8.80E+03 7.64E+03 8.05E+03 4.54E+03

Std 3.87E+02 6.25E+02 9.69E+02 2.67E+02 6.39E+02 8.31E+02 7.49E+02

F23
Mean 9.21E+03 6.97E+03 7.99E+03 9.22E+03 7.83E+03 8.74E+03 5.97E+03

Std 3.39E+02 8.64E+02 1.17E+03 3.80E+02 6.33E+02 5.81E+02 7.79E+02

F24
Mean 1.30E+03 1.28E+03 1.26E+03 1.37E+03 1.31E+03 1.26E+03 1.28E+03

Std 2.86E+00 8.18E+00 8.13E+00 1.68E+01 1.13E+01 6.03E+00 9.09E+00

F25
Mean 1.42E+03 1.39E+03 1.38E+03 1.49E+03 1.42E+03 1.39E+03 1.39E+03

Std 3.67E+00 7.81E+00 8.67E+00 9.46E+00 7.10E+00 6.57E+00 9.04E+00

F26
Mean 1.46E+03 1.54E+03 1.51E+03 1.56E+03 1.57E+03 1.56E+03 1.47E+03

Std 1.08E+01 6.85E+01 7.07E+01 7.68E+01 6.09E+01 3.17E+01 8.08E+01

F27
Mean 2.65E+03 2.43E+03 2.25E+03 3.32E+03 2.67E+03 2.28E+03 2.38E+03

Std 3.36E+01 8.42E+01 1.17E+02 2.74E+02 8.29E+01 8.03E+01 8.94E+01

F28
Mean 3.90E+03 2.81E+03 2.66E+03 5.39E+03 4.96E+03 2.95E+03 2.29E+03

Std 1.61E+02 6.80E+02 2.40E+02 2.85E+02 3.87E+02 3.36E+02 4.11E+02

Average Rank 5.250 2.893 2.643 6.464 5.25 3.714 1.786

Fig. 5. curves of some functions.

Fig. 6. Boxplots of some functions.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

To further validate the performance of our proposed PPOPSO algorithm, we con-

ducted pairwise statistical comparisons against six other well-known algorithms using

the sign test[4]. Table 5 summarizes these comparison results. At a significance level

of α = 0.05, all calculated p-values are far below the significance threshold of 0.05.

This indicates that PPOPSO exhibits a significant advantage compared to the other al-

gorithms.

Table 5. Sign Test Results

PPOPSO ABC SHPSO QLPSO SOA OOA GWO-WOA

WIN 27 23 20 28 27 21

LOSS 1 5 8 0 1 7

𝑝-value 2.16e-07 9.12e-04 3.57e-02 7.45e-09 2.16e-07 1.25e-02

5 Conclusion

This paper introduces a Reinforcement Learning (RL)-based dynamic parameter con-

trol strategy to enhance the adaptive capabilities and performance of the multi-subgroup

cooperative Particle Swarm Optimization (PSO) algorithm. By framing parameter ad-

aptation as a sequential decision-making process, an RL agent was trained to autono-

mously adjust key behavioral parameters for each PSO subgroup in real-time. This ap-

proach replaces manual tuning, enabling each subgroup to dynamically balance explo-

ration and exploitation based on its unique state and historical performance, while an

information exchange mechanism facilitates the search for the global optimum. Exper-

imental results demonstrate that this RL-empowered method significantly improves the

robustness and solution efficiency of the multi-particle swarm system, particularly on

complex optimization tasks. Future work will focus on designing more sophisticated

reward functions and state representations, exploring the transfer learning capabilities

of the RL agent across different problems, and expanding its control to other architec-

tural aspects of the algorithm, such as subgroup size and migration strategies.

References

1. Bäck, T.H., Kononova, A.V., van Stein, B., Wang, H., Antonov, K.A., Kalkreuth, R.T., de

Nobel, J., Vermetten, D., de Winter, R., Ye, F.: Evolutionary algorithms for parameter opti-

mization thirty years later. Evolutionary Computation 31(2), 81–122 (2023)

2. Dehghani, M., Trojovsk`y, P.: Serval optimization algorithm: a new bio-inspired approach

for solving optimization problems. Biomimetics 7(4), 204 (2022)

3. Dehghani, M., Trojovsk`y, P.: Osprey optimization algorithm: A new bio-inspired metaheu-

ristic algorithm for solving engineering optimization problems. Frontiers in Mechanical En-

gineering 8, 1126450 (2023)

4. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparamet-

ric statistical tests as a methodology for comparing evolutionary and swarm intelligence al-

gorithms. Swarm and Evolutionary Computation 1(1), 3–18 (2011)

5. Engelbrecht, A.P.: Heterogeneous particle swarm optimization. In: Swarm Intelligence: 7th

International Conference, ANTS 2010, Brussels, Belgium, September 8-10, 2010. Proceed-

ings 7. pp. 191–202. Springer (2010)

6. Karaboga, D., Akay, B.: Artificial bee colony (abc), harmony search and bees algorithms on

numerical optimization. In: Innovative production machines and systems virtual conference

(2009)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 inter-

national conference on neural networks. vol. 4, pp. 1942–1948. ieee (1995)

8. Li, P., Hao, J., Tang, H., Fu, X., Zhen, Y., Tang, K.: Bridging evolutionary algorithms and

reinforcement learning: A comprehensive survey on hybrid algorithms.IEEE Transactions

on Evolutionary Computation (2024)

9. Liang, J.J., Qu, B., Suganthan, P.N., Hernández-Díaz, A.G.: Problem definitions and evalu-

ation criteria for the cec 2013 special session on real-parameter optimization. Computational

Intelligence Laboratory, Zhengzhou University, Zhengzhou,China and Nanyang Technolog-

ical University, Singapore, Technical Report 201212(34), 281–295 (2013)

10. Lin, S., Liu, A., Wang, J., Kong, X.: An intelligence-based hybrid pso-sa for mobile robot

path planning in warehouse. Journal of Computational Science 67, 101938 (2023)

11. Liu, Y., Lu, H., Cheng, S., Shi, Y.: An adaptive online parameter control algorithm for par-

ticle swarm optimization based on reinforcement learning. In: 2019 IEEE congress on evo-

lutionary computation (CEC). pp. 815–822. IEEE (2019)

12. Obadina, O.O., Thaha, M.A., Althoefer, K., Shaheed, M.H.: Dynamic characterization of a

master–slave robotic manipulator using a hybrid grey wolf–whale optimization algorithm.

Journal of Vibration and Control 28(15-16), 1992–2003 (2022)

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimiza-

tion algorithms. arXiv preprint arXiv:1707.06347 (2017)

14. Shakya, A.K., Pillai, G., Chakrabarty, S.: Reinforcement learning algorithms: A brief sur-

vey. Expert Systems with Applications 231, 120495 (2023)

15. Shami, T.M., El-Saleh, A.A., Alswaitti, M., Al-Tashi, Q., Summakieh, M.A., Mirjalili, S.:

Particle swarm optimization: A comprehensive survey. Ieee Access 10,10031–10061 (2022)

16. Tung, C.C., Lai, Y.Y., Chen, Y.Z., Lin, C.C., Chen, P.Y.: Optimization of mechanical prop-

erties of bio-inspired voronoi structures by genetic algorithm. Journal of Materials Research

and Technology 26, 3813–3829 (2023)

17. Wang, S., Liu, G., Gao, M., Cao, S., Guo, A., Wang, J.: Heterogeneous comprehensive

learning and dynamic multi-swarm particle swarm optimizer with two mutation operators.

Information Sciences 540, 175–201 (2020)

18. Zhang, W., Xiao, G., Gen, M., Geng, H., Wang, X., Deng, M., Zhang, G.: Enhancing multi-

objective evolutionary algorithms with machine learning for scheduling problems: recent

advances and survey. Frontiers in Industrial Engineering 2, 1337174 (2024)

19. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algo-

rithm and its applications. Mathematical problems in engineering 2015(1), 931256 (2015)

