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Abstract. The performance of Particle Swarm Optimization algorithms when 

solving complex problems is highly dependent on parameter settings and prone 

to premature convergence. This paper proposes a Reinforcement Learning-based 

adaptive multi-subgroup PSO framework, termed PPOPSO, designed to enable 

an RL agent to learn online and dynamically adjust the core behavioral parame-

ters of multiple parallel PSO subgroups.This framework utilizes Proximal Policy 

Optimization as the RL agent. Its decision-making process is informed by a state 

representation that incorporates rich historical performance indicators. Further-

more, it independently selects actions for each subgroup from a predefined set of 

parameter configurations, each representing different search strategies. The con-

trolled multi-subgroup PSO system integrates a periodic elite particle migration 

mechanism to foster information sharing and maintain diversity among the sub-

groups.This design transforms the parameter adaptation challenge into a sequen-

tial decision-making process. This allows the system to autonomously balance 

exploration and exploitation based on the optimization stage and the state of each 

subgroup. Preliminary experimental results on the CEC2013 standard test func-

tion set indicate that, through dynamic parameter adjustment empowered by re-

inforcement learning, the proposed PPOPSO framework can exhibit superior per-

formance compared to traditional methods, offering a promising new approach 

for complex optimization problems. 

Keywords: Particle Swarm Optimization , Reinforcement Learning , Proximal 

Policy Optimization. 

1 Introduction 

Evolutionary algorithms represent a class of typical gradient-free black-box optimiza-

tion methods[1]. Based on Darwin's theory of evolution, they iteratively evolve solu-

tions. Over the past few decades, evolutionary algorithms have become a research 

hotspot in both academia and industry due to their demonstrated high efficiency and 

robustness in solving complex optimization problems. They have provided powerful 



optimization tools for numerous fields, including material structure design[16], robot 

path planning[10], and multi-objective scheduling[18]. 

Among these algorithms, Particle Swarm Optimization (PSO)[7] is widely used due 

to its few parameters, simple structure, and ease of implementation. Proposed by Ken-

nedy and Eberhart in 1995, PSO was inspired by social behaviors such as bird flocking 

and fish schooling, and explores the problem space by updating the velocity and posi-

tion of particles. However, research indicates that as the dimensionality of optimization 

problems increases, PSO suffers from drawbacks such as premature convergence and 

poor convergence performance. For instance, it is prone to converging to local optima 

too early, and the population diversity rapidly decreases in the later stages of the search, 

thereby affecting its global search capability[19].To overcome these shortcomings, 

many methods have been proposed to adaptively set particle swarm parameters for im-

provement[15]. For example, the literature[17] designed two mutation operators to en-

hance the exploration ability of the particle swarm. However, these methods often re-

quire expert experience to design control rules, which limits their adaptability. 

In recent years, Reinforcement Learning (RL)[14], with its ability to learn through 

interaction with the environment in complex decision-making problems, has provided 

a new perspective for the adaptive control of optimization algorithm parameters. Com-

pared with traditional adaptive methods, RL can autonomously learn control strategies, 

reducing the dependence on prior knowledge[8]. Inspired by this, we propose an adap-

tive parameter control framework based on reinforcement learning, which uses the PPO 

algorithm. By observing the running state of PSO[13], it selects appropriate parameter 

configurations for multiple parallel evolving subpopulations (particle swarms), aiming 

to balance global exploration and local exploitation capabilities in different optimiza-

tion stages, and to promote effective information sharing and migration among subpop-

ulations. 

The main contributions of this paper can be summarized as follows: 

1. We propose a novel multi-subgroup PSO parameter dynamic control framework 

based on Proximal Policy Optimization. This framework allows the RL agent to in-

dependently and adaptively select and switch the core control parameters of PSO for 

multiple parallel evolving subgroups based on real-time feedback of the optimization 

state, rather than relying on fixed or predefined parameter decay strategies. 

2. We design a reinforcement learning state representation method that includes rich 

historical performance indicators. The state vector not only includes the current us-

age of function evaluation resources but also incorporates past historical infor-

mation. This temporal state representation provides the agent with deep insights into 

search trends and the recent performance of each subgroup, helping it to learn longer-

term control strategies. 

3. We divide the particle swarm into multiple subgroups and construct an integrated 

periodic elite migration strategy. This migration mechanism aims to promote 

knowledge sharing, maintain population diversity, and synergize with the dynamic 

parameter regulation of the RL agent to jointly enhance the algorithm's global search 

capability and convergence performance. 
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These contributions collectively constitute a complete PSO system that can self-op-

timize through learning, providing a promising new approach for solving complex op-

timization problems. Furthermore, through experimental verification on the CEC2013 

standard test function set, we demonstrate the potential and effectiveness of the pro-

posed RL control strategy compared to fixed-parameter PSO and some other adaptive 

methods. 

The remainder of this paper is organized as follows: Section 2, Related Work, intro-

duces particle swarm optimization and reinforcement learning. Section 3 introduces a 

multi-particle swarm optimization based on Proximal Policy Optimization. Section 4 

discusses and analyzes the experimental results. Section 5 summarizes the conclusions 

and proposes directions for future work. 

2 Related Work 

2.1 Particle Swarm Optimization 

PSO[7] explores the search space through a swarm of particles. Each particle represents 

a potential solution to the optimization problem and adjusts its flight trajectory based 

on its own experience and the experience of other particles in the swarm. 

In the PSO algorithm, each particle 𝑖 in the swarm has its current position 𝑥𝑖 and 

current velocity 𝑣𝑖  in the 𝐷-dimensional search space. Simultaneously, each particle 

records the best position it has visited so far, known as the personal best solution 

𝑝𝑏𝑒𝑠𝑡𝑖. Furthermore, the best position found by the entire swarm so far is tracked as 

the global best solution 𝑔𝑏𝑒𝑠𝑡. The movement of each particle is influenced by three 

factors: its current velocity, its personal best solution, and the global best solution. 

The core of the PSO algorithm lies in iteratively updating the velocity and position 

of each particle. In each iteration 𝑡, the velocity of particle 𝑖 in the 𝑑-th dimension is 

updated according to the following formula: 

 
𝑣𝑖𝑑(𝑡 + 1) = 𝑤 ⋅ 𝑣𝑖𝑑(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)) 

+𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)) 
(1) 

where 𝑤 is the inertia weight, used to control the influence of the previous velocity 

on the current velocity, thereby balancing global exploration and local exploitation ca-

pabilities. 𝑐1 and 𝑐2 are acceleration constants, representing the cognitive learning fac-

tor and the social learning factor, respectively. 𝑟1 and 𝑟2 are random numbers uniformly 

distributed in the range [0, 1]. 𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) is the personal best position of particle 𝑖 in 

the 𝑑-th dimension as of iteration 𝑡, and 𝑔𝑏𝑒𝑠𝑡𝑑(𝑡) is the global best position found by 

the entire swarm in the 𝑑-th dimension as of iteration 𝑡. 

Subsequently, the position of particle 𝑖 in the 𝑑-th dimension is updated based on its 

updated velocity: 

 𝑥𝑖𝑑(𝑡 + 1)  =  𝑥𝑖𝑑(𝑡)  +  𝑣𝑖𝑑(𝑡 + 1) (2) 



This iterative process continues until a preset stopping condition is met, such as 

reaching the maximum number of iterations or obtaining a sufficiently good fitness 

value. 

2.2 Reinforcement Learning 

Reinforcement Learning (RL)[14] is a machine learning method where an agent learns 

an optimal policy through interaction with an environment. In reinforcement learning, 

after taking an action 𝑎 in a specific state 𝑠, the agent receives a reward 𝑟 from the en-

vironment and transitions to a new state 𝑠′. Its objective is to find a policy π(𝑎|𝑠) that 

maximizes the cumulative reward obtained by the agent over the long term. The policy 

in reinforcement learning can be updated based on value functions. Common value 

functions include the state-value function 𝑉π(𝑠) and the state-action value function 

𝑄π(𝑠, 𝑎), which represent the expected cumulative reward when following policy π in 

state 𝑠, and the expected cumulative reward when taking action 𝑎 in state 𝑠 and then 

following policy 𝜋, respectively. Typically, the value function update formula is the 

Bellman expectation equation: 

 𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑟 + 𝛾𝑉𝜋(𝑠′)|𝑠, 𝑎] (3) 

where γ is the discount factor, used to balance the weight of current rewards and 

future rewards. The policy can be updated based on the value function, for example, 

using policy gradient methods, where the update formula is: 

 ∇𝜃𝐽(𝜃) = 𝐸𝑠,𝑎[∇𝜃 ln 𝜋𝜃 (𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)] (4) 

By continuously iterating through policy and value function updates, reinforcement 

learning enables the agent to gradually learn the optimal behavioral policy in the envi-

ronment to maximize long-term cumulative rewards. 

3 Methodology 

3.1 The PPOPSO Framework 

The novel optimization algorithm proposed in this paper, named PPOPSO, combines 

Proximal Policy Optimization (PPO) with multi-subgroup Particle Swarm Optimiza-

tion , aiming to achieve dynamic adaptive control of PSO's core parameters. Firstly, a 

random initialization method is employed to initialize PPO's policy network π𝜃 and the 

multiple subgroups of PSO particles. Secondly, action selection is performed by the 

PPO policy network based on the current state 𝑠𝑡, which predicts an optimal operator 

configuration 𝑎𝑡 for each subgroup. Thirdly, according to the actions selected by the 

PPO agent, each subgroup executes the corresponding particle update operations and 

evaluates their fitness. Then, the historical experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) generated during 

this decision cycle is recorded in the experience buffer ℬ. Subsequently, the PPO policy 

network parameters are updated based on the data in the experience buffer. The pseu-

docode for PPOPSO is shown in Algorithm 1. 
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Algorithm 1 PPOPSO Algorithm:  

Input：Fitness function 𝑓(⋅), Problem dimension 𝐷, Maximum number of 

function evaluations 𝐹𝐸𝑠𝑚𝑎𝑥 

Output：Best fitness value of the population 𝐺𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 

1: Initialize multi-subgroup particles (positions, velocities) and basic PSO 

parameters; Initialize RL policy network π𝜃. 

2: 𝐹𝐸𝑠𝑡 ← 0. 

3: while 𝐹𝐸𝑠𝑡 < 𝐹𝐸𝑠𝑚𝑎𝑥 do 

4:     Calculate state 𝑠𝑡 according to Equation(5). 

5:     Obtain action 𝑎𝑡 based on policy network πθ and state 𝑠𝑡 using Equa-

tion(9). 

6:     for each subgroup 𝑗 ← 1 to 𝑁𝑠 do 

7:         Update particle velocity and position using 𝑎𝑡[𝑗]  according to 

Equations(1) and(2). 

8:     Update 𝑝𝑏𝑒𝑠𝑡 for all particles, 𝑔𝑏𝑒𝑠𝑡𝑗 for each subgroup, and global 

𝐶𝑔𝑏𝑒𝑠𝑡
𝑡 . 

9:     if 𝑖𝑡𝑒𝑟 % 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 0 

10:     Perform particle migration. 

11: Calculate reward 𝑟𝑡  based on global 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡   using Equations(7) and 

(8). 

12: Calculate next state 𝑠𝑡+1 according to Equation(5). 

13: 𝑑𝑜𝑛𝑒 ← Check if 𝐹𝐸𝑠𝑡 ≥ 𝐹𝐸𝑠𝑚𝑎𝑥. 

14: Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒) in buffer ℬ. 

15: 𝑠𝑡 ← 𝑠𝑡+1. 

16: if length(ℬ) ≥ 𝑁𝑐𝑜𝑙𝑙𝑒𝑐𝑡 or 𝑑𝑜𝑛𝑒： 

17:     Perform PPO Update {Train π𝜃 and 𝑉𝜃 networks}. 

18:     Clear buffer ℬ. 

19: Return 𝐺𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡. 

3.2 State Design 

The state vector 𝑆𝑡 at decision step 𝑡 is a concatenation of several key pieces of infor-

mation. It can be represented as: 

 

𝑆𝑡 = [𝐹𝐸norm(𝑡), 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡−1 , 𝐶𝑝̅𝑏𝑒𝑠𝑡,1

𝑡−1 , … , 𝐶𝑝̅𝑏𝑒𝑠𝑡,𝑁𝑠

𝑡−1 , 

…, 
𝐶𝑔𝑏𝑒𝑠𝑡

𝑡−𝐻 , 𝐶𝑝̅𝑏𝑒𝑠𝑡,1
𝑡−𝐻 , … , 𝐶𝑝̅𝑏𝑒𝑠𝑡,𝑁𝑠]

𝑡−𝐻  
(5) 



Let 𝐻 be the history length and 𝑁𝑠 be the number of subgroups. Metrics from the 𝑘 

RL steps preceding the current step 𝑡 are denoted with the superscript (𝑡 − 𝑘). 

1. Normalized Function Evaluations (𝑭𝑬𝒔norm): This scalar value represents the pro-

portion of the total optimization budget (𝑀𝑎𝑥_𝐹𝐸𝑠) that has been consumed. It is 

calculated as 𝐹𝐸𝑠𝑛𝑜𝑟𝑚(𝑡) =
𝐹𝐸𝑠𝑡

𝐹𝐸𝑠𝑚𝑎𝑥
, where 𝐹𝐸𝑠𝑡 is the number of function evalua-

tions consumed up to RL step 𝑡, and 𝐹𝐸𝑠𝑚𝑎𝑥 is the maximum allowed number of 

function evaluations. This component helps the agent understand its current position 

on the optimization timeline. 

2. Historical Performance Metrics: To provide the agent with an understanding of 

performance trends, the state includes a history of key metrics over a defined win-

dow of 𝐻 previous RL steps (where 𝐻 is history_len). For each of these 𝐻 steps, two 

types of metrics are recorded: 

─ Global Best Cost (𝑪𝒈𝒃𝒆𝒔𝒕): The global best fitness value found by any particle 

across all swarms up to that historical point. 

─ Average Personal Best Cost per Swarm (𝑪̅𝒑𝒃𝒆𝒔𝒕,𝒋)}: For each of the 𝑁𝑠 swarms 

(where 𝑁𝑠 is num_swarms), this is the average of the personal best fitness values 

of all particles within that swarm 𝑗. 

During initialization, the historical components are populated with a predefined large 

value to represent a poor initial state. 

3.3 Action Design 

The agent's action is the primary means by which it interacts with and exerts control 

over the Particle Swarm Optimization process. The design of the action directly influ-

ences the agent's ability to adjust the PSO's behavioral strategy, thereby affecting over-

all optimization performance. 

The action space includes five action configurations as shown in the table. Each 

configuration contains specific PSO parameters, such as the inertia weight 𝑤, the cog-

nitive learning factor 𝑐1, and the social learning factor 𝑐2. Table 1 details these five 

configurations and their specific parameter values. 

Table 1. Predefined PSO Parameter Configuration Options 

𝑤 𝑐1 𝑐2 Other Parameters Description 

0.729 1.49445 1.49445 - Standard PSO parameters 

0.9 1.8 1.2 - Strong Exploration 

0.4 1.2 1.8 - Strong Exploitation 

- 1.5 1.5 𝑤𝑟𝑎𝑛𝑔𝑒 = (0.9,0.4) 
Linearly Decreasing Iner-

tia Weight 

0.6 2.0 1.0 - Another parameter variant 

These configurations can cover multiple strategies, allowing the agent to assign ap-

propriate exploration or exploitation strategies to each particle swarm based on its cur-

rent state and historical performance. 
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The agent selects a specific PSO parameter configuration for each independent par-

ticle swarm in the environment. At each decision step 𝑡, the action 𝐴𝑡 selected by the 

agent can be represented as a vector containing 𝑁𝑠 elements: 

 𝐴𝑡 = [𝑖𝑑𝑥0, 𝑖𝑑𝑥1, … , 𝑖𝑑𝑥𝑁𝑠−1] (6) 

where 𝑖𝑑𝑥𝑗  is an integer index representing the number of the predefined parameter 

configuration selected for the 𝑗-th particle swarm. 

By selecting from these preset configurations, after the action is executed, the chosen 

configuration will guide each particle swarm to operate according to the parameters of 

that action configuration. This mechanism enables the RL agent to periodically and 

specifically adjust the operating parameters of the multi-swarm PSO to adapt to the 

characteristics of the optimization problem at different stages. 

3.4 Reward Design 

The global best cost is denoted as 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡 . The global best cost at the end of the previous 

RL decision step 𝑡 − 1 is denoted as 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡−1 . The improvement in cost, Δ𝐶𝑡, is calcu-

lated as the difference between these two: 

 Δ𝐶𝑡 = 𝐶𝑔𝑏𝑒𝑠𝑡
𝑡−1 − 𝐶𝑔𝑏𝑒𝑠𝑡

𝑡  (7) 

A concise design is adopted to evaluate the immediate effect of the action selected 

by the agent at step 𝑡. The specific rules for assigning the reward 𝑅𝑡 are as follows: 

 𝑅𝑡 = {
+1.0,  if Δ𝐶𝑡  >  0 
−0.1,  if Δ𝐶𝑡  =  0

 (8) 

This penalty mechanism aims to encourage the agent to avoid selecting parameter 

configurations that lead to algorithm stagnation or performance degradation. 

`  

Fig. 1. The PPOPSO Framework Workflow. 



3.5 Training Process 

As shown in  

Fig. 1, in the reinforcement learning-controlled PSO framework proposed in this paper, 

the PPO algorithm is used to train an agent. This agent dynamically selects the optimal 

core control parameter configurations based on the real-time state of the PSO algorithm. 

The training process of PPO is an iterative online learning process, where the agent 

collects experience by interacting with the PSO environment and uses this experience 

to update its policy network and value function network. 

 

Fig. 2. Action Selection Mechanism via Policy Network. 

At each RL decision time step 𝑡, the agent first observes the current state 𝑠𝑡 from the 

PSO environment. As shown in Fig. 2, after the policy network receives the state 𝑠𝑡, its 

output layer generates a corresponding "logit" value for each subgroup 𝑗 and each pos-

sible parameter configuration index 𝑘, denoted as 𝐿𝑗,𝑘(𝑠𝑡; θ). These logits are then in-

dependently transformed into probability distributions for each subgroup 𝑗 using the 

Softmax function. 

The probability of selecting the 𝑘-th parameter configuration for the 𝑗-th subgroup, 

𝑃(𝑎𝑡,𝑗 = 𝑘|𝑠𝑡; θ), is calculated as follows: 

 𝑃(𝑎𝑡,𝑗 = 𝑘|𝑠𝑡; 𝜃) =
exp (𝐿𝑗,𝑘(𝑠𝑡; 𝜃))

∑ exp (𝐿𝑗,𝑘′(𝑠𝑡; 𝜃))4
𝑘′=0

 (9) 

After the PSO completes its evolution, the RL environment evaluates its perfor-

mance. Firstly, the environment returns an immediate reward 𝑟𝑡, based on the improve-

ment in 𝐶best compared to the best cost at the end of the previous RL step. Simultane-

ously, the environment generates and returns the next state 𝑠𝑡+1. This complete inter-

action data, i.e., the experience tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), along with the log probability of 

the action 𝑎𝑡 under the old policy log πθold
(𝑎𝑡|𝑠𝑡) , are collected together. This serves 

as the basis for the subsequent PPO algorithm to update the policy network parameters 

θ. 
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Concurrently, a value function network 𝑉ϕ(𝑠𝑡) works in coordination. The goal of 

this network is to learn to estimate the the state value 𝑉(𝑠𝑡) that can be obtained by 

following the current policy given the PSO state 𝑠𝑡, where ϕ represents the parameters 

of the value function network. 

During the training process, the agent first uses the current policy πθold
 to interact 

with the PSO environment and collect a batch of experience data. Then, using this data, 

it performs multiple iterative updates on the parameters θ and ϕ through stochastic gra-

dient ascent and stochastic gradient descent, respectively. 

3.6 Network Architecture 

Both networks employ a Multi-Layer Perceptron structure. Specifically, both the policy 

network and the value network consist of an input layer, two hidden layers each con-

taining 64 neural units (using Tanh as the activation function between hidden layers), 

and an output layer. The common input for both networks is the state vector 𝑠𝑡, with a 

dimension of 1 + 𝐻 × (1 + 𝑁𝑠), which is specifically determined by the state represen-

tation of the PSO environment. 

For the policy network (Actor), its output layer is a linear layer with an output di-

mension of 𝑁𝑠 × 5. This output corresponds to the logit values for selecting one action 

from the 5 predefined PSO parameter configurations for each of the 𝑁𝑠  subgroups. 

These logits are then converted into probabilities for each action via the Softmax func-

tion (applied independently to the action selection for each subgroup). For the value 

network (Critic), its output layer is also a linear layer, outputting a scalar value with a 

dimension of 1, which is the value estimate 𝑉ϕ(𝑠𝑡) for the current state 𝑠𝑡. 

Table 2. PPO Network Architecture 

Layer No. 
Value Network (Critic Network) Policy NetWork(Actor Network) 

Operation Parameters Operation Parameters 

1 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1 + 𝐻 × (1 + 𝑁𝑠), 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1 + 𝐻 × (1 + 𝑁𝑠), 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64 

2 Tanh(Activation) - Tanh(Activation) - 

3 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64 Linear(FullyConnected) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64 

4 Tanh(Activation) - Tanh(Activation) - 

5 Linear(ValueOutput) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1 Linear(PolicyLogits) 𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑁𝑠 × 5 

3.7 Particle Migration 

To enhance the global search performance of the proposed multi-subgroup particle 

swarm optimization algorithm and effectively prevent individual subgroups from prem-

aturely converging to local optima, this study designs and implements an inter-sub-

group particle migration mechanism. The core objective of this mechanism is to pro-

mote the exchange and sharing of high-quality information among different subgroups. 

The particle migration mechanism in this study is triggered at a predefined fixed 

iteration interval 𝐼𝑚. 

The migration process begins by selecting a predetermined number 𝑁𝑚𝑖𝑔,𝑗 of the 

best individuals from each source subgroup 𝑗, based on their personal best fitness values 

(𝑝𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡), to serve as migrating particles. These elite particles then migrate follow-

ing a unidirectional ring topology, i.e., from the source subgroup 𝑗 to the target sub-



group 𝑗′ = (𝑗 + 1)%𝑁𝑠, where 𝑁𝑠 is the total number of subgroups. In the target sub-

group 𝑗′, these incoming elite particles replace an equal number of particles with the 

currently worst personal best fitness values. This "survival of the fittest" replacement 

strategy helps to improve the overall solution quality of the target subgroup and may 

introduce new effective search directions. 

The velocity vectors of newly migrated particles are completely re-initialized ran-

domly within preset velocity limits. This velocity reset operation aims to eliminate the 

flight inertia carried over from the particle's original subgroup, thereby enabling it to 

adapt more quickly to the new subgroup's local search environment and the search dy-

namics currently guided by the parameters set by the reinforcement learning agent. 

4 Experiments 

4.1 Experimental Setup 

The experiments utilize the CEC 2013 standard test function set for performance eval-

uation. For each test function, the problem dimension 𝐷 is set to 30. The total number 

of particles in the Particle Swarm Optimization is set to 100, which are allocated to 

𝑁𝑠 = 4 subgroups. A periodic elite migration strategy is employed within each sub-

group, with a migration interval set to 10 PSO iterations, a migration rate of 0.1, and a 

velocity clamping factor of 0.5. The maximum number of function evaluations 𝐹𝐸𝑠𝑚𝑎𝑥 

is set to 2 × 104. 

The training of the PPO agent uses the following main hyperparameter settings: 

The mini-batch size is 64; the number of PPO optimization epochs is 10; the discount 

factor γ is 0.99; the GAE parameter λ is 0.95; the PPO clipping range clip_range is 0.2; 

the entropy coefficient is 0.01 to encourage exploration. 

The algorithm performance is primarily evaluated using metrics such as the mean 

and standard deviation of the best objective function values obtained over multiple in-

dependent runs, and the average number of function evaluations required to converge 

to a specific precision. 

All experiments were executed in a specific computational environment. The oper-

ating system was Ubuntu 24.04.1; the CPU was an Intel(R) Xeon(R) Gold 6136 CPU 

@ 3.00GHz; the GPUs were 8 NVIDIA Tesla V100-PCIE-32GB units; and the system 

memory was 512GB. The method framework was implemented using Python 3.9 and 

PyTorch. 

4.2 Effectiveness of the involved strategies 

To validate the effectiveness of our method, we designed three variants of the approach: 

PPOPSO1: Sets the history length H to 1. 

PPOPSO2: Sets the population size to 1 and does not use the migration mechanism. 

PPOPSO3: Removes the control part of the PPO agent. 

These variants aim to isolate and evaluate the impact of the key components in our 

proposed PPOPSO method: historical information, population diversity and migration, 
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and PPO agent control. The four methods were run independently 51 times on each 

function, and the average of these runs was taken as the result. 

The rankings of the four algorithms on different test functions are presented in the 

form of a heatmap. PPOPSO is displayed on the bottom row of the heatmap, showing 

the most outstanding performance. This demonstrates the effectiveness of our proposed 

method, indicating that the PPO agent is the core driver of performance. Historical in-

formation provides a basis for PPO's decisions, helping to improve performance. Sub-

groups and migration enhance the algorithm's exploration capabilities and robustness. 

 

Fig. 3. Alogrithm Ranks Heatmap 

Simultaneously, we conducted the Wilcoxon signed-rank test[4] for statistical anal-

ysis. The results of the Wilcoxon signed-rank test are shown in Table 3. Specifically, 

all calculated p-values (7.07E-03, 4.73E-04, and 3.73E-08, respectively) are far below 

the preset significance levels of α = 0.05 and α = 0.1. This clearly indicates that the 

performance improvement demonstrated by PPOPSO over its three variants is highly 

statistically significant. 

Table 3. Wilcoxon Test Results 

PPOPSO vs 𝑅+ 𝑅− 𝑍 𝑝-value α = 0.05 α = 0.1 

PPOPSO1 319.0 87.0 -2.693 7.07E-03 yes yes 

PPOPSO2 349.0 57.0 -3.496 4.73E-04 yes yes 

PPOPSO3 403.0 3.0 -5.503 3.73E-08 yes yes 

Fig. 4 shows the effect of the convergence curves for PPOPSO and its three variants. 

It can be seen that it achieves the best results on different test functions. 



 

Fig. 4. Convergence curves for PPOPSO and its variants on some functions. 

4.3 Performance Comparison 

The performance of PPOPSO was evaluated using the CEC 2013[9] benchmark test 

set. For comparison, six algorithms were employed, including ABC[6], SHPSO[5], 

QLPSO[11], SOA[2] , GWO-WOA[12] , and OOA[3]. The test results of the compar-

ison algorithms are listed in Table 4 . Each algorithm underwent an equal number of 

evaluations on each function.  

To reduce the impact of experimental errors, each function was run independently 

51 times, and the average of these runs was taken as the result. The mean and standard 

deviation for each function under the 30D dimension were recorded for all comparison 

algorithms. The best value among all algorithms for each function is highlighted in 

bold. The bold data represents the best result obtained for each function across all com-

parison algorithms. The comparison results show that PPOPSO achieved an average 

rank of 1.78, the highest average rank among all algorithms. 

Fig. 5. curves of some functions.shows the convergence curves of PPOPSO against 

the comparison algorithms on some of the CEC 2013 test functions. It can be clearly 

observed from the figure that PPOPSO exhibits excellent convergence performance on 

most functions. This is mainly attributed to the reinforcement learning mechanism, 

which enables the algorithm to adaptively adjust its strategy based on the current search 
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state, effectively avoiding the stagnation phenomenon that many other algorithms are 

prone to.  

Fig. 6. Boxplots of some functions.displays the box plots of the final fitness values 

obtained by each algorithm. It can be seen from the figure that PPOPSO demonstrates 

high stability on most functions. This stability benefits from the synergistic effect of 

the PPO agent's learning ability and the population migration mechanism, allowing the 

algorithm to more reliably converge to high-quality solution regions and effectively 

reduce the likelihood of getting trapped in local optima. 

Table 4. Running results of algorithms in the CEC2013 (30-D). 

Function Metric ABC SHPSO QLPSO SOA OOA GWO-WOA PPOPSO 

F1 
Mean 2.90E+03 -1.29E+03 1.10E+02 4.19E+04 2.16E+04 8.84E+01 -1.34E+03 

Std 7.87E+02 3.99E+02 1.77E+03 4.38E+03 6.40E+03 7.55E+02 2.23E+02 

F2 
Mean 3.00E+08 4.90E+07 1.38E+07 4.61E+08 1.76E+08 4.43E+07 2.71E+07 

Std 5.62E+07 2.93E+07 7.11E+06 1.64E+08 9.40E+07 1.43E+07 1.09E+07 

F3 
Mean 5.42E+10 1.94E+10 1.74E+10 1.23E+15 2.83E+12 6.05E+09 6.40E+09 

Std 5.20E+09 1.40E+10 1.47E+10 3.32E+15 1.08E+13 2.99E+09 7.17E+09 

F4 
Mean 1.10E+05 5.04E+04 3.81E+04 5.85E+04 4.58E+04 3.45E+04 5.81E+04 

Std 1.16E+04 1.31E+04 1.08E+04 5.11E+03 7.81E+03 9.26E+03 1.57E+04 

F5 
Mean 1.03E+03 -7.84E+02 -5.22E+02 4.79E+04 1.05E+04 -1.28E+02 -9.89E+02 

Std 3.34E+02 3.68E+02 6.55E+02 1.82E+04 4.47E+03 3.10E+02 3.47E+01 

F6 
Mean -4.62E+02 -8.02E+02 -7.57E+02 7.01E+03 1.68E+03 -7.26E+02 -8.32E+02 

Std 6.74E+01 3.46E+01 9.10E+01 1.66E+03 1.02E+03 6.83E+01 2.90E+01 

F7 
Mean 1.67E+05 1.47E+05 9.82E+04 1.74E+07 2.36E+06 8.24E+04 1.10E+05 

Std 1.08E+04 2.50E+04 2.75E+04 1.45E+07 5.53E+06 1.49E+04 2.83E+04 

F8 
Mean -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 

Std 5.89E-02 4.43E-02 5.40E-02 6.40E-02 4.83E-02 4.87E-02 8.60E-02 

F9 
Mean -5.60E+02 -5.68E+02 -5.79E+02 -5.63E+02 -5.65E+02 -5.76E+02 -5.72E+02 

Std 1.07E+00 3.03E+00 4.48E+00 1.39E+00 2.13E+00 2.48E+00 3.65E+00 

F10 
Mean 1.32E+03 -3.23E+02 -2.23E+02 5.48E+03 2.43E+03 -1.06E+02 -4.30E+02 

Std 2.60E+02 1.19E+02 2.21E+02 9.15E+02 7.07E+02 1.42E+02 5.99E+01 

F11 
Mean -8.29E+01 -3.07E+02 -2.88E+02 3.15E+02 1.28E+02 -1.74E+02 -3.01E+02 

Std 1.60E+01 2.18E+01 2.67E+01 5.41E+01 9.55E+01 3.34E+01 3.49E+01 

F12 
Mean 4.98E+01 -8.44E+01 -1.78E+02 3.62E+02 2.12E+02 -4.23E+01 -1.80E+02 

Std 1.96E+01 6.24E+01 3.76E+01 4.40E+01 8.22E+01 2.36E+01 3.44E+01 

F13 
Mean 1.35E+02 7.62E+01 5.84E-01 4.06E+02 2.80E+02 4.61E+01 -8.48E+00 

Std 2.13E+01 3.72E+01 3.33E+01 5.50E+01 8.14E+01 2.11E+01 4.01E+01 

F14 
Mean 7.56E+03 2.94E+03 4.04E+03 7.21E+03 5.85E+03 7.26E+03 3.09E+03 

Std 2.36E+02 5.57E+02 8.95E+02 2.63E+02 6.31E+02 5.76E+02 5.94E+02 

F15 
Mean 7.98E+03 5.66E+03 7.12E+03 7.76E+03 6.49E+03 7.81E+03 4.65E+03 

Std 2.74E+02 6.41E+02 1.05E+03 2.76E+02 7.46E+02 3.75E+02 5.77E+02 

F16 
Mean 2.03E+02 2.02E+02 2.03E+02 2.03E+02 2.03E+02 2.03E+02 2.01E+02 

Std 3.35E-01 5.95E-01 4.06E-01 4.09E-01 4.29E-01 4.29E-01 5.84E-01 

F17 
Mean 8.33E+02 4.32E+02 4.13E+02 1.06E+03 8.93E+02 5.55E+02 4.27E+02 

Std 4.58E+01 2.73E+01 2.46E+01 5.17E+01 8.18E+01 2.38E+01 2.72E+01 

F18 
Mean 8.78E+02 5.09E+02 5.70E+02 2.42E+03 1.76E+03 7.05E+02 5.14E+02 

Std 3.65E+01 3.35E+01 7.48E+01 1.55E+02 2.24E+02 4.05E+01 3.11E+01 

F19 
Mean 2.33E+03 5.28E+02 5.24E+02 4.05E+05 6.73E+04 5.65E+02 5.12E+02 

Std 8.52E+02 2.08E+01 2.76E+01 1.47E+05 6.40E+04 9.14E+01 3.56E+00 

F20 
Mean 6.15E+02 6.14E+02 6.13E+02 6.15E+02 6.14E+02 6.13E+02 6.13E+02 

Std 1.92E-01 6.02E-01 4.53E-01 1.59E-01 5.56E-01 7.55E-01 5.92E-01 

F21 
Mean 2.78E+03 1.61E+03 1.70E+03 3.18E+03 2.75E+03 1.94E+03 1.58E+03 

Std 1.02E+02 2.96E+02 2.95E+02 1.49E+02 1.34E+02 1.23E+02 3.23E+02 

F22 
Mean 9.03E+03 4.08E+03 5.01E+03 8.80E+03 7.64E+03 8.05E+03 4.54E+03 

Std 3.87E+02 6.25E+02 9.69E+02 2.67E+02 6.39E+02 8.31E+02 7.49E+02 

F23 
Mean 9.21E+03 6.97E+03 7.99E+03 9.22E+03 7.83E+03 8.74E+03 5.97E+03 

Std 3.39E+02 8.64E+02 1.17E+03 3.80E+02 6.33E+02 5.81E+02 7.79E+02 

F24 
Mean 1.30E+03 1.28E+03 1.26E+03 1.37E+03 1.31E+03 1.26E+03 1.28E+03 

Std 2.86E+00 8.18E+00 8.13E+00 1.68E+01 1.13E+01 6.03E+00 9.09E+00 

F25 
Mean 1.42E+03 1.39E+03 1.38E+03 1.49E+03 1.42E+03 1.39E+03 1.39E+03 

Std 3.67E+00 7.81E+00 8.67E+00 9.46E+00 7.10E+00 6.57E+00 9.04E+00 

F26 
Mean 1.46E+03 1.54E+03 1.51E+03 1.56E+03 1.57E+03 1.56E+03 1.47E+03 

Std 1.08E+01 6.85E+01 7.07E+01 7.68E+01 6.09E+01 3.17E+01 8.08E+01 

F27 
Mean 2.65E+03 2.43E+03 2.25E+03 3.32E+03 2.67E+03 2.28E+03 2.38E+03 

Std 3.36E+01 8.42E+01 1.17E+02 2.74E+02 8.29E+01 8.03E+01 8.94E+01 

F28 
Mean 3.90E+03 2.81E+03 2.66E+03 5.39E+03 4.96E+03 2.95E+03 2.29E+03 

Std 1.61E+02 6.80E+02 2.40E+02 2.85E+02 3.87E+02 3.36E+02 4.11E+02 

Average Rank 5.250 2.893 2.643 6.464 5.25 3.714 1.786 



 

Fig. 5. curves of some functions. 

 
Fig. 6. Boxplots of some functions. 
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To further validate the performance of our proposed PPOPSO algorithm, we con-

ducted pairwise statistical comparisons against six other well-known algorithms using 

the sign test[4]. Table 5 summarizes these comparison results. At a significance level 

of α = 0.05, all calculated p-values are far below the significance threshold of 0.05. 

This indicates that PPOPSO exhibits a significant advantage compared to the other al-

gorithms. 

Table 5. Sign Test Results 

PPOPSO ABC SHPSO QLPSO SOA OOA GWO-WOA 

WIN 27 23 20 28 27 21 

LOSS 1 5 8 0 1 7 

𝑝-value 2.16e-07 9.12e-04 3.57e-02 7.45e-09 2.16e-07 1.25e-02 

5 Conclusion 

This paper introduces a Reinforcement Learning (RL)-based dynamic parameter con-

trol strategy to enhance the adaptive capabilities and performance of the multi-subgroup 

cooperative Particle Swarm Optimization (PSO) algorithm. By framing parameter ad-

aptation as a sequential decision-making process, an RL agent was trained to autono-

mously adjust key behavioral parameters for each PSO subgroup in real-time. This ap-

proach replaces manual tuning, enabling each subgroup to dynamically balance explo-

ration and exploitation based on its unique state and historical performance, while an 

information exchange mechanism facilitates the search for the global optimum. Exper-

imental results demonstrate that this RL-empowered method significantly improves the 

robustness and solution efficiency of the multi-particle swarm system, particularly on 

complex optimization tasks. Future work will focus on designing more sophisticated 

reward functions and state representations, exploring the transfer learning capabilities 

of the RL agent across different problems, and expanding its control to other architec-

tural aspects of the algorithm, such as subgroup size and migration strategies. 
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