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Abstract. Image-based individual recognition of giant pandas in real wild scenes 

suffers from difficulties such as occlusion and multiple postures. Image painting 

is an important preprocessing step in solving the occlusion of giant panda images. 

A two-stage inpainting model of giant panda images based on partial convolu-

tions and multi-scale features is proposed. In the coarse inpainting, the structural 

information of the occluded part is restored, while the fine inpainting focuses on 

restoring details such as textures and edges based on the coarse inpainting. A new 

PatchGAN with two discriminators in the coarse inpainting balances two-scale 

information guided by the WGAN-GP loss and L1 norm. The generator of the 

new PatchGAN uses partial-convolutions to avoid the propagation and influence 

of misinformation in the occluded area. In the fine inpainting, a new proposed 

module fusing multi-scale feature by contextual attention is added to the 

PatchGAN. The fine inpainting model learns and enhances the texture and details 

of the image output by the coarse inpainting through the global searching for 

multi-scale similar image patches by multi-scale context attention. Thus, it can 

strengthen the semantic connection between occluded and real image regions. In 

order to achieve better multi-scale inpainting results, the perceived loss and style 

loss are added to the adversarial loss. Compared with state-of-art methods, the 

proposed method can effectively restore image textures and details while sup-

pressing noise and artifacts from visual effects. The PSNR, SSIM and FIN of 

proposed method can achieve 35.69, 0.971 and 5.22 respectively, indicating that 

proposed method can obtain satisfied inpainting results. 

Keywords: image inpainting, dual discriminator, multi-scale context attention, 

partial convolution, PatchGAN. 

mailto:20060097@sicnu.edu.cn
mailto:capricorncp@163.com


 

 

 

1 Introduction 

Deep learning can significantly improve the accuracy and efficiency of animal individ-

ual identification in animal conservation [1]. However, most of existing animal identi-

fication technologies are only carried out on animal faces under ideal conditions [1-4], 

and cannot be applied to identify wild animals in the natural environment. Individual 

identification of wild giant pandas in wild environments presents many difficulties such 

as the complexity and variability of panda postures, occluded regions of panda by nat-

ural environments, and environmentally induced light changes and shadows etc.  

Especially for occluded Giant panda images, the image inpainting for occluded re-

gions while preserving important features is a key and difficult important preprocessing 

step.  This study aims to address the challenges in inpainting panda images due to their 

color-changed fur and features that are inconspicuous and with different sizes but are 

useful in individual identification, should be recovered precisely and correctly.  

The specific features on the panda's face and body, such as the shape and size of the 

eye circles and ears, as well as their specific layout and the delicate textural features of 

fur, place highly specific demands on image restoration tasks, see Fig 1. When these 

key features at different levels are occluded, it becomes very difficult to infer the oc-

cluded parts only based on existing data and a single learning model.  

 

Fig. 1. The images of Giant Pandas (GPs). Each GP has specific features on its face and body 

that are important for individual identification, such as the shape and size of the eye circles and 

ears, as well as their specific layout and the delicate textural features of fur. Thus, image inpaiting 

for occluded GPs is a highly specific image restoration task, which must maintain and correctly 

restore GP’s complex facial and body features. 

In computer vision, many efforts have been proposed recently in image inpainting. 

Deepak Pathak et al. [5] proposed Context Encoder, which trained a Convolutional 

Neural Network (CNN) to generate the arbitrary image regions based on the image 

surroundings by context-based pixel prediction. Yang et al. [6] used multi-scale patches 

for high-resolution image restoration and proposed a framework combining context en-

coder and style transfer to deal with high-resolution restoration in a three-layer pyramid 

approach. In 2017, Satoshi Iizuka et al. [7] introduced local and global discriminators 

into the fully convolutional network to fine-tune the texture, and achieved the semantic 

consistency between the restored area and the overall image. Yan et al. [8] proposed a 

Shift-Net network to inpaint images by introducing a special skip connection layer in 
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the U-Net network [9]. However, the repainted texture details of above methods may 

be less than ideal, and the ability to fill in missing parts in complex scenes needs to be 

improved. 

At the ICCV 2019, Yu et al. proposed GateConv [10], which adopts gated convolu-

tions. However, the computational complexity of gated convolution is relatively high, 

which may limit its application in some scenarios that are limited to computational re-

sources, and the accuracy of free-form restoration for complex scenarios should be fur-

ther improved. 

Recently, some studies have introduced attention mechanisms to capture remote in-

formation in images. Zeng et al. developed an image inpainting technique based on 

pyramidal attention, PEN-NET [11], which guides shallow feature filling through deep 

semantic features to ensure coherence between textures. However, the pyramid struc-

ture may lead to an increase in the number of model parameters and more difficult 

training. Yu et al. [12] and Zeng et al. [13] proposed methods of attention mechanism 

and Transformer model for long-distance information capture and image inpainting in 

2022, respectively. In order to restore high-resolution images, scholars have proposed 

new frameworks, such as capturing remote context information by Zeng et al. in 2022 

[14], and the GAN-based restoration technology proposed by Yang et al. [15]. But 

aforementioned methods tend to generate over-smoothed inpainting regions or artifacts. 

Stable diffusion [16] are proposed in 2022 and soon became an important tool for 

image inpainting [17-18]. Since the inpainting of stable diffusion is performed only on 

local information, stable diffusion-based methods can’t deal with large occluded re-

gions. 

Chen et al [19] proposed a new convolution operator, Partial Convolution (PConv), 

to extract spatial features more efficiently by reducing computation cost. PConv selects 

the features of a portion of the channels for regular convolution and leaves the features 

of the remaining portion of the channels unchanged, to reduce the computational com-

plexity. 

VideoWorld [20] uses the Vector Quantized Variational Autoencoder (VQ-VAE) 

and Autoregressive Transformer architectures to generate high-quality video frames 

and infer task-relevant operations from these frames.  

However, above one-stage image painting by deep learning models can’t achieve 

satisfied results when inpainting panda images because of error recovered texture and 

missing shape structure features. Two-stage methods that progressively extrapolated 

information from coarse to fine becomes a viable alternative and showed more satisfied 

inpainting performance compared with one-stage methods. 

Nazeri K et al. proposed a two-stage inpainting model, CM-GAN [21] in 2021. CM-

GAN embedded pre-trained GAN into a U-shape DNN, which is helpful to deal with 

some invalid features and better inject global context into the spatial domain. But CM-

GAN will generate some small artifacts and blur edges and textures.  

Li [22] proposed a two-stage model to inpaint regular shape regions using Channel-

Coordinate attention mechanism and multi scale features. But small targets may be 

missed in global pooling due to feature dilution. In addition, when there are a large 

number of densely distributed small targets in the image, the attention maps in two 



 

 

 

directions may not be able to accurately distinguish the positions and directions of 

neighboring targets, leading to attention confusion and many artifacts. 

To improve the performance of existing methods, recovering the big features and 

small details correctly is an essential measure.  Thus, two discriminators are adopted to 

judge the coarse inpainting both in small-scale and large-scale simultaneously. In order 

to avoid the spread of misinformation in occluded areas, partial convolutions are used 

to replace the convolutions in U-net and a large weight is set to the pixel reconstruction 

loss of the occluded region to ensure recovering the information of occluded regions 

firstly.  

Fig. 2. Structure of proposed two-stage inpainting model. The occluded giant panda 

image 𝐼𝑖𝑛 and its occluded mask are fed into the coarse inpainting model to output 𝐼𝑜𝑢𝑡
𝐶 . 

The superscript “C” of  𝐼𝑜𝑢𝑡
𝐶   indicates that it is the inpainting image in the coarse 

inpainting stage. Then, the fine inpainting model are get by the 𝐼𝑜𝑢𝑡
𝐶  and the same mask 

as the coarse inpainting stage to get fine inpainting image 𝐼𝑜𝑢𝑡 .    The total losses of 

coarse inpainting and fine inpainting are shown under the stages, indicating that the 

objective of the coarse inpainting is to recover structure features in occluded regions 

while fine inpainting focuses on recovering textures and details in occluded regions by 

setting big weights to reconstructed loss 𝐿ℎ𝑜𝑙𝑒 in the occluded regions and style loss 

𝐿𝑠𝑡𝑦.  

In fine inpainting, in order to preserve small features, unlike fusing multi-scale con-

textual by concatenation and Channel-Coordinate attentions in [22], multi-scale con-

textual in our framework are fused by concatenation and Squeeze-and-Excitation (SE) 

[23] attention, which preserves details through feature recalibration in the channel di-

mension: enhancement of detail-related channels to suppress background noise and 

highlight channels corresponding to details such as textures and edges, and cross-layer 

circulation of detail information to preserve semantic cues of details and mitigating 

information loss due to down-sampling. 

The main contributions include: 

1. Construct a GP’s occluded image set, iPanda-50-occlusion, which contains 1000 im-

ages of giant pandas with various occlusion situations and is constructed from the 

iPanda-50 dataset. 
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2. Propose a new framework for coarse inpainting to recover structures of occluded 

panda images. The framework includes a partial convolutional-Uet generator to 

avoid the propagation and influence of misinformation in the occluded areas; two 

discriminators to judge whether large-scale patch and small-scale patch are genuine 

or fake; WGAN-GP and pixel reconstruction loss with large weight in occluded re-

gions. 

3. Proposed a fine inpainting model based on multi-scale contextual attention and 

PatchGAN. The multi-scale contextual information is fused through the SE module 

to preserve details. The cost of multi-scale information is pixel reconstruction loss, 

adversarial loss, perceptual loss and style loss with far large weighs to focus on the 

recovering the textures and details of occluded regions.  

 

The remain of this paper is:  the proposed method is introduced in section 2; the 

experiments and discussions are presented in section 3; Finally, it is the conclusions 

and acknowledgement.  

2 Method 

2.1 Model Framework 

A two-stage inpainting model is proposed to inpainting the occluded parts of the giant 

panda images. The network consists of two parts: coarse inpainting and fine inpainting, 

both of which adopt generative adversarial networks (GANs), and the overall network 

structure is shown in Figure 2.  

The mask is a matrix whose elements are zeros or ones and with the same dimensions 

as the panda image. The occluded parts in 𝑀 are ones while the other parts are set to 

zeros. After coarse inpainting, the generated image and its mask are fed into the image 

fine inpainting to further restore details and textures of occluded areas. 

2.2 Coarse inpainting based on dual PatchGAN 

2.2.1 Network structure of coarse inpainting  

The data are fed into the coarse inpainting network includes: an image of a giant panda 

with occlusion and a mask of the occluded region. The generator is a partial convolution 

Unet, whose convolutions are replaced by the partial convolutions. The network struc-

ture of coarse inpainting is shown in Figure 3. The generator includes three key parts: 

encoder, decoder and long-skip connections. The encoder consists of six convolutional 

layers, each down-sampled using a 3×3 convolutional kernel with stride=2. The con-

volution kernel of the decoder is 3×3 and the stride=1 to keep the size of the feature 

map. The inputs to the decoder are the channels of aggregating the feature map of the 

current decoder layer with the feature map of the corresponding size in the encoder. 

 



 

 

 

Fig. 3. Network structure of coarse inpainting. The generator includes an encoder, a 

decoder, and long skip connections. The encoder consists of six convolutional layers, 

each using a 3×3 convolutional kernel with a stride of 2. The decoder uses 3×3 convo-

lutional kernels with strides of 1 to maintain the feature map size. Two discriminators: 

a large-scale PatchGAN discriminator 𝑫𝑳 with seven convolution layers transforms the 

dimension of the image from 224×224×3 to 7×7×256; while a small-scale PatchGAN 

discriminator 𝑫𝑺 with five convolution layers transforms the image size to 14×14×256. 

2.2.2 Dual PatchGAN discriminators.  

Traditional discriminators in GAN focus on the global information of the generated 

image, and judge the authenticity of the whole image by outputting a scalar value 0 or 

1. Thus, GAN is clearly not sufficient for the tasks that need to ensure the repaired 

boundaries are not broken or jumped.  

Unlike traditional GAN discriminators, PatchGAN does not attempt to assess the 

authenticity of the entire image, but rather local regions (or "patches") of the image. 

The core idea of PatchGAN is to determine the authenticity of an entire image by seg-

menting the input image into small chunks or "patches", and then determining whether 

each chunk is authentic or fake separately.  

Although single-scale PatchGAN can achieve visually detailed restoration, it tends 

to ignore contextual information in whole images. At the same time, the overlaps of 

local image blocks may also lead to the inability to effectively discriminate the structure 

of the image.   

In order to solve the above problems, we propose a new PatchGAN with dual dis-

criminators, which simultaneously uses large-scale 𝐷𝐿  and small-scale discriminators 

𝐷𝑆 to analyses the image. The discriminator network structure is shown in Figure 3, the 

right top is the large-scale discriminator 𝐷𝐿  used to capture the global information, 

while the other is the small-scale discriminator 𝐷𝑆 focusing on local features. These two 

discriminators work together, so that we make judgements based on information from 

two scales and ensure reliability both of global structures and local details. 
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2.2.3 Loss 

In coarse inpainting, we use pixel reconstruction L1 loss and adversarial loss. The L1 

loss is a direct measure of the pixel-level difference between the inpainting image and 

the real image, emphasizing the importance of accurate reconstruction for each pixel. 

By minimizing this loss, the network learns how to accurately repair the occluded re-

gions while preserving the original pixel values of the un-occluded regions as much as 

possible. There are two parts of the pixel reconstruction loss: 

 𝐿𝑣𝑎𝑙𝑖𝑑 =
1

∑(𝟏−𝑀)
‖(𝐼𝑜𝑢𝑡

𝑐 − 𝐼𝑔) ⊙ (𝟏 − 𝑀)‖
1

              (1) 

𝐿ℎ𝑜𝑙𝑒 =
1

∑(𝑀)
‖(𝐼𝑜𝑢𝑡

𝐶 − 𝐼𝑔) ⊙ 𝑀‖
1

                                                 (2) 

where 𝐼𝑜𝑢𝑡
𝑐  is the coarse inpainting image and C means “coarse”, 𝐼𝑔 is the real image, 

𝑀 is the occlusion mask whose elements are zeros or ones, ⊙ represents the element-

wise multiplication, ∑ represents the summation of the elements of M, 1 is a matrix 

whose elements are ones and with the same size of M, and the || ∙ ||1 represents the L1-

norm. Thus, 𝐿𝑣𝑎𝑙𝑖𝑑 is the pixel reconstruction loss of background regions (un-occluded 

regions) while 𝐿 ℎ𝑜𝑙𝑒  is the pixel reconstruction loss of foreground regions (occluded 

regions). 

The adversarial loss Wasserstein GAN with Gradient Penalty (WGAN-GP) [24] was 

used to adversarial loss. WGAN-GP limits the range of gradient variation by adding a 

gradient penalty term to the loss function. The gradient penalty is achieved by compu-

ting the gradient and applying the penalty at points interpolated between the real and 

generated data. This approach allows the inpainting network to not only reconstruct the 

image at the pixel level, but also learn the distribution of the real giant panda image at 

the distribution level, thus generating visually more realistic and natural restoration re-

sults. The WGAN-GP is defined as 

𝐿𝑎𝑑𝑣 = 𝐸𝐼𝑜𝑢𝑡
𝐶 ~𝑃𝑜𝑢𝑡

𝐿 [𝐷𝐿(𝐼𝑜𝑢𝑡
𝐶 )] − 𝐸𝐼𝑔~𝑃𝑔

𝐿[𝐷𝐿(𝐼𝑔)] + 𝐸𝐼𝑜𝑢𝑡
𝐶 ~𝑃𝑜𝑢𝑡

𝑆 [𝐷𝑆(𝐼𝑜𝑢𝑡
𝐶 )] −

 𝐸𝐼𝑔~𝑃𝑔
𝑆𝐷𝑆(𝐼𝑔)] + 𝜆1𝐸𝐼~𝑃

𝐼̂
𝐿(‖𝛻𝐼𝐷𝐿(𝐼)‖

2
− 1)2 + 𝜆2𝐸𝐼~𝑃

𝐼̂
𝑆(‖𝛻𝐼𝐷𝑆(𝐼)‖

2
− 1)2    (3) 

where 𝐷𝐿  is the output of the large-scale PatchGAN discriminator and 𝐷𝑆  represents 

the output of the small-scale PatchGAN discriminator. 𝜆1 and 𝜆2 are the weight coeffi-

cients of the gradient penalty, and 𝐼 ̂represents the sample points randomly inserted be-

tween the real image and the inpainting image. ∇ is the gradient operator. 

The overall cost function: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑣𝑎𝑙𝑖𝑑 + 𝜆ℎ𝐿ℎ𝑜𝑙𝑒 + 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣                      (4) 

where 𝜆ℎ𝑜𝑙𝑒 and 𝜆𝑎𝑑𝑣 are the weight parameters that control the importance of different 

losses, are set to 5 and 0.5 respectively. Note that 𝜆ℎ𝑜𝑙𝑒  is five times as large as the 

weight of 𝐿𝑣𝑎𝑙𝑖𝑑 and ten times as large as the weight of 𝐿𝑣𝑎𝑑. Thus, accurately restoring 

pixel values of the occluded regions is the most important task in model training.    



 

 

 

2.3 Fine inpainting 

2.3.1 Network structure of fine inpainting.  

The fine inpainting network first performs feature extraction on the input image through 

a series of convolutional layers for down-sampling. These features are then fed into a 

multi-scale contextual attention module. Finally, the network uses deconvolution to up-

sample the feature map back to the size of the original image. The discriminator is 

PatchGAN. The network structure of fine inpainting is shown in Figure 4.  

Fig. 4. Network structure of fine inpainting. The generator includes an encoder, a de-

coder and a multi-scale context attention module. The discriminator is a PatchGAN 

discriminator. 

2.3.2 Fusion module of multi-scale contextual attention.  

In the fine inpainting stage, we want to create an image that blends the occluded portion 

seamlessly with the background region. One strategy to achieve this aim is patch match-

ing at the feature level such as Transformer, where missing parts are reconstructed by 

borrowing or copying features from known background areas. However, choosing the 

right size of matching patch becomes challenging due to the different detail and style. 

In general, large patch sizes are more suitable for style preservation, while small patch 

sizes provide more flexibility in reusing background features. Single-scale patch match-

ing limits the application of the model to different scenes. We propose a multi-scale 

contextual attention module that flexibly selects and utilizes contextual information 

based on the overall style and contents of the image. 

In the fusion module of multiscale contextual attention, the input feature map is di-

rected to two parallel branches to generate an attention map and two sets of attention 

features, one of branch which uses a 3x3 size patch and the other uses a 1×1 size patch 

respectively. The two groups of attention features are fused to form fused multi-scale 

attention features, see Figure 5. 

The feature map is divided into two regions before processing: the foreground (i.e., 

the occluded pixel area) and the background area (i.e., the un-occluded pixel area). 

Achieving the recovery of the foreground region using distance information requires 
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the identification of the background region that is critical to recover the foreground 

region.  

 

Fig. 5.  Proposed fusion module of Multi-scale Context Attention. The input feature 

𝑭𝒊𝒏 is divided into foreground regions (foreground regions are represented by the inner 

gray squares and are the occluded regions restored by coarse inpainting) and back-

ground regions (background regions are represented by the blue parts and are the un-

occluded regions). 3×3 and 1×1 patches of background regions are matched with the 

same scale patches within the foreground region and the similarity are calculated. The 

feature maps 𝑭𝒂𝒕𝒕𝟏𝟏 and 𝑭𝒂𝒕𝒕𝟑𝟑 based the attention scores of the pairs of patches are 

reconstructed from the convolution kernel. The foreground of 𝑭𝒊𝒏, 𝑭𝒂𝒕𝒕𝟏𝟏 and 𝑭𝒂𝒕𝒕𝟑𝟑 

are fused using SE to obtain the output feature maps 𝑭𝒐𝒖𝒕. 

 

The cosine similarity between each foreground pixel and a background patch are 

defined as the similarity between the image patch centered on the foreground pixel and 

the background patch. Thus, patches with the same size of the foreground patch are 

extracted in the background region, and then are used as filters and convolved with the 

foreground region to derive the similarity of each pixel of the foreground region with 

respect to the background patches.  

The softmax function is applied to the channel dimension to obtain the attention score 

of each background patch with respect to the foreground position.   

Finally, the patch with the highest score is selected as a filter for the inverse convo-

lution operation to reconstruct the foreground region, and the overlap is averaged. The 

similarity between the foreground pixel (𝑥, 𝑦) and background patches is calculated as 

follows: 

𝑆𝑥,𝑦,𝑥′,𝑦′ =
𝒇𝒙,𝒚∙𝑏

𝑥′,𝑦′

‖𝒇𝑥,𝑦‖∙‖𝑏𝑥′,𝑦′‖
         (5) 

where 𝑆𝑥,𝑦,𝑥′,𝑦′  represents the similarity between the location (𝑥, 𝑦) -centered fore-

ground patch and the location (𝑥’, 𝑦’)-centered background patch. 𝑓𝑥,𝑦  represents the 

SE
inF

1*1 patch

3*3 patch 

Concat
outF

F att 33
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foreground patch centered at (𝑥, 𝑦), 𝑏𝑥′,𝑦′ represents the background patch centered at 

(𝑥’, 𝑦’). The attention score is calculated as follows: 

𝑆𝑥,𝑦,𝑥′,𝑦′
∗ = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 ( 𝑟𝑆𝑥,𝑦,𝑥′,𝑦′)                    (6) 

where 𝑆𝑥,𝑦,𝑥′,𝑦′
∗ represents the score of attention, 𝑟 is a constant, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is the softmax 

function. 

The propagation attention score of the (2𝑘 + 1) × (2𝑘 + 1) patch size is calculated 

as follows: 

𝑆𝑥,𝑦
∗ = ∑𝑖=−𝑘

𝑘 𝑆𝑥+𝑖,𝑦+𝑖,𝑥′+𝑖,𝑦+𝑖
∗                               (7) 

We use attention scores to recover feature maps from patches at different scales by 

deconvolution. The feature map obtained by the convolutional kernel 1×1 is denoted as 

𝐹𝑎𝑡𝑡11, and the feature map obtained by the convolutional kernel 3×3 is denoted as 

𝐹𝑎𝑡𝑡33. 

The feature maps of these two scales are fused with 𝐹𝑖𝑛. Finally, aa SE module [21] 

is used to process the fused feature map, and the final optimized output feature map is 

obtained by 

𝐹𝑜𝑢𝑡 = 𝑆𝐸(M ∙ 𝐹𝑖𝑛, 𝐹1×1, 𝐹3×3)                       (8) 

where M is the Mask, 𝑀 ∙ 𝐹𝑖𝑛 is the occluded region of the panda image. 

2.3.3 Loss of fine inpainting.  

We use L1-nom. There are two parts of the pixel reconstruction loss:    

𝐿𝑣𝑎𝑙𝑖𝑑 =
1

∑(𝟏−𝑀)
‖(𝐼𝑜𝑢𝑡 − 𝐼𝑔) ⊙ (𝟏 − 𝑀)‖

1
                            (9) 

𝐿ℎ𝑜𝑙𝑒 =
1

∑(𝑀)
‖(𝐼𝑜𝑢𝑡 − 𝐼𝑔) ⊙ 𝑀‖

1
                         (10) 

where 𝐼𝑜𝑢𝑡  is the generated image by the fine inpainting, 𝐼𝑔is the real image, 𝑀 is the 

occlusion mask, ⊙ represents the element-wise multiplication, ∑ represents the sum-

mation of M’s elements, and the || ∙ ||1 represents the L1-norm. 

The adversarial loss is WGAN-GP with the following adversarial loss: 

𝐿𝑎𝑑𝑣 = 𝐸𝐼𝑜𝑢𝑡~𝑃𝑜𝑢𝑡
𝐷(𝐼𝑜𝑢𝑡) − 𝐸𝐼𝑔~𝑃𝑔

𝐷(𝐼𝑔) + 𝜆𝐸𝐼~𝑃𝐼̂
(‖𝛻𝐼𝐷(𝐼)‖

2
− 1)2      (11) 

In the fine inpainting, the perceptual loss and style loss are introduced to further im-

prove the inpainting quality. The perceptual loss is:  

𝐿𝑝𝑒𝑟 = ∑𝑙‖𝛷𝑙(𝐼𝑜𝑢𝑡) − 𝛷𝑙(𝐼𝑔)‖  (12) 

where 𝛷𝑙(⋅) represents extracted features from the lth layer of VGG. 

The style loss is: 
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𝐿𝑠𝑡𝑦 = ∑𝑙‖𝐺𝑙(𝐼𝑜𝑢𝑡) − 𝐺𝑙(𝐼𝑔)‖  (13) 

where 𝐺𝑙(⋅) is the Gram matrix of extracted features from the lth layer of VGG. The 

Gram matrix is the inner product of the vectorized feature mappings, which captures 

the tendency of features to appear simultaneously in different parts of the image. Thus, 

Gram matrix is an important method to describing the textures in images.  

The overall loss is： 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑣𝑎𝑙𝑖𝑑 + 𝜆ℎ𝑜𝑙𝑒𝐿ℎ𝑜𝑙𝑒 + 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 + 𝜆𝑝𝑒𝑟𝐿𝑝𝑒𝑟 + 𝜆𝑠𝑡𝑦𝐿𝑠𝑡𝑦  (14) 

The hyperparameters of the loss function are set to 𝜆ℎ𝑜𝑙𝑒 =5, 𝜆𝑎𝑑𝑣 =0.5, 𝜆𝑝𝑒𝑟 =0.1, 

𝜆𝑠𝑡𝑦=110. Note that, 𝜆𝑠𝑡𝑦 is far larger than other hyperparameters, indicating that the 

model training focuses on recovering the textures in images.  

3 Experiments and discussions 

3.1 Data 

Most datasets for occlusion restoration are based on predefined Mask datasets, such as 

NVIDIA irregular Mask Dataset [25], and QD-IMD dataset [26]. Although the inpaint-

ing model can perform well on these non-real occlusion datasets with predefined masks, 

its performance is often difficult to meet demands in practical application scenarios.   

Moreover, although under ideal conditions, animal individual recognition tech-

niques, especially for animal facial recognition algorithms [8-11], have achieved high 

accuracy, especially under the training of large amounts of data. However, in real wild 

environments, GP individual recognition still face multiple challenges, such as changes 

in the posture of GPs, uncertainty in lighting conditions, and interference from occlu-

sion.  

Thus, a dataset iPanda-50-occlusion specialized for giant panda occlusion restoration 

are constructed. The iPanda-50-occlusion contains 1000 images of giant pandas with 

various occlusion situations and is constructed from the iPanda-50 dataset, which is an 

open dataset to prompt researches on fine-grained panda identification. It provides 

6,874 high-quality images covering 50 different pandas.  

In order to simulate the occlusion that giant pandas may encounter in their natural 

living environment, we pay special attention to the natural elements closely related to 

the daily life of giant pandas, including trees, bamboo, flowers and grass etc. The extent 

and location of the occlusion reflected the real life situation as much as possible. This 

includes the occlusion of the giant panda's back, eyes, face and other critical and non-

critical parts, simulating various degrees of occlusion from mild to severe. 

To enhance the usability of the dataset, the occlusions of each image in the dataset 

are carefully labeled and segmented, and the corresponding occlusion segmentation 

map is generated. 

We divided the iPanda-50-occlusion dataset in a ratio of 2: 1 between the training 

set and the test set. In the preprocessing stage, the horizontal flip plus rotation are used 

to enhance the data. 



 

 

 

In the model training stage, a certain round of pre-training was carried out on the 

coarse inpainting network, and then end-to-end joint training was carried out. The pre-

training was set at 20 rounds and the end-to-end training was done with 200 rounds.  

In the model training phase, we chose the Adam optimizer to optimize the network 

parameters, which  𝛽1  were set to 0.9, 𝛽2 were set to 0.999. For the generator 

parameters, we used a batch size of 8 and a base learning rate of 10-4 for iterative 

updating, while the learning rate of the discriminator was set to one-tenth of that of the 

generator. 

3.2 Evaluation index 

The evaluation indexes used in include Peak Signal to Noise Rate (PSNR), Structural 

Similarity Index Measure (SSIM) and Fréchet Inception Distance (FID). PSNR evalu-

ates the image quality based on the ratio between the maximum possible pixel value 

and the errors of the image. Higher PSNR indicates better quality of the restored image. 

The PSNR is defined as: 

𝑃𝑆𝑁𝑅 = 20 ⋅ 𝒍𝒐𝒈10(
𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) (15) 

where MAX𝐼 is the maximum possible pixel value of the image (usually 255 for 8-bit 

images), and MSE is the mean square error between the original image and the restored 

image. MSE is defined as: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼𝑔(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0  (16) 

where 𝐼𝑟  is the real image, 𝐼𝑔 is the image generated by proposed method. 𝑚 and 𝑛 are 

the length and width of the image respectively.    

SSIM takes into account the structural information, contrast and brightness of an 

image, and therefore more fully reflects the human eye's perception of image quality. 

The value of SSIM lies between -1 and 1, with higher values indicating better image 

quality. The formula for SSIM is 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 (17) 

where x and y are the original and restored images respectively, 𝜇𝑥, 𝜇𝑦, 𝜎𝑥
2, 𝜎𝑦

2, are 

their means and variances respectively, 𝜎𝑥𝑦 is their covariance, and 𝑐1 and 𝑐2 are small 

constants added to avoid the denominator being zero. 

FID is a metric for evaluating GAN networks, reflecting the distance between two 

images, the smaller the value the closer the generated image is to the real image. FID 

is: 

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔‖
2

+ 𝑇𝑟(∑𝑟 + ∑𝑔 − 2(∑𝑟∑𝑔)
1

2) (18) 
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where 𝜇𝑟 and 𝜇𝑔 are means of real image and generated image respectively, 𝑇𝑟 is 

trace of the matrix，∑𝑟 and ∑𝑔 is the covariance matrixes of the real image and 

the generated image. 

Table 1.    Quantitative comparison of ablation experiments 

 Occlude 

images 
Model1 Model2 

Proposed 

method 

PSNR 22.06 33.25 30.26 34.49 

SSIM 0.910 0.964 0.955 0.967 

FID 21.94 5.10 10.27 4.22 

3.3 Ablation experiments 

Models performed ablation experiments include: models without fusion module of 

multi-scale contextual attention mechanisms are denoted as Model 1, models without 

dual PatchGAN discriminators and using ordinary discriminators are denoted as Model 

2. SSIM, PSNR, and FID were used as evaluation indexes. The results of the ablation 

experiment are shown in Table 1.  

Fig. 6.  The visual inpainting results of the ablation experiments. 



 

 

 

From the experimental results, the model with two-stage inpainting performs the best 

with the highest PSNR 34.49, the highest SSIM 0.967 and the lowest FID 4.22. The 

PSNR and SSIM of proposed method is higher than Model1 by 1.24 and 0.003 respec-

tively while FID of proposed method is lower than Model1 0.88. Small difference be-

tween the proposed method and Model1 indicated that multi-scale contextual fusion is 

a limited role in restoring image structure. 

Model2, which is missing the two-discriminator PatchGAN, performs worse in all 

evaluation indexes than Model1. That is, the PSNR and SSIM of Model1 are higher 

than Model2 by 2.99 and 0.009 respectively while FID of Model1 is lower than Model2 

by 5.17. The SSIM of Model1 are higher than Model2 by 0.009 indicating that the dual 

discriminator is very important in inpainting structures of images.  

Figure 6 shows the visual effects comparison of the ablation experiments. When the  

multi-scale contextual attention fusion module is missing, the output images of Model1 

appears blurry in occlusion areas and the details are not well restored. When the dual 

PatchGANs are missing, there are part of occluded objects in the inpainting area. Thus, 

Model2 fails to restore the normal structure of the image. 

3.4 Comparison experiments 

We compared proposed method with existing state-of-art image inpainting 

methods, including: GateConv [10] proposed in 2019, PEN [11] proposed in 2019 and 

PConv [19] proposed in 2023, CM-GAN [20] proposed in 2021, Stable diffusion [16] 

proposed in 2022 and VideoWorld [24] proposed in 2025.  

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) 

and Fréchet Inception Distance (FID) were selected to quantitatively evaluate the 

quality of the restored giant panda images. Tab 2 shows the comparison results. 

Table 2.   Comparison results of different methods in terms of PSNR, SSIM, and FID. 

 Occluded  

images  

PConv 

[19] 2023 

PEN 

[11] 2019 

GateConv 

[10] 2019 
CM-GAN 

[20] 2021 
Videoworld 

[24] 2025 

Stable diffusion 

[16] 2022 

Proposed 

method 

PSNR 20.35 30.99 31.94 29.97 35.59 34.71 26.97 35.69 

SSIM 0.905 0.951 0.961 0.963 0.972 0.921 0.891 0.971 

FID 21.21 12.53 8.52 7.47 5.33 5.35 5.80 5.22 

From Tab 2, all deep learning models dramatically improved the quality of Occluded 

images on three metrics. Among them, PConv is with the worst performers but also 

improved PSNR, SSIM and FID of occluded images by 10.64, 0.046 and 8.68 respec-

tively while proposed method improved occluded image 15.36, 0.066 and 15.99 respec-

tively, demonstrating the validation of deep learning in image painting. The PSNR, 

SSIM and FID of our proposed method were 35.69, 0.971 and 5.22 respectively, which 

were better than PConv, PEN, GateConv, Videoworld and Stable diffusion. And in the 

comparison with CM-GAN, we achieved better performance in PSNR and FID, and 

slightly weaker than it on SSIM. These results show that proposed method has satisfied 

image inpainting performance and can restore the structure and details of the image 

well. 
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 Fig. 7. Visual comparison of traditional inpainting models. 

 

Except for the proposed method, CM-GAN has the best performance in other six 

models showing that power of two-stage inpainting. The new Videoworld proposed in 

2025 has the best performance in all one-stage inpainting methods exhibiting promising 

power of large language models in image inpainting.  

Since textures and details of panda images are very important in individual panda 

identification, correctly recovered the textures and details of occluded images becomes 

indispensable stage in individual panda identification. In order to show the textures and  

details more clearly, the visual comparison is divided into two groups: one group is 

traditional methods including PConv, PEN, GateConv and CM-GAN; the other group 

is new methods including Videoword and Stable diffusion. Each group contains 

original images, occluded images, images recovered by the proposed method.  

As shown in Figure 7, the PConv makes the most serious artifacts in all method in-

dicated by the square regions. The PEN and GateConv shows some blurriness and arti-

facts. The GateConv has better visual perceptions than the PEN with few artifacts and 

less smoothing.  Two slanted rectangles indicated the over-recovered body by PConv 

and uncovered body by GateConv.  

The CM-GAN coexists blurry and artifacts:  smoothing out the textures on the back 

of the body in the first image but enhancing the furs in the last image. Its ability to 

maintain most of the detail and produce a small number of artifacts makes it the most 

visually appealing in comparison methods except for the proposed method. The pro-

posed method effectively restores the structure and details of the image. 

Observing Figure 8, two new models have created some illusions: Stable diffusion 

and VideoWorld creates two ‘perfect’ feet in the first image, a big leg in the second 



 

 

 

image; Stable also creates two feet with clear nails and imaginary postures in the third 

image. They also make different fur styles to the original image: Stable diffusion makes 

yellow fine curl furs while VideoWord strengths the textures of furs and makes furs 

with wild styles. These illusions change many important features of panda which will 

lead to fail to recognize individual panda.  

Fig. 8.   Visual comparison results of new proposed methods: Stable diffusion and 

VideoWord. 

4 Conclusion 

In this paper, we propose to inpainting the occluded part of the giant panda image use 

a two-stage method. The method composed by coarse inpainting and fine inpainting, 

achieves the accurate inpainting the occluded region of the giant panda images. Com-

pared with the SOTA method, the structure, texture and details of the occluded region 

are restored better. Through ablation experiments, we found: 

1. Dual PatchGAN is important in giant panda occluded region inpainting. The PSNR, 

SSIM and FID of model2 without dual PatchGAN are much worse than the proposed 

method, while model1, which only removes the multi-scale information, is not much 

different from the proposed method in the three indexes. 

2. The performance of two-stage inpainting model is better than the one-stage method. 

The two-stage inpainting method can part the inpainting objective to two steps and 

each step can only focus on one target. 
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