
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

SAMCA: Segment Anything Model with Double Click 

Training and Shared Weight Adapter for Medcial 

Ultrasound Image Segmentation 

YiRu Huo1,2†, YiChen Shi3,4†, Jun Feng1,2*, Liu Yang1,2 and Na Liu1,2 

1 School of Information Science and Technology, Shijiazhuang Tiedao University,  

Shijiazhuang, China 
2 Key Laboratory of Electromagnetic Environmental Effects and Information Processing,  

Shijiazhuang, China 
3 Shanghai Jiao Tong University, Shanghai, China 

4 Eastern Institute of Advanced Study, Ningbo, China 

Abstract. Segmentation of medical ultrasound images is crucial for clinical di-

agnosis. However, challenges such as low contrast and blurred boundaries make 

obtaining large-scale labeled data for model training difficult. The Segment An-

ything Model (SAM), excelling at prompt-based segmentation in natural images, 

shows promise for ultrasound applications. In light of this, we propose SAMCA, 

a promptable medical ultrasound image segmentation model. SAMCA incorpo-

rates a shared weight adapter designed to efficiently transfer information between 

layers, allowing SAM to adapt to the complexities of medical ultrasound imag-

ing. Additionally, we introduce a double click training strategy, where the first 

set of click prompts is used to provide guidance information for the initial target 

area, and the second set focuses on correcting local errors in the segmentation 

error-prone areas. A dynamic fusion mechanism ensures that the second set lev-

erages the global context of the first set during refinement. Experimental com-

parisons with classic and recent segmentation networks demonstrate that 

SAMCA achieves state-of-the-art (SOTA) performance on the challenging 

TN3K and BUSI datasets, with DSC scores of 86.36% and 89.55%, respectively. 

Moreover, SAMCA is significantly more lightweight, requiring only 3% of pa-

rameter updates compared to SAM-Med2d. Our code will be publicly available 

at here. 

Keywords: Medical ultrasound image segmentation, Segment anything model, 

Shared weight adapter, Double click training. 

1 Introduction 

Medical ultrasound image segmentation has become a cornerstone of medical image 

analysis and diagnosis due to its advantages, including real-time imaging, radiation-

free, and low cost [2]. However, accurate segmentation typically requires a large 

amount of expert-annotated data, which must be carefully labeled by trained medical 

professionals. Compared to other medical imaging technologies, such as CT and MRI 
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[16], ultrasound images present unique challenges due to their inherent characteristics, 

including low contrast, blurred boundaries, and tissue abnormalities, which complicate 

the segmentation process [17] Therefore, improving segmentation accuracy, overcom-

ing challenges related to image quality, and reducing the workload of medical annota-

tors are crucial objectives. 

In recent years, interactive image segmentation algorithms have made significant 

strides by integrating user prior knowledge and iteratively refining segmentation masks 

through direct interactions [21]. Deep learning-based interactive segmentation algo-

rithms offer a substantial improvement over traditional manual pixel-level annotation 

techniques, allowing users to obtain detailed pixel-level annotations with simple and 

intuitive interactions. This approach holds great promise for reducing annotation costs 

and improving applications in medical image analysis [14]. Building on this progress, 

the emergence of foundation models has revolutionized the development of intelligent 

models. Adapting pre-trained, large-scale models for various downstream tasks is be-

coming increasingly popular due to their superior generalization capabilities and effi-

cient training on smaller datasets [27]. A prime example of this trend is the Segment 

Anything Model (SAM) [12], a state-of-the-art visual foundation model designed for 

promptable image segmentation. Trained on a large-scale natural image dataset, SAM 

has demonstrated impressive zero-shot performance on various tasks in natural image 

contexts, offering promising avenues for accelerating medical data annotation [20]. 

However, recent evaluations [11] show that direct application of SAM to medical 

images, whether prompted or not, often leads to suboptimal results. This is largely due 

to the domain gap between natural and medical images. Ultrasound images differ sig-

nificantly in texture, contrast, and noise patterns. Unlike natural images, which typi-

cally exhibit sharp edges, rich textures, and consistent lighting, ultrasound images are 

characterized by speckle noise, low contrast, blurred anatomical structures, and suscep-

tibility to artifacts—features stemming from their acoustic imaging mechanism. These 

factors, along with the high structural variability and lack of spatial regularity in ultra-

sound data, hinder the direct transferability of models like SAM trained on natural im-

ages. Therefore, structural modifications and tailored training strategies are essential 

for adapting SAM to the unique challenges of ultrasound imaging. 

A straightforward approach to bridge the domain gap between natural and medical 

images is to fine-tune SAM using medical images [26]. Several studies [25] have used 

parameter-efficient fine-tuning (PEFT) [31], demonstrating promising performance in 

medical imaging tasks. However, despite the advantages of parametric efficiency, train-

ing on specific datasets often leads to limited generalization of feature representations 

[35]. In addition, regions such as lesions or heterogeneous tissues in medical images 

often exhibit variable shapes and low contrast, making segmentation of these areas 

prone to errors and instability [28]. Existing methods [24] rely on random clicks for 

training, which may prevent the model from fully capturing and optimizing the unique 

features of these areas. As a result, the inherent capabilities of SAM may be compro-

mised, leading to a decrease in segmentation performance and requiring more manual 

correction to achieve accurate results. 

These problems are particularly prominent in ultrasound image segmentation tasks. 

The inherent noise interference and low contrast characteristics of ultrasound images 
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make existing methods face greater challenges in data annotation efficiency and com-

puting resource consumption. To address this challenge, the present study adapts SAM 

for ultrasound image segmentation by using PEFT techniques and integrating adapter 

structure to fine-tune SAM. Additionally, a double click training strategy is introduced 

to direct the model's attention to areas prone to errors, thereby enhancing both local and 

global segmentation accuracy. Our specific contributions include: 

1. We introduce SAMCA, a promptable segmentation method of medical ultrasound 

images that significantly enhances the capability of SAM for medical applications. 

In this work, we propose a shared weight adapter that facilitates efficient cross-do-

main knowledge transfer and captures fine-grained features, all at a low training cost. 

2. We propose a double click training strategy to enable the model to learn the areas 

prone to segmentation errors in a targeted manner. This strategy optimizes the seg-

mentation results through the synergy of two sets of click prompts. 

3. We introduce a dynamic fusion mechanism to facilitate the collaboration between 

the prompt information, ensuring that global information is effectively utilized dur-

ing segmentation refinement. 

4. We conducted comprehensive quantitative and qualitative experiments on four dif-

ferent ultrasound datasets to evaluate the effectiveness of the proposed method. 

2 Related Work 

2.1 Medical Ultrasound Image Segmentation 

Medical ultrasound image segmentation is crucial for identifying structures such as 

lesions and organs. Early methods, including thresholding [18] and clustering [22], of-

ten lacked robustness and accuracy. With the rise of deep learning, CNN and Trans-

former based models have become dominant. CNN-based models like U-Net [23] laid 

the foundation for modern segmentation networks. Subsequent variants such as CE-Net 

[9] and CA-Net [6] introduced dilated convolutions and attention mechanisms to en-

hance feature representation and segmentation precision. Transformer-based models 

have shown strong performance. TransUNet [4] combines CNNs and Transformers in 

a hybrid encoder, while SwinUnet [3] leverages hierarchical Swin Transformer blocks. 

Other methods, including TransFuse [36] and H2Former [10], use parallel CNN-

Transformer branches to balance local detail and global context modeling. These ap-

proaches typically follow a U-shaped architecture with skip connections, improving 

segmentation accuracy across various scenarios. 

 

2.2 SAM for Medical 

The Segment Anything Model (SAM) has shown remarkable zero-shot segmentation 

capabilities with diverse input prompts [33]. However, medical images—especially ul-

trasound images—differ significantly from natural images in terms of texture and noise 

characteristics, necessitating specially designed adaptations are needed to accommo-

date SAM [15]. 
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MedSAM [13] fine-tuned SAM on a self-collected multi modal dataset for general 

medical image segmentation. To improve adaptability, recent studies have explored pa-

rameter-efficient fine-tuning (PEFT) techniques. SAMed [34] employed a low-rank ad-

aptation (LoRA) strategy, while MSA [26] introduced lightweight adapters to enhance 

performance with reduced training cost. Building on MSA, SAMIHS [25] optimized 

adapter design for downstream tasks with fewer parameters. SAM-Med2D [5] further 

leveraged SAM for medical image analysis and fine-tuned it on the Sa-med2d-20m 

dataset[30] using an adapter adjustment technique. 

Inspired by these advances, SAMCA is developed with a novel adapter architecture 

that integrates and extends prior designs, aiming to address the unique challenges of 

ultrasound image segmentation. In addition, SAMCA adopts a targeted training strat-

egy tailored to the characteristics of ultrasound data. These design choices are intended 

to improve adaptability to domain-specific tasks and further explore the potential of 

SAM in medical imaging. 

3 Methodology 

3.1 Macro architecture of SAMCA 

As shown in Fig.1, the overall structure of SAMCA is inherited from SAM. To enhance 

the adaptability of the model to medical ultrasound images, two adapter modules are 

introduced between each transformer module. By sharing a part of the adapter parame-

ters at the same position in different Transformer layers in the image encoder, the model 

can learn a more general feature representation of ultrasound images while reducing the 

total number of parameters. 

For prompt input, considering the fuzzy boundaries and irregular shapes commonly 

found in medical ultrasound images, we use point prompts in this paper and employ the 

double click training strategy. During training, the model receives two sets of click 

prompts in each iteration. The first set of prompts, called the initial click, is primarily 

used to provide guidance information for the initial target area. By randomly selecting 

a foreground area from the ground truth (GT) as the click position, this prompt helps 

guide the model to perform global segmentation in each iteration. The second set of 

prompts, called the guided click, focuses on refining the model’s performance in areas 

prone to errors. This set of prompts is dynamically adjusted based on the segmentation 

error from the first set, effectively correcting the model’s performance in local, complex 

regions. 

In order to ensure that the guided click prompt can use the global information pro-

vided by the initial click prompt when refining the segmentation and avoid the spread 

of local errors, we fusion the embedding of the initial click prompt into the embedding 

of the guided click prompt (as indicated by the blue arrows in Fig.1). Through this 

interactive training and optimization process, the double click training strategy signifi-

cantly improves the model performance in medical ultrasound image segmentation 

tasks. The effectiveness of the model is evaluated by comparing the GT with the guided 

mask and the initial mask, using two sets of losses, where the guided mask is considered 

the model’s output.  
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Fig. 1. The structure of SAMCA. During training, the model uses two prompt sets-initial clicks 

and guided clicks, shown as solid and dashed lines. Two losses are computed: one from the initial 

output and Ground Truth, and another from the guidance output, which serves as the final output. 

3.2 Comparison and Design of the Shared Weights Adapter 

We compared four different adapter structures, as shown in Fig. 2. The MSA adapter 

[26] (Fig. 2 (a)) adopts a simple design with two projection layers and an activation 

function, enabling efficient feature transformation and core feature focus, particularly 

suitable for small datasets and ultrasound segmentation. 

In contrast, the SAM-Med2D adapter [5] (Fig. 2 (b)) introduces channel and spatial 

attention to enhance feature expression but increases computational complexity. Its re-

liance on global average pooling and convolution leads to detail loss, especially near 

lesion boundaries, potentially degrading segmentation accuracy. 

The SAMIHS adapter [25] (Fig. 2 (c)) improves parameter efficiency via projection 

sharing and feature adaptation within transformer layers. However, its lack of local de-

tail extraction limits performance on low-contrast or structurally complex ultrasound 

images. 
The shared weights adapter (Fig. 2 (d)) combines the advantages of previous struc-

tures. It retains the MSA adapter’s core feature focus, while integrating the SAMIHS 

adapter’s parameter reconstruction and shared projection mechanism for better feature 

perception. This cross-layer mechanism similarity to densely connected neural archi-

tectures [32], which have been shown to facilitate feature reuse and improve infor-

mation flow. By sharing weights across layers, the adapter can capture both low-level 

and high-level abstractions without increasing model complexity. Inspired by SAM-

Med2D’s attention module, we added a convolution layer after the dimensionality re-

duction layer to improve feature utilization. This adapter shows higher stability and 

efficiency in smaller datasets and medical ultrasound segmentation. Given an input fea-

ture h w cm R   , it sequentially passes through the symmetric down projection 𝑊down, 

the activation function, the convolution layer, and the up projection 𝑊up. The scaling 

factor 
1R  and the offset factor 

1B  are used to ensure personalized adjustment of the 

feature distribution of each layer. The forward process in the adapter can be expressed 

as:  

( ) ( )( )down 1 up 1Adapter m m Conv mW B W R= + +                    (1) 

where σ denotes the GeLU activation function, and Conv denotes 2D convolution.  
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Fig. 2. Comparison between the shared weights adapter and other adapter structures is presented. 

(a) illustrates the MSA adapter structure; (b) illustrates the SAM-Med2d adapter structure; (c) 

illustrates the SAMIHS adapter structure; (d) illustrates our shared weights adapter structure. 

3.3 Double Click Training 

Traditional interactive image segmentation methods [21] typically involve iterations 

during the training process, where clicks are placed directly in false positive and false 

negative regions. Although this approach is straightforward, the random selection of 

click locations in error regions may lead to inadequate learning in some error-prone 

areas. To address this limitation, we propose a double click training (DCT) strategy that 

does not restrict click generation to predefined error regions. Instead, it dynamically 

adjusts click placement, achieving more flexible and comprehensive coverage of error-

prone areas. 

 

Fig. 3. Guided points dynamic selection. (a)shows the generated mask for the initial click in a 

particular iteration; (b)shows the generated mask for the guided click in a particular iteration; 

(c)represents the GT; (d)shows the selection of guided points. 

The double click training process for generating guided clicks is illustrated in Fig. 3, 

where (a), (b), (c) and (d) correspond to the initial mask, the guided mask, the GT, and 

the click points produced by DCT, respectively. During the iterative sampling process, 

DCT utilizes two distinct sampling strategies: one that produces positive and negative 

clicks based on the initial mask, and the other one is informed by the guided mask. 

As depicted in Fig. 3(d), guided click generation is performed by comprehensively an-

alyzing the initial mask, the guided mask, and the GT. Specifically, during the training 

iteration phase, the model first locates the common area where the initial mask and the 

GT label are not aligned (that is, (a) to (c)), and preferentially applies positive clicks to 

correct the error. Next, the model locates the common area where the guided mask and 
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the GT label are not aligned (that is, (b) to (c)), and on this basis applies both positive 

clicks and negative clicks to optimize the areas prone to segmentation error. Finally, by 

integrating the above processes, an optimized click position is generated, so that the 

model can focus on local error correction in error-prone areas and consider global seg-

mentation optimization during the training iteration process. 
To ensure that the guided click prompt fully utilizes the global information from the 

initial click prompt, we propose a dynamic fusion mechanism that combines the em-

bedding information from the initial click prompt with that of the guided click prompt, 

allowing for local adjustment while maintaining global consistency. The dynamic 

weight adjustment mechanism is shown in Fig. 4, where E1 and E2 represent the em-

beddings of the initial and guided clicks, respectively, and E’2 represents the final em-

bedding of the guided click prompt. 

Compared to simply using E2 and E1+E2, the dynamic weights adjust the influence 

of the first and second sets of prompt embeddings based on the loss values returned 

from different training rounds. Specifically, as segmentation accuracy improves, the 

dynamic fusion mechanism gradually reduces the weight of the first set of prompt em-

bedding and increases the weight of the second set, thereby correcting detail errors at a 

deeper level. The sensitivity of the weight adjustment is controlled by a smoothing 

scaling factor to ensure stable weight changes during each iteration. Eventually, as the 

model converges, the weights of both sets of prompt’s approach 1. The weight adjust-

ment formula is as follows: 

( ) ( )min max min L     = + −  −                                 (2)
 

( ) ( )min max min L     = + −                                   (3) 

where ( )x is the Sigmoid function;  is a scaling factor that controls the sensitivity 

to the change in loss L . 𝜆𝑚𝑖𝑛 and 𝜇𝑚𝑖𝑛 are set to 0.75; 𝜆𝑚𝑎𝑥  and 𝜇𝑚𝑎𝑥 are set to 1.25. 

 

 

Fig. 4. Comparison of the dynamic fusion mechanism with the E2 and E1+E2 methods. 

To address the challenges of ultrasound image segmentation—such as low contrast, 

blurred boundaries, and complex, small lesions—a hybrid loss function is employed, 

combining Dice Loss, Binary Cross-Entropy (BCE) Loss, and Intersection over Union 

(IoU) Loss. Each component is designed to target a specific limitation of the task: Dice 

Loss effectively mitigates class imbalance by focusing on the overlap between pre-

dicted and ground truth regions; BCE Loss strengthens pixel-wise classification by pe-

nalizing incorrect predictions at the individual pixel level; and IoU Loss emphasizes 
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global shape alignment and boundary consistency. The hybrid loss function is ex-

pressed as follows, the weights  ,  , and   are set to 6:1:3. 

 

Dice BCE IoULoss L L L  = + +                                    (4) 

 

3.4 The Agorithm of SAMCA 

We illustrate the method in Algorithm 1. The input includes an ultrasound image
3H WI R    , along with the number of initial clicks 𝑁initial and guided clicks 𝑁Guided. 

The encoder 𝜙enc first extracts the image feature map 𝐹img from I.  

Before iteration, the initial and guided click prompts, 𝑃initial and 𝑃guided, are gener-

ated based on GT. These point-based prompts are encoded into feature tensors 𝑇initial 

and 𝑇guided. These are decoded by 𝜙decoder is then used to generate two segmentation 

masks: the initial mask 𝐹i−mask and guided mask 𝐹g−mask.  

Table 1. Comparison of ten segmentation methods on the TN3K Dataset. Best results in each 

category are highlighted in bold, second-best are underlined. 

Methods Dsc (%) ↑ mIoU (%) ↑ HD (mm) ↓ Acc (%) ↑ 

U-Net [23] 79.01±21.87 69.40±23.09 34.12±23.77 96.44±4.17 

CE-Net [9] 80.37±19.74 70.66±21.51 32.79±24.28 96.41±4.56 

SwinUnet [3] 70.08±23.29 58.19±24.11 44.13±25.61 94.94±4.35 

CA-Net [6] 80.52±19.35 70.78±21.28 33.65±24.93 96.41±4.21 

TransFuse [35] 78.50±21.60 68.60±22.86 32.44±23.17 96.44±3.96 

H2Former [10] 82.48±18.30 73.31±20.41 30.58±22.10 96.95±3.59 

TransUNet [4] 81.44±19.31 72.31±21.08 30.98±21.68 96.94±3.26  

SAM(1p) [12] 26.69±21.74 17.47±16.70 150.95±114.86 87.74±11.58 

Med2d(1p) [5] 68.50±30.33  55.33±28.93 74.17±90.21 94.76±12.01  

SAMCA(1p)  78.79±19.44 68.51±22.01  57.65±71.13 96.18±5.17 

SAM(3p) [12] 28.64±20.30 18.45±15.07 165.11±108.28 87.39±11.85 

Med2d(3p) [5]  73.21±23.43  60.70±25.04 56.82±75.71  95.69±10.39  

SAMCA(3p) 83.82±13.91 74.03±17.09 41.39±48.37 97.18±3.25  

SAM(5p) [12] 45.95±20.21 32.09±17.39 141.10±92.69 89.28±10.19 

Med2d(5p) [5] 76.24±16.58 64.22±18.77  44.98±56.08 96.30±3.49 

SAMCA(5p) 86.36±12.10 77.71±15.02 32.31±37.59 97.79±2.40 

 
To guide the iterative refinement, error regions between the predicted masks and the 

ground truth are analyzed. Based on these discrepancies, two types of click regions are 

identified: Based on discrepancies between the masks and GT, two regions 𝑃pri and 

𝑃sec are defined to update 𝑃guided. In each iteration, a dynamic fusion process combines 

𝑇initial and 𝑇guided into 𝑇fused, enhancing segmentation accuracy. This iterative process 

continues, with click prompts being updated at each step based on feedback from the 
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current prediction, gradually improving alignment with the ground truth. Once conver-

gence is achieved or the maximum number of iterations is reached, the final guided 

mask 𝐹g−maskis returned as the output segmentation mask M. 

Algorithm 1 SAMCA 

Input: Image 3H WI R   , Initial Clicks Number 𝑁initial , Guided Clicks Number 𝑁Guided 

Output: Segmentation Mask M 

1: 𝐹img ←𝜙𝑒𝑛𝑐(𝐼) 

2: while not converged do 

3:    𝑃initial , 𝑃guided ← Generate_Clicks (𝑁initial , 𝑁Guided, GT) 

4:    𝑇initial , 𝑇guided ← 𝜙enc(𝑃initial, 𝑃guided ) 

5:    𝐹i−mask , 𝐹g−mask ← 𝜙decoder(𝐹img , 𝑃initial, 𝑃guided ) 

6:    Adjust based on initial and guided mask: 

7:    𝑃pri ← Identify_Difference_Regions (𝐹i−mask, GT) 

8:    𝑃sec ← Identify_Difference_Regions (𝐹g−mask , GT) 

9:    𝑃guided ← Apply_Guided_Clicks (𝑃pri , 𝑃sec) 

10:   Dynamic Fusion for Iterative Optimization: 

11:   for 𝑖 = 1 to 𝑁iter do 

12:      𝑇initial ← 𝜙enc (𝑃initial ) 

13:      𝑇guided ← 𝜙enc (𝑃guided ) 

14:      𝑇fused ← Dynamic_Fusion (𝑇initial , 𝑇guided) 

15:      𝐹i−mask ← 𝜙decoder(𝐹img, 𝑇initial )  

16:      𝐹g−mask ← 𝜙decoder(𝐹img , 𝑇fused )  

17:      Update clicks based on segmentation feedback: 

18:      𝑃initial ← Update_Clicks (𝐹i−mask , GT) 

19:      𝑃guided ← Update_Clicks (𝐹i−mask , 𝐹g−mask , GT) 

20:    end for 

21: end while 

22: M ← 𝐹g−mask 

23: return M 

  

4 Experiments 

4.1 Dataset and Setup 

To evaluate the proposed model, we conduct experiments on four public ultrasound 

datasets: TN3K [7], BUSI [1], DDTI [19], and UDIAT [29]. Dataset partitioning and 

preprocessing follow the protocol in [8]. Since DDTI and UDIAT share segmentation 

targets with TN3K and BUSI, they are treated as unseen datasets to assess generaliza-

tion. 

Experiments are conducted using an NVIDIA RTX 3090 GPU with Python 3.9 and 

PyTorch. Training is performed with a batch size of 4, a learning rate of 0.0001, and 20 

epochs using the Adam optimizer. All images are resized to 256×256. Evaluation met-

rics include Dice Similarity Coefficient (DSC), mean Intersection over Union (mIoU), 



Hausdorff Distance (HD), Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe). The 

model results reported as the mean ± standard deviation. 

4.2 Comparison with the state-of-the-art methods 

Experiments on TN3K and BUSI dataset We extensively compare our method with 

various SOTA CNN and Transformer-based medical image segmentation methods, in-

cluding U-Net [23], CE-Net [9], SwinUnet [3], CA-Net [6], TransFuse [35], H2Former 

[10], and TransUNet [4] and two SAM-based methods (SAM [12] and SAM-Med2d 

[12]). Non-SAM methods use existing public performance data as a reference [8]. Ta-

bles 1 present the experimental results in theTN3K datasets, showing that the proposed 

method achieves significant performance in various evaluation metrics. 

Table 2. Comparison of ten segmentation methods on the TN3K Dataset. Best results in each 

category are highlighted in bold, second-best are underlined. 

Methods Dsc (%) ↑ mIoU (%) ↑ HD (mm) ↓ Acc (%) ↑ 

U-Net [23] 78.11±25.45 69.60±26.81 33.60±32.78 96.69±4.71 

CE-Net [9] 81.68±23.53 73.62±24.03 29.19±31.03 96.86±5.47 

SwinUnet [3] 67.23±25.79 55.58±25.88 47.02±34.18 95.28±5.23 

CA-Net [6] 81.68±21.55 73.49±23.19 28.67±28.25 96.85±5.31 

TransFuse [35] 73.52±28.16 64.28±28.05 34.95±37.18 96.21±5.85 

H2Former [10] 81.48±22.91 73.34±24.13 27.84±27.02 96.85±5.50 

TransUNet [4] 82.22±24.08 74.77±24.57 27.54±28.25 97.26±4.84 

SAM(1p) [12] 39.54±24.78 27.83±20.85 131.01±113.18 91.45±9.92 

Med2d(1p) [5] 82.39±14.18 73.24±16.93 44.18±58.78 97.01±4.06 

SAMCA(1p)  84.28±15.71 75.27±18.36 41.54±52.20 97.42±3.92 

SAM(3p) [12] 40.77±25.22 29.51±21.69 154.24±126.18 90.60±10.30 

Med2d(3p) [5]  87.11±11.92 78.95±14.32 32.20±43.92 97.66±2.91 

SAMCA(3p) 87.61±13.76 79.58±16.53 33.38±49.92 98.02±3.77 

SAM(5p) [12] 59.38±25.59 46.83±25.58 132.18±114.11 92.57±8.74 

Med2d(5p) [5] 89.49±9.78 81.89±12.57 26.70±40.34 98.04±3.27 

SAMCA(5p) 89.55±11.14 82.28±14.13 29.09±41.19 98.26±2.39 

 

On the TN3K dataset, SAMCA method shows competitive performance compared 

to other SAM-based methods in key metrics, On the TN3K dataset, SAMCA outper-

forms other SAM-based methods across all key metrics. With increasing prompts 

(1p/3p/5p), its DSC improved from 78.79% to 86.36%, surpassing SAM and SAM-

Med2d. SAMCA(5p) achieved a lower HD (32.31 mm) and higher mIoU (77.71%) and 

Acc (97.79%) than SAM-Med2d(5p). Compared to SOTA CNN and Transformer based 

method, SAMCA(3p) achieves optimal performance. It delivers competitive results in 

Dsc, HD, mIoU, and Acc These results underscore the advantages of SAMCA in both 

segmentation accuracy and boundary precision. 
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The effectiveness of SAMCA in ultrasound image segmentation is further validated 

on the BUSI dataset, as shown in Table 2, achieving a DSC of 84.2% with a single click 

and improving to 89.55% with five clicks. Compared to SAM-Med2d, SAMCA con-

sistently achieves higher DSC, mIoU, and Accuracy, along with lower boundary error, 

indicating improved segmentation accuracy and boundary precision. When compared 

to CNN and Transformer based methods, SAMCA(5p) significantly outperforms U-

Net, CE-Net, SwinUnet, and TransFuse in both DSC and HD, demonstrating its effec-

tiveness in segmentation quality and classification accuracy.  

High DSC scores on multiple ultrasound datasets indicate accurate structural locali-

zation and boundary delineation. In clinical practice, this can help doctors more effi-

ciently identify and measure target regions, improving diagnostic efficiency and reduc-

ing errors from manual annotation. Moreover, the segmentation results can assist in 

semi-automated labeling, easing annotation workload and supporting large-scale da-

taset construction. 

Comparison of sensitivity and specificity of different methods. Fig. 5 shows the ex-

perimental results of the SAM-based method in terms of Sen and Spe metrics. The sub-

figures (a) and (b) display the test results on the TN3K and BUSI datasets, respectively. 

SAMCA with different numbers of clicks has achieved the best results compared to 

other SAM methods, which shows that this method is more sensitive to lesions. 

SAMCA demonstrates excellent performance in both sensitivity and specificity, high-

lighting its high potential for medical image annotation tasks—particularly in scenarios 

demanding precise segmentation, such as tumor delineation and lesion area identifica-

tion. 

 

Fig. 5. Comparison of sensitivity and specificity of SAM-based methods. 

Generalization Ability. Assessing the generalization capability of task-specific meth-

ods is critical, as it helps determine how effectively these models perform on new, un-

seen datasets. As shown in Fig. 6, we quantitatively evaluate this aspect. When com-

paring performance on familiar (seen) and unfamiliar (unseen) datasets, SAMCA ex-

hibits the smallest performance degradation across both segmentation tasks, while 

maintaining high DSC scores. This not only reflects strong generalizability but also 

suggests potential clinical applicability, as stable and accurate segmentation across di-

verse data is important for supporting reliable diagnosis and treatment planning.  
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Fig. 6. Comparison of SAMCA with different methods on see datasets (highlighted in purple) 

and unseen datasets not previously encountered (indicated in blue). Higher blue bars indicate 

stronger generalization ability. 

Visualization and analysis. Fig. 7 provides a visual comparison of six methods, in-

cluding U-Net, CE-Net, TransUNet, H2Former, SAM-Med2d, and the proposed 

SAMCA. Rows 1 and 2 display the results of the BUSI dataset, row 3 presents results 

from the TN3K dataset, and rows 4 and 5 show results from the DDTI and UDIAT 

datasets, respectively. The proposed SAMCA method performs exceptionally well 

across all datasets, accurately capturing target areas while maintaining clear boundaries. 

Compared to other methods, SAMCA effectively avoids boundary inconsistencies and 

segmentation artifacts. On the BUSI dataset, the SAMCA method accurately segments 

tumor regions with clear boundaries and no obvious artifacts. On the TN3K dataset, 

SAMCA also performs excellently in complex images, handling noise and inconsisten-

cies in the data effectively. Moreover, SAMCA demonstrates superior generalization 

capabilities on the DDTI and UDIAT datasets, handling targets with higher irregularity 

and complexity, demonstrating strong adaptability.  

 

Fig. 7. Visualization of comparative experiments. 

Image GT U-Net CE-Net TransUnet H2former SAM-Med2d SAMCA
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4.3 Comparison of Model Training Parameter 

Table 3 compares SAMCA with other SAM-based methods on the BUSI dataset in 

terms of training parameters and DSC performance. While SAM-Med2D delivers com-

petitive results, its high parameter count increases computational cost, limiting its prac-

ticality in resource-constrained settings. SAMCA achieves consistently better DSC 

with different adapters, reaching the best performance while maintaining low training 

complexity. This parameter sharing strategy enhances regularization and improves gen-

eralization on small-scale medical datasets that are often noisy and poorly annotated. 

Table 3. Compare the effects of different adapter structures on model performance and training 

parameters. ‘TP’: trainable parameters. 

Method Adapter Dsc (%) ↑ TP↓ 

Med2d - 82.39±14.18 184.56M 

SAMCA 

+adapter(MSA)[26] 82.95±16.48 7.61M 

+adapter(share)[25] 83.73±15.89 4.07M 

+adapter(Ours) 84.28±15.71 5.15M 

Fig. 8 further compares SAMCA with SOTA CNN and Transformer based method. 

SAMCA outperforms these methods in DSC and mIoU, using significantly fewer pa-

rameters, which highlights its computational efficiency. In terms of segmentation ac-

curacy and boundary precision, SAMCA clearly surpasses other models, while methods 

like SwinUnet and CE-Net perform worse in HD, indicating weaker boundary handling. 

SAMCA outperforms SOTA methods in both segmentation accuracy and computa-

tional efficiency, demonstrating its wide applicability and potential in interactive seg-

mentation of medical ultrasound images. Its lightweight design significantly reduces 

the computational resources required for training, making it a promising candidate for 

deployment in resource-constrained environments. This may help facilitate the practi-

cal adoption of intelligent medical imaging tools in real-world clinical settings. 

 

Fig. 8. Comparison of CNN and Transformer-based model performance and training parameters 

on TN3K. ‘TP’: trainable parameters. 



4.4 Ablation experiments 

Effectiveness of each component. To evaluate the contribution of each module in 

SAMCA, we conducted ablation experiments on the TN3K and BUSI datasets by test-

ing different combinations of Adapter (MHA), Adapter (MLP), and DCT strategy. 

These components were incrementally integrated into the original SAM architecture 

for training and evaluation. As shown in Table 4, Models 2 and 3 introduce only a single 

adapter module, each resulting in notable improvements in model performance. With 

the addition of DCT in Model 5, performance is further enhanced. Fig. 9 shows the 

visualization results of the ablation experiment of different modules. These results 

demonstrate that the integration of adapters and DCT enables SAMCA to achieve su-

perior segmentation performance, confirming its effectiveness in ultrasound image seg-

mentation. 

Table 4. Ablation study on different component combinations of SAMCA. ‘A1’ and ‘A2’ rep-

resent Adapter (MHA) and Adapter (MLP), and ‘DCT’ Stands for double click training. 

Model A1 A2 DCT 
TN3K BUSI 

Dsc(%)↑ HD(mm)↓  Dsc(%)↑ HD(mm)↓  

Model1 × × × 26.69±21.74 150.95±114.86 39.54±24.78 131.01±113.18 

Model2 √ × × 76.26±23.31 73.68±75.54 81.56±19.83 67.69±68.39 

Model3 × √ × 76.83±23.80 63.62±76.97 81.28±19.48 62.58±61.76 

Model4 √ √ × 77.36±23.27 62.75±76.15 82.09±18.62 62.40±59.35 

Model5 √ √ √ 78.79±19.44 57.65±71.13 84.28±15.71 41.54±52.20 

 

Fig. 9. Visualization of segmentation results for different models in our framework. 

Image GT Model1 Model2 Model3 Model4 Model5
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Effectiveness of the Dynamic Fusion. To validate the effectiveness of the dynamic 

fusion mechanism, we evaluated SAMCA on the BUSI dataset using different fusion 

strategies, as illustrated in Fig. 4, with results summarized in Table 5. Without fusion, 

using only guided prompt embedding E2, the model achieved a DSC of 86.22%. Ap-

plying simple addition (E1+E2) increased the DSC to 88.99%. With the dynamic fusion 

method (λE1 +μE2), performance improved further, reaching a maximum DSC of 

89.55%. These results highlight that dynamic fusion effectively balances the influence 

of initial and guided prompts, leading to more accurate segmentation. 

Table 5. Comparison of Results for Different Fusion Methods 

Methods Dsc(%) ↑ mIoU(%) ↑ HD(mm)↓ Acc(%) ↑ 

E2 82.83±17.75 72.97±22.68 62.13±56.21 96.46±4.52 

E1+E2 83.27±17.56 73.66±19.87 48.36±56.49 96.29±4.58 

λE1 +μE2 84.28±15.71 75.27±18.36 41.54±52.20 97.42±3.92 

5 Conclusion 

The Segment Anything Model (SAM), though effective in natural image segmentation, 

faces challenges in medical imaging due to low contrast and complex anatomical struc-

tures. To address these limitations, we propose SAMCA, which integrates SAM with a 

shared-weight adapter to enhance cross-domain knowledge transfer for medical image 

segmentation. A double click training strategy is introduced, where the first click iden-

tifies the target region and the second refines difficult areas, improving local accuracy. 

Furthermore, a dynamic fusion mechanism strengthens the interaction between 

prompts, mitigating local errors and enhancing overall segmentation performance. Ex-

periments on four public ultrasound datasets demonstrate that SAMCA surpasses ex-

isting mainstream methods in both segmentation accuracy and computational effi-

ciency, highlighting its potential for interactive ultrasound image segmentation. 
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