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Abstract. Hybrid Aquatic-Aerial Underwater Vehicles (HAUVs) face sig-

nificant control challenges in scenarios involving abrupt medium transitions, ac-

tuator constraints, and limited computational resources, including sudden dy-

namic changes, multimodal coupling, and insufficient real-time responsiveness. 

To address the actuator saturation issue inherent in traditional Proportional-Inte-

gral-Derivative control (PID) and the high computational load of model predic-

tive control (MPC), this paper proposes an event-triggered disturbance observer-

based tiny model predictive control (ET-TMPC) method. First, a HAUV rigid-

body dynamic model is established, where lumped disturbances during cross-me-

dium transitions are estimated using a nonlinear disturbance observer. Second, 

the MPC optimization process is restructured by integrating the alternating direc-

tion method of multipliers (ADMM) with precomputation techniques, signifi-

cantly reducing online computational complexity. Furthermore, a dual-modal 

FAL dynamic triggering strategy is introduced, which dynamically adjusts trig-

gering thresholds for disturbance errors and state errors through FAL, thereby 

achieving co-optimization of control performance and resource efficiency in 

cross-domain trajectory tracking. Simulation results demonstrate that, compared 

to conventional PID and standard MPC, ET-TMPC substantially enhances tra-

jectory tracking stability and anti-disturbance capability during water-to-air tran-

sition phases while effectively suppressing attitude fluctuations and reducing 

computational load.  

Keywords: Event-Triggered, Model Predictive Control, Disturbance Ob-

server, Alternating Direction Method of Multipliers 

1 Introduction 

Cross-domain air-water navigation has become a research hotspot in recent years. 

However, achieving unified control and maintaining stability for hybrid air-underwater 

vehicles (HAUVs) in both water and air remains a significant challenge. Unified control 

refers to ensuring consistent performance in attitude stability, trajectory tracking, and 



 

 

propulsion transitions under a single control framework across different media. The 

core difficulty arises from dynamic discontinuities during medium transitions, multi-

modal coupling, and the nonlinear control complexities involved in switching between 

air and water environments. Sliding mode control (SMC), as a robust method based on 

switching strategies, offers high-gain responses based on the current system state. 

Nonetheless, this often results in control signals that exceed actuator limits and lacks 

the capability to incorporate system constraints such as thrust saturation or small-angle 

restrictions, especially during cross-medium operations. 

Model predictive control (MPC) offers a more comprehensive framework by nat-

urally incorporating system and path constraints through its receding horizon optimiza-

tion mechanism. For instance, during transitions through the air-water interface, sudden 

variations in hydrodynamic forces can cause required thrust to surpass physical limits. 

MPC directly enforces constraints on control inputs to prevent such violations. MPC 

methods based on the alternating direction method of multipliers (ADMM) have shown 

strong capabilities in managing highly dynamic systems with complex constraints 

while reducing computational load, making them suitable for small robotic platforms. 

However, the robustness of MPC in dynamic environments still presents challenges. 

To enhance real-time performance, event-triggered mechanisms based on fractional-

order adaptive laws (FAL) have been proposed, reducing computational demands and 

memory usage, and making real-world applications feasible. Yet, implementing event-

triggered MPC in HAUVs is complicated by disturbances and state estimation errors 

during cross-domain navigation. 

This paper proposes an event-triggered disturbance observer-based tiny model 

predictive control (ET-TMPC) framework to address the above challenges. The main 

contributions are as follows: 1) A nonlinear event-triggering mechanism based on FAL 

is introduced, which dynamically adjusts the control update frequency based on a joint 

decision rule involving disturbances and state errors. This balances real-time perfor-

mance with robustness and ensures trajectory tracking accuracy with minimal compu-

tational effort. 2) A rigid-body dynamics model combined with a lumped disturbance 

observer is established to replace complex hydrodynamic modeling, enhancing model-

ing efficiency and control reliability during air-water transitions. 3) The proposed 

method overcomes the actuator saturation and constraint enforcement limitations of 

traditional SMC while achieving coordinated control of dynamic discontinuities and 

multimodal coupling. Simulation experiments validate the proposed approach in sce-

narios with strong disturbances and complex medium transitions, confirming its effec-

tiveness and generalizability. 

2 HAUV Dynamic Model 

To effectively capture the motion characteristics of a hybrid air-underwater vehicle 

(HAUV) operating across multiple domains, this section presents a simplified dynamic 

model grounded in rigid-body theory. The model is developed to retain the essential 

physical attributes of the vehicle, such as mass distribution, symmetry, and dominant 

motion dynamics, while omitting higher-order or coupled hydrodynamic effects that 
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contribute minimally to control-relevant behavior. This approach strikes a balance be-

tween model fidelity and computational efficiency, making it well-suited for subse-

quent control strategy design and real-time application.  

Fig. 1. Conceptual Diagram of HAUV 

Main Assumptions as below:  

Assumption 1: The primary mass and volume of the HAUV are uniformly distrib-

uted along a cylindrical body, with the mass and volume of arms and propellers ne-

glected.   

Assumption 2: The HAUV is considered a uniformly symmetric rigid body.   

Assumption 3: Coupled hydrodynamic coefficients and higher-order hydrody-

namic coefficients are neglected.   

Assumption 4: The rotation and revolution of Earth are neglected to ensure that 

the reference sea surface of HAUV is considered an inertial frame. 

Define two coordinate systems to describe the motion of the HAUV. One coordi-

nate system is the navigation coordinate system { }( , , , )
e e e e

O x y z
N

R ,the other is the body-

fixed coordinate system { }( , , , )
b b b b

O x y z
B

R .Position [ , , ]Tx y z=
1
η , velocity [ , , ]Tu v w=

1
v , 

and attitude [ ], , T  =
1
η are physical quantities described in the navigation coordinate 

system. Angular velocity [ , , ]Tp q r=
2

v  is a physical quantity described in the body-

fixed coordinate system. The rotation matrix of the body-fixed coordinate system 
B

R  

relative to the navigation coordinate system 
N

R and the attitude transformation matrix 

that relates angular velocity to the rate of change of attitude angles is denoted as n
b

C  

and W respectively. 
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where s(·), c(·), and t(·) individually represent sin(·), cos(·), and tan(·), respectively. 

According to the Newton-Euler equations, the HAUV is mathematically described as: 

 
m m







 

1 1

1 2 1

2 2

2 2 2

η = v

f = v + v v

η = Wv

τ = Jv + v Jv

 (1)  

where f and τ represent the total force and total moment acting on the body, respec-

tively, and m and J denote the mass and inertia matrix of the vehicle, respectively. 
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



C G B D W

C G B D W gyro

f = f + f + f + f + f

τ = τ + τ + τ + τ + τ + τ
 (3) 

where Cf and Cτ represent the control input forces and moments, Gf and Gτ denote the 

gravitational forces and their corresponding moments, and Bf and Bτ represent the 

buoyant forces and the moments they generate ，and Df  and Dτ represent the hydro-

dynamic damping forces and moments, Wf  and Wτ denote the forces and moments ex-

erted on the body by wind and waves, and gyroτ  represents the gyroscopic moment. 

Since the calculation of wave forces, hydrodynamic damping forces, buoyancy, 

and gyroscopic moments requires establishment of complex hydrodynamic models, 

which is not the focus of this study, a disturbance observer is designed in this paper to 

estimate the aggregated disturbance force ˆ
fd and the aggregated disturbance moment 

ˆ
τd . 

 ˆ =f B D Wd f + f + f  (4) 

 ̂ = B D W gyrod τ + τ + τ + τ  (5) 

The system dynamic model can now be transformed into: 

 
ˆ

ˆ

m m




+ 


 + 

1 1

C G f 1 2 1

2 2

G τ 2 2 2

η = v

f + f d = v + v v

η = Wv

τ d = Jv + v Jv

 (6) 
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3 Event-Triggered Disturbance Observer-based Tiny Model 

Predictive Control 

 

Fig. 2. Event-triggered disturbance observer-based tiny model predictive control 

3.1 Introduction of Relaxation Variables and Alternating Direction Method of 

Multipliers 

The optimization is performed by minimizing a cost function subject to state and con-

trol input constraints. 

 
1

1

1 1min
2 2

N

T T T T
k k k kk k k k

k

J
−

=

= + + + x Qx q x u Ru r u  (7) 

where, n
k x R is the 12-dimensional state vector of the HUAV at a given time, m

k u R

is the 4-dimensional control input vector for the HUAV motors, Q,R is a positive defi-

nite weight matrix, and ,k kq r  is the linear cost vector. 

TinyMPC employs the Alternating Direction Method of Multipliers (ADMM) to 

handle the aforementioned optimization problem. By introducing relaxation variables, 

the original problem is transformed into an equivalent form, enabling stepwise solution 

using ADMM. 

The relaxation variables kz  and kw  (representing the relaxation variables for the 

state and control input, respectively) are introduced, and the original problem is trans-

formed into the following form: 
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 (8) 

where 
kλ  and kμ  are the Lagrange multipliers, and  is the penalty coefficient. 

The core of Alternating Direction Method of Multipliers involves alternating be-

tween three steps: Primal Update, Slack Update, and Dual Update.  



 

 

The objective of the primal problem is to minimize the cost associated with the 

state and control inputs. In each ADMM iteration, we update the state and control in-

puts. Specifically, the state update formula is: 

 ( )1arg min
2

T T
k kk k k

x

+ = +x x Qx q x  (1) 

Similarly, the update formula for the control input is: 

 ( )1arg min
2

T T
k kk k k

u

+ = +u u Ru r u  (2) 

In the Slack Update step, the relaxation variables undergo a linear projection to 

ensure compliance with the constraint conditions. The update formulas for the relaxa-

tion variables are as follows: 
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U

λ
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μ
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 (3) 

where Xproj  and Uproj  represent the projection operations on the state and control 

input, respectively, ensuring they remain within the constraint sets X  andU . 

 The dual variables are updated using gradient ascent to reinforce constraint en-

forcement: 

 
( )

( )

kk k k

kk k k





+ + +

+ + +

= + −


= + −

λ λ x z

μ μ u w
 (4) 

These dual updates ensure that the constraints are effectively enforced in each it-

eration. 

In the implementation of TinyMPC , the most computationally intensive step is 

solving linear equations, particularly the Riccati equation. To accelerate the computa-

tion, TinyMPC employs precomputation techniques. By precomputing the Riccati gain 

matrix K  and the Hessian matrix P , the need for expensive matrix decomposition in 

each iteration is eliminated. The precomputed formulas are as follows: 

 
1

1

2

( )

( )

T

T

−




= +

= −





C R B P B

C A BK
 (5) 

Through these precomputations, TinyMPC simplifies the computation to matrix-

vector multiplications, significantly improving computational efficiency and reducing 

memory usage. 

3.2 Nonlinear Disturbance Observer.  

f τd ,d  need to be estimated using a disturbance observer, and a nonlinear disturbance 

observer is chosen. The observation equation for ˆ
fd  is given by  
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1 ˆ- ( ( ) )

ˆ

m
m

 =  + + +

 = +

f f 1 2 G C f

f f f

z l v v f f d

d z p

 (6) 

where the auxiliary parameters 1 2 3[ , , ]Tm   =fp u v w ,
,

 1 2 3/ , ,m diag   =   = f f 1l p v  

and i  in the observer are dimensionless scaling factors used for directional weighting 

of the state variables. The observation of ˆ
τd  is given by  

 
1

0
ˆ(( ) )

ˆ

l I I 
− = −  + +


= +

τ 2 2 C τ

τ τ τ

z v v τ d

d z p
 (7) 

where the auxiliary parameters 1 2 3 0[ , , ]diag I  =  τ 2p v  ,  1 2 3 0, ,m diag I  =  τl  and 

i  in the observer serve as gain adjustment coefficients for rotational directions, en-

hancing or suppressing the observer's sensitivity in specific directions. 

3.3 Bimodal FAL-Based Dynamic Triggering Strategy.  

To refine the sensitivity of the triggering mechanism, a nonlinear function known as 

the Fractional Power Function (FAL) is introduced to modulate the threshold dynami-

cally.  This function is specifically designed to provide nonlinear feedback based on the 

magnitude of the tracking error, enabling the system to respond more gently to large 

deviations while remaining responsive to smaller discrepancies.  The mathematical ex-

pression of the FAL function is given as follows: 

 
1

| | sign( ), | |

FAL( , , )
, | |

e e e

e e e






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
 −







 (8) 

where 0 1   is used to control the degree of nonlinearity. and 0   defines a linear 

interval for small errors, preventing excessive triggering sensitivity when the error is 

minimal， | |e   ensures that when a certain condition is met, the trigger value grows 

according to a fractional power law, accelerating the triggering process, and | |e   en-

sures that when another condition is met, the trigger value is adjusted linearly to avoid 

excessive sensitivity. 

By designing a FAL-based triggering threshold, the system imposes stricter trig-

gering conditions under small disturbances, while allowing more frequent control up-

dates when disturbances become significant. 

The disturbance triggering condition is given by: 

 1
ˆ ˆ

k k d−− d d  (9) 

The triggering threshold 𝜖𝑑 is adaptively adjusted using the FAL function: 

 1F ˆA )ˆ , ,L(d d dk k d d  −−=  +d dò  (10) 

In other words: 
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where: d controls the degree of nonlinearity. A smaller d  makes the triggering curve 

approach linear, while a larger d  enhances nonlinearity. d is the threshold switching 

point. When the disturbance variation is smaller than d , the triggering condition fol-

lows a linear growth; otherwise, it follows a nonlinear growth. 

d  is a scaling factor that adjusts the overall magnitude of the triggering threshold.

   is an offset to ensure the threshold does not become too low, thereby reducing un-

necessary computational overhead.  

Similarly, we employ the Fast Adaptive Law function for the state error-based 

triggering condition: 

 ref
k xk − x x  (12) 

 AL ),( ,F ref
x x k x xk x   +−= x xò  (13) 

In other words:  
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Thus, when the state error is small (i.e., the system is close to stability), the trig-

gering threshold increases, reducing the frequency of triggering. Conversely, when the 

state error becomes larger (i.e., the system deviates from the desired trajectory), the 

triggering threshold decreases, allowing the control mechanism to activate earlier, 

thereby improving the system's response speed. 

 Finally, the ET-TMPC bimodal dynamic triggering condition can be formulated 

as: 
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1 1
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−
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+
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d d d d

d d d d
 (14) 

This condition integrates both linear and nonlinear triggering mechanisms, ensur-

ing adaptive control updates based on disturbance variations. 

The selection of parameters d , i  and d  directly influences the trade-off be-

tween control precision and computational efficiency. For instance, In practical appli-

cations, 𝛾𝑑  is typically chosen within the range  0.3,0.7 to balance nonlinearity and 

stability. A value too close to 1  may lead to oversensitivity, while a value near 0  ren-

ders the system quasi-linear. And the parameter 𝛿𝑖  should be dynamically adjusted 

based on the system's operating conditions. For high-frequency disturbance 
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environments, a smaller 𝛿𝑖  ensures rapid response, whereas a larger 𝛿𝑖  suits steady-

state operations. 

Table 1. ET-TMPC with State Observer for HAUV 

Algorithm  ET-TMPC with State Observer for HAUV 

Input: Initial state estimate 𝑥̂0, disturbance estimate 𝑑̂0, Previous control input 𝑢−1, 

Event thresholds 𝜀𝑒, 𝜀𝑑, Nonlinear evaluation function FAL(⋅), Control horizon 𝑇, 

max iterations 𝑁max 

Output: Control sequence {𝑢𝑘}𝑘=0
𝐾 , State estimates {𝑥̂𝑘}𝑘=1

𝐾 , Trigger indicators 

{flag𝑘}𝑘=0
𝐾  

1:  𝑘 ← 0, Trigger ← True 

2:  Obtain 𝑥̂0, 𝑑̂0 from observer 

3: for 𝑘 = 0,1,2, . .. do 

4:   𝑥̂𝑘 , 𝑑̂𝑘 ← Observer_Update() 
5:   𝐹𝑒 ← FAL(‖𝑥̂𝑘 − 𝑥̂𝑘−1‖) 
6:   𝐹𝑑 ← FAL(‖𝑑̂𝑘 − 𝑑̂𝑘−1‖) 
7:   Trigger ← (𝐹𝑒 > 𝜀𝑒) ∨ (𝐹𝑑 > 𝜀𝑑) 

8:   if Trigger then 

9:    {𝑢𝑘} ← TMPC_Solver(𝑥̂𝑘 , 𝑑̂𝑘 , 𝑇, 𝑁max) 
10:      Solve via: 

11:     1. Primal Riccati recursion 

12:     2. Slack variable projection 

13:     3. Dual multiplier update  

14:   else 

15:    𝑢𝑘 ← 𝑢𝑘−1 

16:   end if 

17:   𝑥̂𝑘+1 ← State_Observer(𝑥̂𝑘 , 𝑢𝑘) 
19:   𝑑̂𝑘+1 ← Disturbance_Observer(𝑑̂𝑘 , 𝑥̂𝑘) 
20:   𝑘 ← 𝑘 + 1 

21: end for 

4 Simulation Experiments 

Based on the previous discussion and analysis, the theoretically developed method is 

expected to be effective.  In this section, numerical simulations are conducted to eval-

uate the position and attitude errors in trajectory tracking.  The simulations cover both 

aerial and underwater scenarios, with particular focus on the transition phase between 

mediums, where sudden dynamic changes may occur.  Additionally, computational re-

source consumption is assessed by recording algorithm iteration counts and memory 



 

 

usage under different trajectory complexities, offering insights into the method's prac-

tical applicability.  To further examine the robustness of the proposed approach, various 

external disturbances with different amplitudes and durations are introduced to simulate 

real-world uncertainty.  The system's response under such disturbances is analyzed to 

validate the control algorithm’s stability and effectiveness across diverse and challeng-

ing operating conditions. 

4.1 Simulation Conditions 

Table 2. Simulation Conditions for Convergence Analysis Parameters 

ETDOTMPC PID 

(100,100,100,...
       4,4,400,4,4,4,2,2,4)
Q diag=  

 

(4,4,4,4)R diag=  

( ) _ 8,  0.0,  1PIDController pid x  

( ) _ 8,  0.0,  1PIDController pid y  

( ) _ 8,  0.0,  1PIDController pid z  

( ) _ 4,  0.0,  0.5PIDController pid roll  

( ) _ 4,  0.0,  0.5PIDController pid pitch  

( ) _ 4,  0.0,  0.5 ;PIDController pid yaw  

Table 2 outlines the controller-specific tuning parameters used in the convergence 

simulations. The weighting matrices Q and R are defined to penalize deviations in 

state and control inputs, respectively. 

Table 3. Simulation parameters that measure computing resource usage 

Classes TRAJECTORY [i][0] TRAJECTORY [i][1] TRAJECTORY [i][2] 

(a) 0.5*sin(0.5* )t  0.4*sin(0.6* )t  0.6*sin(0.4* )t  

(b) 0.8*cos(0.3* )t  0.6*cos(0.2* )t  0.4*cos(0.5* )t  

(c) sin(0.4* )t  sin(0.5* )t  sin(0.3* )t  

Table 3 denotes different trajectory classes used to evaluate the computational de-

mands and tracking robustness of the controllers. Classes (a), (b), and (c) represent 

various levels of oscillatory motion in 3D space, simulating realistic and dynamically 

rich reference paths for the hybrid vehicle. 

Table 4. Parameters of Applied Strong Disturbances. 

Time START_STEP DURATION FORCE_X FORCE_Y FORCE_Z 

t=5s 100 0.5s 2.50N 0.00 0.00 

t=10s 200 0.5s 0.00 2.50N 0.00 

t=20s 400 0.5s 0.00 0.50 2.50N 

Table 4 details the external disturbance forces applied at specific time intervals to 

assess the disturbance rejection capability of each control algorithm. 
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4.2 Convergence Analysis 

In this section, we compare the trajectory tracking performance of the ETDOTMPC 

and PID algorithms in the cross-domain operation of a hybrid aerial-underwater vehicle 

(HAUV) to demonstrate the stability and broad applicability of the ETDOTMPC algo-

rithm. This comparison not only highlights the advantages and limitations of each al-

gorithm but also illustrates the feasibility of their application in different medium envi-

ronments. The simulation results present the trajectory tracking performance of both 

algorithms at six different time instants and analyze the convergence of their position 

and attitude errors.  

 
(a) t=5s (b) t=10s

 
(c) t=15s (d) t=20s

 

(e) t=25s (f) t=29.5s

Fig. 3. Different Control Algorithms in Cross-Domain Trajectory Tracking 

Fig 3 compares the trajectory tracking performance of the ETDOTMPC and PID 

control algorithms at six different time instants. In the air, the PID algorithm exhibits 

significantly larger errors compared to ETDOTMPC. Underwater, both algorithms 

achieve similar tracking accuracy, though ETDOTMPC demonstrates overall superior 

performance. In cross-domain transitions between air and water, the PID algorithm 

shows a tendency to diverge, indicating lower stability com-pared to ETDOTMPC. 

Specifically, at t = 5 s, the HAUV performs a sharp turn, during which the PID control-

ler exhibits significant oscillations. Additionally, during water entry (t = 10 s), the de-

viation under PID control is approximately twice that of ETDOTMPC.  

 

  

     

    

       

 

                       

    

 
  

 

   

   

       

 

     

        

 
       

       
       

       
   

               

          

                   

             

        

                     

 

  

     

    

       

 

                        

    

 
  

 

   

   

       

 

     

        

 
       

       
       

       
   

               

          

                   

             

        

                     

 

  

     

    

       

 

                        

    

 
  

 

   

   

       

 

    

    

 

    

 
       

       
       

       
   

               

          

                   

             

        

                     

 

  

     

    

       

 

                        

    

 
  

 

   

   

       

 

    

    

 

    

 
       

       
       

       
   

               

          

                   

             

        

                     



 

 

 

Fig. 4. Comparison of HAUV Position Errors Under Different Control Algorithms 

 

Fig. 5. Comparison of HAUV Attitude Errors Under Different Control Algorithms 

Fig 4 and Fig 5 illustrate the convergence of position and attitude errors for the 

two control algorithms. Fig 4 shows that the ET-TMPC algorithm achieves faster and 

more stable convergence of position errors compared to PID. However, both algorithms 

exhibit significant disturbances in the Y-direction. This is because the applied wave 

disturbance during the vehicle’s water-exit phase has a considerable component in the 

Y-direction, leading to larger perturbations. Fig 5 clearly demonstrates that ET-TMPC 

achieves superior convergence in attitude errors. 

4.3 Analysis of Computational Resource Consumption.  

To evaluate the computational efficiency of the proposed control method, we conducted 

a comparative analysis of the number of execution steps and memory usage under 
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different trajectory constraints. This assessment helps quantify suitability of the control 

algorithms for real-time applications on resource-constrained platforms.

Fig. 6. Comparing Execution Steps Under Dif-

ferent Trajectory Constraints 

Fig. 7. Comparison of Memory Usage Under 

Different Trajectory Constraints 

We measured the number of execution steps and memory usage of the two control 

algorithms under trajectories with varying complexities to reflect computational re-

source consumption. From Fig 6 and Fig 7, it is evident that ET-TMPC consistently 

requires the least computational resources across all three trajectories, while MPC con-

sumes the most. Additionally, in low-complexity trajectories, ET-TMPC and DOMPC 

perform similarly, whereas in high-complexity trajectories, ET-TMPC's performance 

is significantly superior. This indicates that ET-TMPC is particularly suitable for high-

dynamic environments. 

4.4 Disturbance Rejection Analysis 

In this section, strong disturbances are applied to the system at 5s, 10s, and 20s, and 

the disturbance rejection performance of the ETDOTMPC and PID algorithms is ob-

served to validate the disturbance rejection capability of ETDOTMPC. 

Fig. 8. Comparing Position Errors Under Strong Disturbances for Different Control  
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Fig. 9. Comparing Attitude Errors Under Strong Disturbances for Different Control  

In Fig 8 and Fig 9, among the three strong disturbances applied, ETDOTMPC 

exhibits significantly lower position errors in the Z-direction and heading angle errors 

compared to PID, with greater stability. In other directions or attitudes, ETDOTMPC 

shows a noticeable surge in errors at the disturbance moments, which may be caused 

by the delay in the joint event-triggered mechanism. However, the subsequent conver-

gence speed is noticeably faster than PID, and the overall error performance is supe-

rior to PID. 

 

Fig. 10. Trajectory Tracking Under Strong Disturbances for Different Algorithms 

From Fig 10, it can be observed that under disturbance, the fluctuations and am-

plitudes generated by PID are significantly larger, indicating that ETDOTMPC has 

stronger disturbance rejection capabilities. This also highlights the contribution of the 

disturbance observer in enhancing the algorithm's disturbance rejection performance. 
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5 Conclusion 
This paper proposes an event-triggered disturbance observer-based miniature MPC for 

hybrid aerial-underwater vehicles (HAUVs) operating under medium transitions and 

computational constraints. By integrating a nonlinear disturbance observer with 

ADMM optimization, ETDOTMPC mitigates actuator saturation from traditional slid-

ing mode control and reduces MPC's computational load. A FAL-based event-triggered 

mechanism further optimizes control updates while ensuring stable cross-domain track-

ing. Simulations demonstrate superior robustness and disturbance rejection during air-

water transitions, balancing performance and efficiency for cross-medium autonomy. 
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