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Abstract. The rapidly evolving landscape of unknown network attacks has sig-

nificantly expanded the range of cyber threats. However, existing intrusion de-

tection systems (IDS) primarily rely on large amounts of known attack samples 

for model training and can only effectively detect known network attacks, par-

ticularly in industrial control system (ICS) environments, where obtaining attack 

samples is extremely difficult. In this paper, inspired by artificial immune sys-

tems (AIS) and large language models (LLM), we propose an LLM-based im-

mune detection method for identifying unknown network attacks in ICS under 

few-shot conditions. The artificial immune system, as a biologically inspired in-

telligent algorithm, inherently possesses the ability to identify unknown threats. 

Meanwhile, LLM, with its strong reasoning ability, can deeply explore the latent 

spatial feature information even with limited train samples. Specifically, we first 

map network attack data to the antigen space of the artificial immune system. 

Then, we design a specialized prompt template to guide the LLM in learning and 

analyzing the spatial distribution features of nonself antigens, thereby capturing 

the latent space feature distribution information. Finally, we generate immune 

space detectors under the guidance of LLM and activate them through tolerance 

mechanisms. Extensive experiments on multiple datasets demonstrate that our 

method exhibits superior performance in detecting both known and unknown 

cyberattacks, significantly outperforming current mainstream IDS research 

achievements. 

Keywords: Intrusion Detection System, Large Language Model, Artificial Im-

mune System, Unknown Cyber Attacks 

1 INTRODUCTION 

The rapid emergence of advanced technologies such as IoT and generative AI has 

driven unprecedented developments in various communication, computer systems, and 

networks. However, this technological advancement has been accompanied by an ex-

ponential growth in cybersecurity threats, posing severe challenges to critical industrial 

infrastructure. Daily attack volumes have intensified significantly, with AV-Test 



reporting 450,000 new incidents daily [1], and Kaspersky documenting 828,000 daily 

emerging technology-based attacks in 2024, representing a two-fold increase since 

2022 [2]. Intrusion detection systems (IDS) have become central to industrial control 

system (ICS) security research. Current IDS solutions, primarily reliant on known at-

tack signatures, demonstrate inadequate capabilities against novel threats [3][4]. 

Kaspersky ICS CERT confirms this vulnerability, reporting that only 23.5% of ICS 

intrusion detection systems successfully mitigated threats in Q2 2024[5].  

Signature-based IDS, widely deployed in industry, has demonstrated efficient iden-

tification of network attacks [6]. However, these systems essentially employ closed-set 

inference mechanisms, and their detection capabilities entirely depend on the attack 

samples included in the train set. With limited training data, they fail to extract suffi-

cient attack features, compromising their ability to identify threats [7]. While anomaly-

based approaches can detect anomalies by modeling normal behavior, they typically 

rely on hyperparameter models utilizing mathematical constructs such as probability 

density functions and feature space partitioning [8]. Under few-shot conditions, hy-

perparameter optimization becomes challenging, leading to unstable model perfor-

mance [9]. In real industrial environments, improving detection capabilities will inevi-

tably lead to increased false positive rates, which is generally undesirable. 

To address the challenges, potential solutions lie in artificial immune systems and 

large language models. Artificial immune systems, as a biologically inspired intelligent 

learning algorithm, inherently recognize unknown threats [10]. Meanwhile, LLMs 

demonstrate strong reasoning abilities and can deeply explore feature information even 

under data scarcity conditions [11]. In 2023, Huang et al. enhanced unknown detection 

by integrating artificial immune systems with differential evolution theory [12]. In 

2024, Bai et al. demonstrated superior detection for unknown cyber attacks with their 

approach combining LLMs and synchronous attention mechanisms [13]. 

Based on this foundation, we apply large language models to address the challenge 

of unknown attack detection under few-shot conditions. First, we design specialized 

prompt templates, utilizing LLM to fit limited data and deeply explore the feature dis-

tribution in the sample space. Then, we generate immune detectors under the guidance 

of the LLM and activate them through tolerance computation. Finally, we detect net-

work attacks in the immune space using immune detectors, achieving both known and 

unknown attack detection. The main contributions of this study are as follows: 

• We propose a prompt-based LLM feature fitting method. Unlike traditional ap-

proaches that rely on large-scale train data, our method achieves deep spatial distribu-

tion feature extraction under few-shot conditions. 

• We develop an LLM-based immune detector generation method. In contrast to 

conventional random detector generation, our approach achieves comprehensive cov-

erage of unknown attack sample spaces with limited train samples. 

• We conduct extensive experiments on two datasets to validate the effectiveness of 

our proposed method. The experimental results demonstrate superior performance in 

identifying both known and unknown attacks compared to traditional methods. 

The paper is organized as follows. Section 2 reviews recent advances in unknown 

attack detection systems and LLM-based data augmentation. Section 3 details our 
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proposed method and Section 4 evaluates its performance through extensive experi-

ments. Finally, Section 5 concludes the paper. 

2 RELATED WORK 

In this section, we review recent progress in intrusion detection systems for unknown 

network attacks and the application of large language models for data generation. 

2.1 IDS for Unknown Network Attacks 

Intrusion detection systems for unknown network attacks are mainly classified into 

machine learning-based, deep learning-based, and emerging artificial immune system-

based approaches. 

In 2021, Liu et al. developed a hybrid model combining signature-based and artifi-

cial immune approaches with a two-round recognition mechanism, effectively over-

coming limitations of traditional methods against complex unknown attacks [14]. In  

2022, Aoudni et al. introduced HMM_TDL, integrating Hidden Markov Models with 

transudative deep learning for zero-day attack detection in cloud environments through 

a three-stage detection mechanism [15]. In 2023, Nguyen et al. proposed a hybrid de-

tection framework combining Soft-Ordered Convolutional Neural Networks (SOCNN) 

with Local Outlier Factor (LOF) and isolation-based Nearest Neighbor Ensemble 

(iNNE), effectively addressing unknown DoS/DDoS attack detection in IoT environ-

ments [16]. Also in 2023, Yang et al. introduced MDGWO-NSA, a novel framework 

with adaptive regulation capabilities that combines unsupervised clustering-based heu-

ristic dimensionality reduction, hybrid-partitioned negative selection algorithm (NSA), 

and improved grey wolf optimizer, significantly enhancing detection of unknown net-

work attacks[17]. In 2024, Li et al. proposed HAD-IDS, integrating NN-LSTM with 

GAN to establish behavioral baselines, providing an effective framework for large-

scale unknown network attack detection in IoT [18]. 

2.2 LLM-based Data Generation 

Large language models exhibit two principal paradigms in data generation: generat-

ing semantically rich textual content and producing strictly formatted structured data 

including tabular and time-series information. 

In 2023, Kholgh et al. proposed PAC-GPT, a reliable network data generation frame-

work based on GPT-3, addressing the scarcity of real datasets in network security 

through Flow Generator and Packet Generator modules that capture network packet 

sequence patterns and generate individual packets [19]. In 2024, Zhou et al. introduced 

a universal time-series data generation method for edge intelligence, achieving flexible 

control over generation results through a self-trained fine-tuned model with a two-stage 

generation process incorporating abstract and detailed guiding signals [20]. In 2025, 

Banday et al. developed a context-enhanced LLM tabular data generation method that 



addresses insufficient semantic context in feature names by combining three prompting 

approaches: expert-guided, LLM-guided, and novel mapping [21].  

3 PROPOSED METHOD 

To address the limitation of traditional methods in detecting unknown attacks with 

small samples, we design an LLM-based immune detection method for unknown net-

work attacks (the framework of the system shown in Fig. 1). This method consists of 

three key components: antigen presentation, LLM-based few-shot spatial feature fitting 

and LLM-based immune detector generation.  

 

Fig. 1. The framework of proposed method 

3.1 Antigen Presentation 

Industrial control network data, represented as a point in geometric space, is denoted 

as an antigen in artificial immune system. It can be divided into self train set, nonself 

train set, self test set, and nonself test set. For the training data: 
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Where | |trainSelf  and | |trainNonself  represent the cardinality of nonself train set and 

self train set respectively. Additionally, the self and nonself sets must be disjoint. 

Similarly, the test set can be defined as: 
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To address dimensional imbalances, we normalize all antigen features using min-

max scaling. For both self antigens 
( )i

selfag  and nonself antigens 
( )

nonself

iag  in dimension 

d , namely ( , )i dag , we apply: 
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Where 
( ) ( ) ( )

, ,min{ , }d d d

min self min nonself mina ag agg = , 
( ) ( ) ( )

, ,max{ , }d d d

max self max nonself maxa ag agg =  repre-

sent the global minimum and maximum values across all training samples. 

3.2 LLM-Based Few-Shot Spatial Feature Fitting 

After the antigen presentation, each nonself and self antigen has been mapped as a 

point in (0,1) space. Since feature values strongly influence the results of classification, 

different categories of nonself and self antigens exhibit distinct clustering patterns in 

high-dimensional space. This naturally formed distribution characteristic provides an 

important foundation for subsequent detector generation based on spatial distribution. 

We entrust this complex task to large language models that excel at spatial reasoning 

and distribution analysis. Through carefully designed prompts, we guide LLM to lev-

erage the massive spatial distribution modeling formulas learned from pretraining to 

deeply understand the spatial distribution characteristics of nonself antigens. The 

prompt design template is shown in Fig. 2. 

 

Fig. 2. Prompt design template. 

In this template, by clarifying the task objective, we help the model understand this 

is a space analysis and data generation task, effectively reducing the possibility of 



model misinterpretation and hallucination. We emphasize the concepts of "spatial dis-

tribution" and "feature space" multiple times in the prompt, and explicitly require that 

newly generated vectors cover unknown spaces as much as possible - areas not covered 

by the original nonself antigens. This strategy guides the model to perform more com-

plex reasoning and deeply understand the potential geometric properties of the dataset. 

Simultaneously, we assign a professional role to the model, helping to activate its do-

main-specific knowledge - utilizing high-quality spatial distribution modeling formu-

las, thereby significantly improving the professionalism and applicability of the model 

output. We also ensure output consistency while optimizing model response efficiency 

by strictly defining input and output data formats and clear constraints. 

By inputting carefully designed prompts, nonself antigen dataset, and specific non-

self antigen vectors from the dataset to the large model, we guide the LLM to fit the 

few-shot feature space based on the distribution characteristics of known nonself anti-

gens. In this process, the large language model first regresses the target nonself antigen 

vector into the distribution space of the entire dataset, precisely analyzing the distribu-

tion characteristics of points around it. Subsequently, the model fits antigen features 

based on relevant evolutionary algorithms learned during pretraining and fine-tuning 

phases. After fitting antigen features, we obtain feedback from the LLM. These feed-

back data neither disrupt the original distribution patterns nor highly conform to the 

feature expression of nonself antigens themselves, which we call large language model 

antigens llmag . They satisfy: 

 ,( );llm llmag t InputG =  (6) 

In other words, we view the LLM as a generator G , where   represents the param-

eters of the LLM itself, optimized through pretraining and prompt guidance. The tem-

perature parameter t is typically used to adjust the stability of generated data. A larger 

t  results in more diverse generated vectors that tend to explore unknown spaces, while 

a smaller t  causes generated vectors to be closer to the input distribution, tending to 

utilize existing patterns. The input to the LLM llmInput  satisfies: 

 ( ( )), , ,inpullm tI Eompt ag Rnput P Tr C=  (7) 

We extract a portion from the preprocessed nonself antigens as input antigens. These 

vector-form input antigens are serialized and encoded into text form, then combined 

with contextual role R , task description T , and constraint conditions C . Through 

template embedding, all information is concatenated into a complete prompt and con-

verted into an input format processable by the LLM. Through an iterative process of 

prompting and feedback, we can guide the LLM to deeply fit the few-shot space feature 

distribution. 

3.3 LLM-Based Immune Detector Generation 

Through the prompt engineering in 3.2, the LLM can now fit the few-shot feature 

space distribution. At this point, by initializing candidate detector seeds and inputting 
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them into the LLM, effective detectors can be generated in the immune space under the 

guidance of the LLM. The LLM-based detector generation method is as follows: 

 ([ (0,1) | {1,..., }])i da LLM x random i k= =   (8) 

Where [ (0,1) | {1,..., }]i dx random i n=   represents the initialized detector seed fea-

tures, and LLM  represents the large language model. 

In artificial immunity, the key to detector activation lies in tolerance with self data, 

which is the calculation of affinity. When candidate detectors cover known self data, 

they will be eliminated or discarded. When the affinity between candidate detectors and 

self data meets the threshold, the detector will be activated as a mature detector. The 

affinity calculation method is as follows: 
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Affinity represents the degree of spatial distribution difference between candidate 

detectors and self data. When ( , )train saffinity d Self r , it indicates that the current can-

didate detector d  falls in the self region, and it will be eliminated, requiring regenera-

tion of a candidate detector. When ( , )train saffinity d Self r , it indicates that the candi-

date detector d  meets the minimum affinity requirement. The immune capability of a 

detector is determined by its immune domain, which is the detector radius 
dr . Each 

different detector, under different affinities, possesses different immune domains dr . 

The determination of the immune domain is jointly decided by self data. To avoid 

the influence of affinity calculation with a single self data on the detector's immune 

domain, we evaluate self density through affinity threshold and further calculate the 

immune domain dr of candidate detectors. First, the neighboring self density of candi-

date detector d  is calculated as follows: 

 

1

( , )
th k

nearest

i

k

a ffinity a s



=

=


 (10) 

Where k  represents the number of selected self data neighboring the candidate detec-

tor, and ( )nearest

iSelf  represents the self data closest to the current candidate detector, 

satisfying: 

 1{ | ( , ) { ,..., }, , }nearest

j j k j trainSelf s affinity d s affinity affinity s Self j i=     (11) 

Distance is a measure of spatial difference between data points. Smaller distances 

indicate closer points and higher concentration. Using the reciprocal of distance con-

verts the relationship between distance and density, so that small distances correspond 



to high density, and large distances correspond to low density. For example, if neigh-

boring points of a candidate detector d  are all close to it, then the sum of distances 

between these neighboring self points S  would be small, and the reciprocal of this sum 

would be large, indicating high density around this point. This conforms to the intuitive 

understanding of density: areas with more concentrated points have higher density. 

When density is higher, there are more self data near the candidate detector. To pre-

vent false positives of the candidate detector against self data, the radius of the candi-

date detector should be smaller; conversely, it should be larger. The calculation method 

for the immune domain 
dr  of candidate detector d  is as follows: 

 [(1 ) ]i min

th

r affinity affinity


 


= −  +   (12) 

Where   is a constant used to adjust the size of the radius. affinity  is the average 

affinity of the current k points, and 
minaffinity  is the minimum affinity.   is a propor-

tion coefficient in the range [0,1], used to balance the contribution of average affinity 

and nearest affinity in radius calculation. 

Through this formula design, we can comprehensively consider multiple aspects of 

information such as neighboring density of data points, average distance, and nearest 

self distance. This calculates a radius value that can reflect both the overall density 

characteristics around the data point and accommodate the local relationship with sim-

ilar points. It achieves activation of immune detectors within a reasonable range, forc-

ing them to cover unknown immune space. 

3.4 Network Attack Detection 

In the detection process, each test network sample is represented as an dk -dimen-

sional antigen vector 
( )(1) (2)( , ,..., )dn

test test test testa ag ag agg = , where ( )d

testag  denotes the feature 

value in dimension d . To maintain consistent scaling with training data, we normalize 

test samples using: 

In the actual detection process, we also represent each test network sample as a d

dimension antigen vector, where represents the feature value of the sample in the di-

mension ( 1,2,..., dd k= ). To ensure that test samples are compared with train samples 

on the same scale, we also need to standardize the test samples. The standardized test 

sample 
testag  is calculated according to the following formula:  
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Where 
( ) ( ) ( )

1, ,min{ , }
d

d d d

min test n testa ag agg =  and 
( ) ( ) ( )

1, ,max{ , }
d

d d d

max test n testa ag agg =  represent the 

minimum and maximum values across all test samples in dimension d .  

For each test antigen 
testag , the system will check whether it falls within the cover-

age area of any detector. As long as there exists a detector 
( ) ( ) ( )( , ) ( 1,2,...,| |)
t

llm llm

t t

llm llm llmag r t =D D D  such that 

 
( ) ( )
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then 
testag  is identified as a nonself antigen (i.e., an attack sample). This inequality in-

dicates the Euclidean distance between 
testag  and detector center 

llmag  is less than or 

equal to the detector's radius 
llmr , meaning 

testag  falls in the detector's coverage. Con-

versely, when 
llmag  is not covered by any detector, it is classified as a normal sample. 

4 EXPERIMENTAL RESULTS 

In this section, we conduct extensive experiments to evaluate the performance of our 

method. We first perform validation experiments for scheme effectiveness, followed 

by performance comparison experiments between different intrusion detection systems. 

We detail the experimental setup, including dataset description, dataset partitioning, 

baseline studies, and evaluation metrics. Subsequently, we comprehensively compare 

its performance with various application studies, covering intrusion detection systems 

based on machine learning, deep learning, and artificial immune systems. 

4.1 Validation Experiments 

We first use Haberman dataset to validate that vectors generated by the LLM are 

meaningful and valuable. The Haberman dataset is a standard dataset widely used for 

artificial immune system performance verification. It contains 306 data instances, 3 

features, and 1 target variable, facilitating visual analysis. Using the proposed method 

in 3, we first mapped the dataset to three-dimensional space and divided 225 self and 

81 nonself antigens accordingly. To simulate an environment with scarce attack fea-

tures, we randomly extracted only 8 vectors from the nonself antigen set as a few-shot 

train set, with the remaining self samples used for antibody tolerance train. 

 Using locally deployed large language models, we performed transformation oper-

ations on these eight nonself antigen vectors. Through prompt guidance, the model gen-

erated 8 new nonself antigen vectors for each original nonself antigen vector. We con-

ducted three rounds of generation, creating antibody detectors using the corresponding 

generated antigens in each round. This progressive generation process not only ex-

panded the spatial information content of the original few-shot samples but also enabled 

the large language model to continue exploring unknown areas in the feature space 

based on previously generated vectors. The experimental results are shown in Fig. 3. 

 



             
                            (a): Round 0                                      (b): Round 1 

             
                            (c): Round 2                                      (d): Round 3 

Fig. 3. Experimental Results on the Haberman Dataset 

As we can see, the newly generated detectors fully meet the three requirements for 

antibodies in artificial immune systems: (1) Cover the antigen space as widely as pos-

sible, achieving effective monitoring of both known and unknown regions; (2) Cover 

all nonself antigens as comprehensively as possible, ensuring high detection rates; (3) 

Avoid covering self antigens as much as possible, maintaining low false positive rates. 

Based on this method, new nonself antigens can be generated without quantity limita-

tions, effectively addressing key technical bottlenecks in traditional artificial immune 

algorithm-based evolutionary algorithms, such as antigen gaps and premature antibody 

convergence. 

4.2 Comparative Experiments Settings 

Dataset Description: Comparative experiments will be conducted on two widely used 

network intrusion detection datasets: UNSW_NB15 [22] and CICIDS-2018 [23]. These 

datasets are selected as benchmarks to comprehensively evaluate the performance of 

our method against other IDS in different application scenarios. 

UNSW_NB15: It is a network security dataset designed to reflect the complexity of 

contemporary network traffic and attack scenarios. It effectively addresses inherent 

problems in NSL-KDD and is specifically designed to evaluate the performance of new 

network intrusion detection systems when facing modern network threats. Each record 

in this dataset contains 47 features and is labeled as normal traffic or attack traffic. 

Attacks cover nine types: Analysis(A), Backdoors(B), DoS(D), Exploits(E), Fuzz-

ers(F), Generic(G), Reconnaissance(R), Shellcode(S), and Worms(W). 

CICIDS-2018: It is a modern large-scale dataset with a massive scale containing ap-

proximately 10 million records. Each record in the dataset includes 82 features, 
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containing complete network traffic information and detailed traffic statistical features, 

labeled as normal data or abnormal data. The abnormal data include various actual net-

work attack scenarios, which we categorize into six major attack types: Bot(B1), Brute 

Force(B2), DoS(D1), DDoS(D2), Infiltration(I), and SQL injection(S).  

Dataset Configuration: We constructed 9 and 6 different experimental setups for 

UNSW_NB15 and CICIDS-2018 datasets respectively to evaluate the performance of 

our method. These experimental setups are specifically designed to simulate two key 

features in industrial control systems: limited attack samples and  massive unknown 

network attacks. In each setup, we adopted the following strategies: (1) Few-shot sim-

ulation: Only extracting a small number of attack samples in the train set; (2) Unknown 

attack simulation: Purposely removing a specific type of attack samples from the train 

set; (3) Balanced sample design: Extracting normal samples in equal quantity to attack 

samples. We denote the corresponding type of dataset as the Missing train set, abbre-

viated as Miss_type. The specific setup schemes are shown in Table 1 and Table 2. 

Table 1. Experimental Setup for UNSW_NB15 dataset. 

Setting 
Self Nonself 

Normal A B D E F G R S W 

Miss_A 1040 0 130 130 130 130 130 130 130 130 

Miss_B 1040 130 0 130 130 130 130 130 130 130 

Miss_D 1040 130 130 0 130 130 130 130 130 130 

Miss_E 1040 130 130 130 0 130 130 130 130 130 

Miss_F 1040 130 130 130 130 0 130 130 130 130 

Miss_G 1040 130 130 130 130 130 0 130 130 130 

Miss_R 1040 130 130 130 130 130 130 0 130 130 

Miss_S 1040 130 130 130 130 130 130 130 0 130 

Miss_W 1040 130 130 130 130 130 130 130 130 0 

Baseline Studies: We compared the performance of ours with various widely applied 

intrusion detection methods. RF-IDS [24] and SVM-IDS [25] are intrusion detection 

systems based on classical machine learning, representing the most used technical ap-

proaches in current industrial practice [29]. Random Forest enhances classification 

through ensemble learning of multiple decision trees, while Support Vector Machine 

employs kernel functions to establish optimal hyperplanes in high-dimensional feature 

spaces. These comparisons assess our method's practical advantages and deployment 

potential. CNN_LSTM-IDS [26] and GRU_LSTM-IDS [27] represent advanced intrus- 



Table 2. Experimental Setup for CICIDS_2018 dataset. 

Setting 
Self Nonself 

Normal B1 B2 D1 D2 I S 

Miss_B1 1420 0 100 500 500 300 20 

Miss_B2 1620 300 0 500 500 300 20 

Miss_D1 1220 300 100 0 500 300 20 

Miss_D2 1220 300 100 500 0 300 20 

Miss_I 1420 300 100 500 500 0 20 

Miss_S 1700 300 100 500 500 300 0 

ion detection technologies based on deep learning. CNN_LSTM combines convolu-

tional and recurrent architectures to process both spatial and temporal traffic character-

istics, while GRU_LSTM utilizes simplified recurrent structures that maintain temporal 

feature learning capabilities. These networks dynamically perceive potential unknown 

attacks through temporal relationship analysis. DGA-PSO-IDS [30] and V-Detector-

IDS [29] are intrusion detection methods based on artificial immune system. DGA-PSO 

employs Particle Swarm Optimization to generate detectors that fill nonself antigen 

space gaps, while V-Detector implements variable radius mechanisms to improve non-

self space coverage with demonstrated operational stability. These comparisons specif-

ically validate our antigen generation effectiveness against optimization-based ap-

proaches and established artificial immune benchmarks. This comprehensive evalua-

tion framework spans the full spectrum of detection technologies, providing robust per-

formance benchmarks across multiple technical dimensions. 

Evaluation Metrics: We apply a series of widely used evaluation indicators to measure 

system performance, including Unknown Detection Rate (UDR), Accuracy, Precision, 

Recall, F1 (weighted average of precision and recall rate) and False positive rate (FPR). 

4.3 Comparative Experiments Results 

Performance Comparison on UNSW-NB15 Dataset: Table 3 presents the perfor-

mance comparison between ours and other baseline models on UNSW-NB15 dataset. 

This dataset features higher real-world complexity, effectively addressing issues of at-

tack class imbalance and synthetic data lacking realistic network complexity. On this 

dataset, traditional methods like SVM and CNN_LSTM, show obvious limitations, 

such as high false positive rates and low detection rates. Our method, leveraging the 

powerful high-dimensional feature analysis capabilities and optimized detector gener-

ation strategies, generally outperforms other models across key metrics. In Miss_B and 

Miss_W, ours achieves higher accuracy and recall rates with only a slight precision loss 

(approximately 2.3%), while maintaining superior F1 scores compared to other models, 

demonstrating ours’ adaptability in more complex network environments. The model 
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can achieve satisfactory detection accuracy while maintaining low false positive rates, 

effectively capturing both known and unknown network attacks. 

Performance Comparison on CICIDS_2018 Dataset: Table 4 presents the perfor-

mance comparison on CICIDS_2018 dataset. This dataset, with its massive data volume 

and high-dimensional features, creates a challenging environment for model computa-

tional and generalization ability. In this complex environment, traditional models show 

very limited learning effectiveness under few-shot conditions, almost losing their de-

tection capabilities for both known and unknown network attacks. Models like VD and 

GRU_LSTM perform even worse than random guessing in detecting attack categories 

such as SQL injection, clearly highlighting these methods' sensitivity and limitations to 

few-shot conditions and high-dimensional features. In contrast, our method, leveraging 

the large language model's ability to explore potential network attack features in high-

dimensional space almost without restriction, demonstrates low sensitivity to data di-

mensionality. Additionally, the model can generate high-quality detectors that meet the 

requirements of intrusion detection tasks, maintaining high accuracy and detection rates 

in this more rigorous network environment. Although ours shows a false positive rate 

(FPR) generally between 22-25%, higher than its performance on the UNSW_NB15 

dataset, it still achieves significant improvements compared to the generally higher 

false positive rates of baseline models. It can be considered to achieve a satisfactory 

balance between high detection rates and low false positive rates, maintaining consist-

ently excellent performance across all unknown attack categories, demonstrating 

unique advantages in handling high-dimensional complex cyberattacks. 

Table 3. Performance Comparison between Ours and Baseline on UNSW-NB15 Dataset 

Type Metric RF SVM CNN_LSTM GRU_LSTM VD DGAPSO Ours 

Miss_A 

UDR 91.43 90.99 88.18 91.43 90.40 91.43 99.91 

Acc 89.64 73.02 80.76 81.31 78.88 77.83 90.48 

Pre 90.06 81.06 76.23 77.73 87.18 87.48 90.51 

Rec 89.12 60.08 89.40 87.76 67.72 64.96 90.44 

F1 89.59 69.01 82.29 82.44 76.23 74.56 90.48 

FPR 9.84 14.04 27.88 25.14 9.96 9.30 9.48 

Miss_B 

UDR 94.51 85.94 97.60 98.80 90.05 90.74 99.83 

Acc 88.60 73.99 81.16 82.18 78.88 77.71 89.87 

Pre 93.45 76.08 80.38 79.02 87.18 86.20 90.93 

Rec 83.02 69.98 82.44 87.62 67.72 65.98 88.58 

F1 87.93 72.90 81.40 83.10 76.23 74.75 89.74 

FPR 5.82 22.00 20.12 23.26 9.96 10.56 8.84 

Miss_D 

UDR 93.84 96.57 83.27 93.62 75.35 71.56 98.19 

Acc 88.19 73.34 75.69 81.72 78.88 77.35 90.24 

Pre 88.46 77.92 74.75 78.62 87.18 85.83 91.18 

Rec 87.84 65.14 77.58 87.14 67.72 65.52 89.10 

F1 88.15 70.96 76.14 82.66 76.23 74.31 90.13 

FPR 11.46 18.46 26.20 23.70 9.96 10.82 8.62 

Miss_E 

UDR 64.58 47.14 84.11 66.91 26.82 29.44 89.68 

Acc 85.51 77.37 81.95 80.85 76.93 77.31 90.00 

Pre 87.37 77.66 80.64 80.13 86.03 85.57 90.73 

Rec 83.02 76.84 84.08 82.04 64.30 65.70 89.10 

F1 85.14 77.25 82.33 81.08 73.60 74.33 89.91 

FPR 12.00 22.10 20.18 20.34 10.44 11.08 9.10 

Miss_F UDR 32.51 28.19 40.02 55.43 42.43 38.73 74.94 



Type Metric RF SVM CNN_LSTM GRU_LSTM VD DGAPSO Ours 
Acc 88.94 57.46 82.61 81.83 78.88 76.89 89.87 

Pre 91.01 64.94 81.05 78.30 87.18 84.47 91.51 

Rec 86.42 32.42 85.12 88.06 67.72 65.90 87.90 

F1 88.65 43.25 83.04 82.90 76.23 74.04 89.67 

FPR 8.54 17.50 19.90 24.40 9.96 12.12 8.16 

Miss_G 

UDR 46.74 42.02 41.20 72.27 91.57 97.15 99.69 

Acc 75.66 67.10 68.11 75.54 69.97 77.51 91.27 

Pre 77.53 69.05 68.16 74.03 70.66 86.07 91.44 

Rec 72.26 61.98 67.98 78.68 68.30 65.64 91.06 

F1 74.80 65.32 68.07 76.28 69.46 74.48 91.25 

FPR 20.94 27.78 31.76 27.60 28.36 10.62 8.52 

Miss_R 

UDR 90.73 90.33 54.29 83.38 24.97 46.02 99.30 

Acc 88.66 80.81 75.13 82.04 78.88 77.43 91.25 

Pre 88.97 83.01 79.12 80.50 87.18 86.24 91.41 

Rec 88.26 77.48 68.28 84.56 67.72 65.28 91.06 

F1 88.61 80.15 73.30 82.48 76.23 74.31 91.23 

FPR 10.94 15.86 18.02 20.48 9.96 10.42 8.56 

Miss_S 

UDR 92.59 78.31 80.16 90.48 48.68 44.71 93.18 

Acc 88.08 80.67 82.81 82.21 71.22 77.84 92.01 

Pre 85.90 82.37 80.10 78.68 74.61 87.60 91.44 

Rec 91.12 78.04 87.32 88.36 64.34 64.86 92.70 

F1 88.43 80.15 83.55 83.24 69.09 74.53 92.06 

FPR 14.96 16.70 21.70 23.94 21.90 9.18 8.68 

Miss_W 

UDR 86.36 40.91 86.36 95.45 22.73 13.64 97.75 

Acc 88.86 78.43 85.67 81.41 76.71 78.36 90.66 

Pre 91.38 78.76 85.24 77.86 85.95 87.79 91.29 

Rec 85.82 77.86 86.28 87.78 63.86 65.88 89.90 

F1 88.51 78.31 85.76 82.52 73.28 75.27 90.59 

FPR 8.10 21.00 14.94 24.96 10.44 9.16 8.58 

Table 4. Performance Comparison between Ours and Baseline on CICIDS_2018 Datase 

Type Metric RF SVM CNN_LSTM GRU_LSTM VD DGAPSO Ours 

Miss_B1 

UDR 47.68 48.30 50.12 0.02 0.03 49.85 99.15 

Acc 70.02 74.70 75.95 53.62 48.38 48.99 77.25 
Pre 68.31 78.77 80.35 66.54 42.29 48.24 77.77 
Rec 74.68 67.62 68.70 14.56 8.88 27.66 76.32 
F1 71.35 72.77 74.07 23.89 14.68 35.16 77.04 

FPR 34.64 18.22 16.80 7.32 12.12 29.68 21.82 

Miss_B2 

UDR 46.20 37.20 33.60 19.60 25.60 58.80 97.69 
Acc 73.50 62.94 50.71 34.04 46.43 49.22 75.52 
Pre 76.83 66.78 51.25 23.84 21.35 48.98 75.13 
Rec 67.30 51.50 29.08 14.54 2.66 37.62 76.30 
F1 71.75 58.15 37.11 18.06 4.73 42.56 75.51 

FPR 20.30 25.62 27.66 46.46 9.80 39.18 25.26 

Miss_D1 

UDR 56.25 24.17 0.03 0.00 23.89 99.76 99.92 
Acc 69.43 59.95 64.12 40.82 46.37 52.81 77.07 
Pre 69.52 62.01 64.53 38.99 38.62 54.53 77.47 
Rec 69.20 51.38 62.72 32.52 12.32 33.82 76.34 
F1 69.36 56.20 63.61 35.46 18.68 41.75 76.90 

FPR 30.34 31.48 34.48 50.88 19.58 28.20 22.20 

Miss_D2 

UDR 21.35 15.35 9.27 1.90 0.00 27.65 41.48 
Acc 54.65 54.81 49.20 38.84 48.38 54.62 77.10 
Pre 58.61 70.06 48.88 20.85 42.29 58.24 77.60 
Rec 31.66 16.80 34.78 7.98 8.88 32.66 76.20 
F1 41.11 27.10 40.64 11.54 14.68 41.85 76.89 

FPR 22.36 7.18 36.38 30.30 12.12 23.42 22.00 

Miss_I 

UDR 14.94 35.68 21.83 0.04 19.94 26.27 79.70 
Acc 75.52 67.88 67.64 50.18 37.31 54.55 77.63 
Pre 81.12 67.44 76.23 87.50 17.44 58.87 80.49 
Rec 66.52 69.14 51.26 0.42 6.80 30.20 72.94 
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Type Metric RF SVM CNN_LSTM GRU_LSTM VD DGAPSO Ours 
F1 73.10 68.28 61.30 0.84 9.79 39.92 76.53 

FPR 15.48 33.38 15.98 0.06 32.18 21.10 17.69 

Miss_S 

UDR 49.25 43.28 64.18 73.13 0.00 56.72 98.83 
Acc 59.76 61.81 62.97 36.32 45.04 48.78 75.06 
Pre 60.69 70.60 63.63 37.58 9.48 47.92 74.41 
Rec 55.42 50.76 60.56 41.40 1.16 28.14 76.40 
F1 57.93 59.06 62.06 39.40 2.07 35.46 75.39 

FPR 35.90 21.14 34.62 68.76 11.08 30.58 26.28 

5 CONCLUSION 

In this paper, we propose an LLM-based immune detection method for unknown 

network attacks in industrial control systems under few-shot conditions. First, we map 

cyberattack data to the antigen space of an artificial immune system, then design a spe-

cialized prompt template to guide the large language model in learning and analyzing 

the spatial distribution characteristics of non self antigen space. Finally, we generate 

immune detectors guided by LLM and activate the detectors through tolerance. 

Through extensive experiments, we demonstrate that our proposed method outperforms 

current mainstream methods on key metrics, including intrusion detection systems 

based on machine learning, deep learning, and artificial immune systems. 

Future work will focus on processing the generated detectors, including strategies 

for detector coordinate mutation, promoting tolerance between detectors, and reducing 

the number of excessively redundant detectors, thereby reducing false positives caused 

by too many detectors. Additionally, future work will also attempt to optimize the large 

language model's strategy for generating detector vectors through fine-tuning, rein-

forced retrieval, and other methods to enhance understanding of the feature space. 
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