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Abstract. Achieving both high accuracy and greater similarity to the modeling 

process of human engineers in CAD reconstruction tasks is a challenging prob-

lem. In this paper, we propose JLGS-CAD, a neural network designed based on 

joint learning, aiming to coordinatively maximize the accuracy of model recon-

struction and the quality of the modeling sequence. Based on the characteristics 

of the CAD modeling process, we divide the reconstruction task between two 

models: the Extrusion Model, responsible for the geometric accuracy of the re-

constructed shape, and the Sketch Model, responsible for the quality of the mod-

eling sequence. We adopt a hybrid supervision approach to enable joint learning 

of both sequences and geometry in the two models. This method significantly 

improves the quality of the modeling sequence while maintaining the precision 

of the reconstructed geometry, allowing the network to produce results more 

aligned with human modeling workflows. Our training pipeline consists of two 

stages: a supervised pre-training stage on a large-scale dataset with sequence an-

notations and a self-supervised fine-tuning stage on a target dataset without se-

quence labels. This reduces the network’s dependency on large annotated CAD 

modeling datasets. Experiments conducted on the ABC and Fusion 360 datasets 

demonstrate the effectiveness of our method. JLGS-CAD accurately recovers ge-

ometric details and constructs editable and creative modeling workflows, show-

ing clear advantages over state-of-the-art alternatives. 

Keywords: CAD Reconstruction, Sequence Generation, Joint Learning. 

1 Introduction 

Serving as a cornerstone in today's manufacturing processes, Computer-Aided Design 

(CAD) modeling facilitates the creation of accurate and editable representations of 

physical items [2]. However, constructing CAD models manually is both time-consum-

ing and skill-intensive, often requiring expert knowledge of design tools and the under-

lying modeling logic [25]. as 3D scanning technologies become increasingly accessi-

ble, the demand for automatic and accurate CAD reconstruction from 3D point clouds 

has grown significantly. 

Automated 3D CAD reconstruction developed from an early time [7]. Traditional 

approaches to CAD reconstruction typically rely on multi-stage pipelines that convert 

raw 3D data into polygonal meshes, followed by segmentation, primitive extraction, 



 

 

and procedural modeling [3, 23]. As deep learning techniques have advanced and found 

extensive application across various domains, several researchers have suggested em-

ploying neural networks to directly predict geometric primitives [9] or Constructive 

Solid Geometry (CSG) trees [26, 38], and B-Rep CAD models [6, 13]. Recent research 

has begun to focus on feature-based CAD model reconstruction. A representative class 

of methods aims to predict sketch-extrusion pairs to simulate the human modeling pro-

cess [14, 15, 16, 30]. Following the publication of various large-scale CAD datasets 

[12, 24, 32], some approaches have started to explore CAD reconstruction from a se-

quence generation perspective. While these methods are promising, they often face a 

trade-off between geometric fidelity and sequence interpretability, especially when 

constrained by the availability of sequence-labeled datasets. 

To address these challenges, we introduce JLGS-CAD, a novel deep neural network 

framework with joint learning architecture for geometry and sequence, reconstructing 

accurate and human-like CAD modeling sequences from point clouds. JLGS-CAD uses 

a dual-model design: a geometry-focused Extrusion Model predicts extrusion boxes, 

boolean operations, and sketch occupancy, while a sequence-focused Sketch Model 

generates sketch drawing commands based on the occupancy map. We treat sequence 

prediction and geometric reconstruction as two distinct yet complementary objectives 

and optimize them jointly within a unified neural network. Inspired by multi-task learn-

ing methods [1, 29, 35], we design a hybrid supervision framework that fosters an in-

trinsic connection between geometric and sequential information, enabling outputs that 

are both accurate and human-like. Moreover, we establish a two-stage training proce-

dure to fully leverage available data and ensure robust generalization. This approach 

significantly reduces reliance on labeled data while maintaining high accuracy and se-

quence quality. By explicitly modeling both the geometric fidelity and human-like de-

sign logic, JLGS-CAD not only produces high-quality CAD models but also generates 

modeling sequences that are editable, reusable, and aligned with real-world design 

workflows. Experiments conducted on popular datasets show that our approach sur-

passes current baseline methods regarding both the accuracy of reconstruction and the 

quality of command sequences. 

Overall, the principal contributions of this study are as follows: 

• We propose a novel neural network designed for CAD reconstruction, JLGS-CAD, 

which focuses on the optimization of two key goals: geometric accuracy and se-

quence quality. 

• We design a hybrid supervision framework based on the idea of joint learning that 

simultaneously optimizes geometric reconstruction and sequence prediction. This 

approach enables the network to establish an intrinsic connection between geometric 

and sequential information, allowing it to produce command sequences that achieve 

accurate reconstruction while closely reflecting human modeling style. 

• We implement a two-phase training procedure: initially, the model undergoes pre-

training on a sequence-labeled dataset, followed by fine-tuning on the target dataset. 

This approach endows JLGS-CAD with strong generalization ability and low de-

pendency on labeled datasets. 
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• Comprehensive experiments conducted on widely adopted datasets validate that 

JLGS-CAD produces more precise and human-like modeling command sequences, 

surpassing current state-of-the-art techniques for same task. 

2 Related Work 

In recent years, deep learning approaches have been progressively utilized to automat-

ically reconstruct CAD models from raw data. The main approaches can be categorized 

into three types: 

Primitive-Based Reconstruction. Primitive-based reconstruction methods approx-

imate and represent complex CAD models by extracting and combining simple geo-

metric shapes (e.g., planes, cylinders, spheres). Technical fields include parametric sur-

face fitting [27], curve and corner detection [9, 17]. Another related area is reconstruc-

tion based on Constructive Solid Geometry (CSG), which combines basic primitives to 

create complex shapes using Boolean operations  [10]. For instance, CSGNet leverages 

neural networks to parse sequences of Boolean modeling operations [26]. More recent 

improvements include enhancing representation capability through a three-layer refor-

mulation [21] and introducing more complex geometric primitives (e.g., quadric sur-

faces) to support richer shape representations [36]. Despite the strong expressive power 

of  primitive-based methods, they tend to lack flexibility and are less editable.  

Sketching-Extrusion Based Reconstruction. Sketching and extrusion are com-

monly used operations in modern CAD modeling workflows, and many studies aim to 

generate CAD models consistent with this workflow from point clouds [15, 16, 22, 30]. 

Sketch-and-extrusion methods simulate the real CAD modeling process by predicting 

2D sketches and extruding them into 3D models. For example, ExtrudeNet generates 

3D shapes by predicting the parameters of closed Bézier curves and performing extru-

sion operations [22]. SECAD-Net further improves this approach by directly predicting 

2D implicit fields using neural networks and training the model through self-supervised 

learning [16]. The advantage of these methods lies in their alignment with CAD mod-

eling logic, resulting in models with high geometric accuracy. However, since they only 

support simple sketch and extrusion operations, their representational capability is lim-

ited when handling complex shapes. 

Sequence Based Reconstruction. Sequence-based reconstruction methods focus on 

learning the sequential generation process of CAD modeling operations to enable more 

flexible and editable CAD model generation [8]. DeepCAD is one of the representative 

studies in this area, generating complete models by learning CAD modeling operation 

sequences [33]. Similarly, methods like Fusion360 generate editable modeling instruc-

tion sequences from point clouds or sketch inputs [32]. SkexGen further expanded on 

this idea by supporting more complex modeling operations [34]. Recent studies have 

looked into applying language models for CAD reconstruction. For instance, combin-

ing pre-trained language models with diffusion models has been proposed for sequence-

based modeling tasks [18]. These methods closely align with real CAD modeling work-

flows, producing results that are easy to modify. Nevertheless, these approaches con-

tinue to encounter difficulties regarding geometric precision and the reconstruction of 



 

 

intricate shapes. Additionally, their performance heavily relies on datasets with se-

quence annotations. Building on these advances, our work addresses the trade-off be-

tween geometric fidelity and sequence availability, while reducing reliance on large-

scale annotated datasets. 

3 Problem Statement and Overview 

3.1 Sketch-and-Extrude Construction Sequence 

By referring to previous works [16, 33, 34] and common dataset formats [12, 32], we 

represent a CAD model using sketches and extrusions. We define a primitive as the 

basic shape formed by a sketch along with an extrusion operation. Consequently, the 

CAD model reconstruction process can be described as follows: starting with an input 

3D shape—point cloud in this work—the sketch and extrusion information will be pre-

dicted for the n primitives that compose the shape. 

3.2 Task Decomposition 

For extrusion operations, the key sketch factor affecting reconstruction accuracy is the 

closed region it encloses. To improve both reconstruction accuracy and sequence qual-

ity, we divide sketch prediction into two steps: first, predicting the sketch’s occupancy 

representation to enable precise geometric reconstruction with extrusion information; 

second, inferring the command sequence forming the sketch based on the occupancy 

representation. Accordingly, JLGS-CAD comprises two sub-models: the Extrusion 

Model and the Sketch Model, shown in Fig. 1 and Fig. 3. Extrusion Model receives a 

point cloud as input and predicts a set of primitives, each defined by its bounding box, 

Boolean operations, and sketch occupancy representation. The occupancy representa-

tion is then input to the Sketch Model, which generates the corresponding sketch com-

mand sequence. Combining the sketch sequence with the extrusion information yields 

the final command sequence representing the full model. Assuming perfect Sketch 

Model predictions, the Extrusion Model determines the geometric accuracy, while the 

Sketch Model controls the sequence quality. 

3.3 Joint Learning and Hybrid Supervision 

We frame the improvement of geometric accuracy and human modeling as a multi-task 

learning challenge. Inspired by [1, 29], we design the optimization objectives in both 

the Extrusion Model and the Sketch Model to jointly learn sequence and geometric 

information using a hybrid supervision framework. In the Extrusion Model, primitive 

box prediction is supervised by the extrusion command parameters from the dataset, 

while other supervision signals are derived from geometric comparisons, requiring no 

additional annotations. The Sketch Model follows the same approach: the sketch com-

mand sequence supervises network sequence prediction, while contours and distance 

fields guide geometric learning. In both models, sequence and geometric learning act 
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as auxiliary tasks for each other. Geometric learning refines sequence parameter pre-

diction, while sequence learning stabilizes geometric prediction initialization. This 

multi-task framework enables a deeper understanding of the relationship between se-

quence learning and geometry. 

Given the distinct characteristics of these two objectives, the training process is or-

ganized into a pre-training phase followed by a fine-tuning phase. During pre-training, 

the network undergoes hybrid supervised learning on a sequence-annotated dataset to 

build general sequence and geometric reasoning capabilities. Next, in the target dataset 

(evaluation dataset), the network will perform self-supervised fine-tuning based only 

on geometric information, which will further improve the geometric accuracy of the 

network prediction with almost no loss in sequence reasoning capabilities. 

 

Fig. 1. Network architecture for Extrude Model. The input point cloud is encoded into latent 

first, then Box Head predicts primitive box parameters. For each primitive, the Sketch Head 

predicts a 2D sketch SDF in the local coordinate frame. Primitives are sequentially merged into 

a global SDF via Boolean operations, then converted into an occupancy map for supervision. 

4 Method 

We now present the detailed implementation of our JLGS-CAD framework. JLGS-

CAD consists of two main components, which we refer to as the Extrusion Model and 

the Sketch Model. A target point cloud is first input to the Extrusion Model, which 

predicts the basic parameters of the primitive components, the signed distance field 

(SDF) of the sketch, and the sketch’s occupancy representation. The occupancy repre-

sentation is then passed to the Sketch Model, which predicts a sequence of sketch draw-

ing commands. The final CAD reconstruction sequence is obtained by combining the 

outputs of both models. Both modules are designed with a multi-task learning strategy 

that jointly optimizes for geometry recovery and sequence prediction, and support hy-

brid-supervised pretraining and self-supervised fine-tuning. 

4.1 Extrusion Model 

In JLGS-CAD, the Extrusion Model is crafted to precisely match the shape of the CAD 

model. Inspired by [16, 19], we adopt an implicit representation using Signed Distance 

Fields (SDF) to describe the reconstruction result, which allows for resolution-inde-

pendent, high-fidelity shape modeling while keeping parameter size under control. Fig. 

1 shows the architecture of the Extrusion Model. A set of query points 𝑄 = {𝑞𝑖}𝑖=1
𝑁  is 

input into the network, which predicts the signed distance 𝑆𝑖 from each query point 𝑞𝑖 



 

 

to the surface of the object. This distance is then converted into an occupancy prediction 

𝑂pred, which is matched against the ground truth occupancy label 𝑂gt to learn the shape 

representation. 

Point Cloud Encoder. Given an input point cloud P, the first stage is a point cloud 

encoder based on PointNet++ [20]. Through feature abstraction, input P is transformed 

into a feature vector 𝐳 ∈ ℝ256, later employed for primitive parameter prediction and 

SDF regression. 

 

Fig. 2. Architecture for Sketch Head. Sketch Head iteratively predicts the 2D SDF sketch of 

each primitive by combining point cloud features with query points, Boolean operations, and 

the current global SDF, progressively refining the geometry and updating the overall shape. 

Primitive Box Prediction. After obtaining the latent representation z, we first de-

code it into a set of primitive box parameters, which define the coarse shape and com-

position of the target model. This is achieved using a decoder we call the Box Head, 

which outputs n primitives: 

 BoxHead(𝑧) = {𝐁𝑖}𝑖=1
𝑛 , 𝐁𝑖 = (𝑐𝑖 , 𝑟𝑖 , 𝑠𝑖 , 𝑒𝑖 , 𝑏𝑖) (1) 

where 𝑐𝑖 = (𝑥, 𝑦, 𝑧) is the reference point of the box, also the origin of the sketch 

plane, 𝑟𝑖 = (𝜃, 𝜙, 𝛾)  is the rotation angles, 𝑠𝑖 = (𝑙, 𝑤)  is the estimated sketch size 

(length and width), 𝑒𝑖 = (𝑒min, 𝑒max) is the extrusion height range, 𝑏𝑖 ∈ ℝ3 is the Bool-

ean operation type (join, cut, intersect), following DeepCAD and Fusion360. 

Sketch SDF Prediction. Once the box parameters are predicted, the next step is to 

reconstruct the fine geometry of each primitive by predicting its corresponding 

sketch. We refer to this component as Sketch Head. Inspired by [16, 30], we use an 

implicit representation via 2D SDF to describe each sketch. Query points are first trans-

formed into the local coordinate system defined by each box. Then their signed dis-

tances are predicted and projected onto the sketch plane to obtain 2D sketch SDFs. 

Given that primitives are added sequentially via Boolean operations and the order af-

fects the resulting geometry, the Sketch Head is designed as an iterative module. It 

predicts sketches in sequence and updates the global SDF after each prediction to min-

imize interference from subsequent primitives. 
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For the i-th primitive, the latent point cloud z and its box parameters 𝐵𝑖  are passed 

through MLPs to produce the latent code 𝐿Pcd . Simultaneously, transformed query 

points 𝑄𝑡 in the sketch coordinate system are processed along with the Boolean opera-

tion 𝑏𝑖  and the current global SDF 𝑆last  to produce the latent query features 𝐿Query . 

These are concatenated and passed to the sketch prediction module to produce the 2D 

SDF of the sketch: 

 𝑆𝑖
2𝐷 = 𝑓sketch(MLP𝑝𝑐𝑑([𝑧, 𝐵𝑖]),MLP𝑞𝑢𝑒𝑟𝑦([𝑄𝑡 , 𝑏𝑖 , 𝑆last])) (2) 

The resulting 2D sketch SDF is lifted into 3D and combined with the global SDF 

using Boolean operations. 

SDF and Occupancy Representation. We use SDF to represent both the entire 

shape and each primitive. Each new primitive’s SDF 𝑆𝑖 is merged into the global SDF 

𝑆global using the following Boolean operations: 

 

Join(𝑆1, 𝑆2) = min(𝑆1, 𝑆2)
Cut(𝑆1, 𝑆2) = max(𝑆1, −𝑆2)

Intersect(𝑆1, 𝑆2) = max(𝑆1, 𝑆2)
 (3) 

 𝑂 = Sigmoid(−𝜂𝑆) (4) 

In the specific implementation, we use softmax to avoid gradient vanishing [21]. 

Through Boolean operations, we gradually merge primitives to obtain the final signed 

distance field of the entire model. Then we convert the signed distance field into an 

occupancy representation, where points inside the shape are denoted as 1 and points 

outside are marked as 0. Referring to [16], the Sigmoid function is used to perform 

operations that enable differentiable transformations. 

4.2 Sketch Model 

Statistics of sequence annotation information in the DeepCAD dataset show that more 

than 75% of the commands in the sequence that constitutes the CAD model are sketch-

related commands. Therefore, improving the quality of the sketch command sequence 

is essential for elevating the overall sequence quality produced by the model. Many 

previous works on reconstructing CAD models from point clouds can output occupancy 

representations or similar representations of sketches [15, 16, 30], but they use heuristic 

methods or contour fitting to construct sketch sequences, which results in inaccurate 

restoration of details and reduced editability. In JLGS-CAD, we design the Sketch 

Model to be a high-quality imitation of the drawing process of human engineers. The 

network architecture of the Sketch Model is depicted in Fig. 3. The network receives 

the occupancy representation of a sketch as input and predicts a sequence of sketch 

commands to precisely capture the sketching process. The following are the modules 

of the Sketch Model: 



 

 

 

Fig. 3. The Sketch Model takes a sketch’s occupancy representation as input and predicts a 

sequence of sketch commands that accurately imitates the human drawing process. It uses a 

convolutional encoder and an autoregressive decoder for sequence prediction, with auxiliary su-

pervision from contour fitting and distance field loss to enhance geometric accuracy. 

Sequence Prediction. When the occupancy representation of the sketch is input into 

the Sketch Model, we use a 2D convolutional image encoder with multi-scale feature 

fusion to transform the occupancy data into latent L, then predict the drawing sequence 

command by command through a transformer decoder with an autoregressive structure. 

Referring to the sequence format of [33], when predicting the parameters of a line or 

arc, we predict only their end points and make the end point of the final curve in the 

loop to serve as the start of the first, so that our curve sequence can always be closed. 

Contour Fitting. In our Sketch Model, we use contour fitting as an auxiliary super-

visory information to improve the contour accuracy. In the data processing stage, the 

Teh-Chin chain approximation [37] is employed to derive the sketch's contour. Then 

we minimize the distance from all vertices in the contour to each curve in the sequence 

prediction to make the prediction result fit the contour more closely. 

Distance Field. To improve the geometric accuracy of sketch reconstruction, the 

predicted query point signed distance field from the Extrusion Model is utilized as su-

pervision. We compute the shortest distance from the query point 𝑃 to the closed curve 

enclosed by the curve corresponding to the command, then reduce the discrepancy be-

tween the predicted field and the actual field. The detailed formula is outlined below: 

 𝐷(𝑃, 𝐿𝑖𝑛𝑒) = {

∥ 𝑃 − 𝐴 ∥, 𝑡 < 0
∥ 𝑃 − 𝐵 ∥, 𝑡 > 1

∥ 𝑃 − (𝐴 +
(𝐴𝑃⋅𝐴𝐵)

∥𝐴𝐵∥2
𝐴𝐵) ∥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑡 =
𝐴𝑃⋅𝐴𝐵

|𝐴𝐵|2
 (5) 

where A,B are two endpoints of Line. 

 𝐷(𝑃, 𝐴𝑟𝑐) = {
| ∥ 𝑃 − 𝑂 ∥ −𝑟|, 𝜃1 ≤ 𝜃𝑃 ≤ 𝜃2

𝑚𝑖𝑛(∥ 𝑃 − 𝐴 ∥, ∥ 𝑃 − 𝐵 ∥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

where A,B are two endpoints of Arc, O is the center, r is radius, 𝜃1, 𝜃𝑃, 𝜃2 are angles 

of start, P and end. 

 𝐷(𝑃, 𝐶𝑖𝑟𝑐𝑙𝑒) = | ∥ 𝑃 − 𝑂 ∥ −𝑟| (7) 

with O representing the center of the Circle, r is radius. 
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 𝐷(𝑃, 𝐶) = 𝑚𝑖𝑛{𝑑|𝑑 = 𝐷(𝑝, 𝑐), 𝑐 ∈ 𝐶} (8) 

where C is the set of curves. 

Following [22], we can convert the distance field into a signed distance field by 

determining whether the query points lie inside the shape. However, this approach in-

troduces more complex gradient variations. Since our sequences are always closed, our 

primary focus is on the accuracy of the shape’s boundary. Therefore, we use an un-

signed distance field for the predicted sequence results and minimize the absolute dif-

ference between this field and the signed distance field of the query points. 

4.3 Training 

The Extrusion Model as well as the Sketch Model are trained independently. The train-

ing strategies of the two models are similar. Both are pre-trained with hybrid supervi-

sion based on a sequence-annotated dataset and fine-tuned with self-supervision on the 

evaluation dataset. 

Extrusion Model training. As shown in Fig. 1, we designed four supervisory sig-

nals for the Extrusion Model. First, we calculate the gap between the prediction result 

of the primitive box and the sequence annotation in the dataset. We define this loss as: 

 𝐿𝑏𝑜𝑥
𝑠𝑒𝑞

= 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐵𝑝𝑟𝑒𝑑 , 𝐵𝑔𝑡) (9) 

Next, we introduce two reconstruction losses aimed at reducing the geometric dis-

crepancy between the network output and the ground truth. To establish the correspond-

ence between the model and the supervised information of the sequence, we utilize the 

box parameters to compute the occupancy representation of the coarse model assem-

bled from cubes, subsequently comparing it with the ground truth. We compute the 

mean squared error (MSE) as the box shape loss: 

 𝐿𝑏𝑜𝑥
𝑠ℎ𝑎𝑝𝑒

= 𝑀𝑆𝐸(𝑂𝑝𝑟𝑒𝑑
𝑏𝑜𝑥 , 𝑂𝑔𝑡) (10) 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑛
𝑖=1 𝑦̂𝑖 − 𝑦𝑖)

2 (11) 

For the final result of the network prediction, we also calculate MSE loss between 

the predicted value of occupancy, which comes from the structure after the sketch 2D 

signed distance field is stretched and merged, and the ground truth: 

 𝐿𝑠ℎ𝑎𝑝𝑒 = 𝑀𝑆𝐸(𝑂𝑝𝑟𝑒𝑑 , 𝑂𝑔𝑡) (12) 

Inspired by [16], we introduce a 2D sketch loss to promote learning accurate sketch 

contours. For each primitive i, we project the query points within its height range onto 

the plane of sketch, followed by a comparison between the predicted and ground-truth 

2D occupancy maps: 

 𝐿𝑠𝑘𝑒𝑡𝑐ℎ
𝑖 = 𝑀𝑆𝐸(𝑂𝑝𝑟𝑒𝑑

𝑖 , 𝑂𝑔𝑡,𝑝𝑟𝑜𝑗
𝑖 ) (13) 



 

 

To mitigate the influence of later primitives on earlier sketches, we exclude affected 

query points from the loss computation as Fig. 4 shows: 

 𝑄𝑖 = 𝑄 − {𝑞 ∈ 𝑄|𝑂𝑗(𝑞) > 𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑, 𝑗 > 𝑖} (14) 

 

Fig. 4. The filtering ensures that the sketch loss at each step accurately reflects only the contri-

bution of the current primitive. (a)Occupancy before filtering (b)Occupancy after filtering. 

Extrusion Model uses all the above losses for calculation during pre-training, while 

the box sequence loss is excluded during fine-tuning. The total loss is as follows: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑏𝑜𝑥
𝑠𝑒𝑞

+ 𝜆2𝐿𝑏𝑜𝑥
𝑠ℎ𝑎𝑝𝑒

+ 𝜆3𝐿𝑠ℎ𝑎𝑝𝑒 + 𝜆4𝐿𝑠𝑘𝑒𝑡𝑐ℎ (15) 

In order to adapt the network to the difference in loss between the two training stages, 

we set the weight 𝜆1 of the box sequence loss to decrease with the training process 

during pre-training. The hyperbolic tangent function is employed to achieve this atten-

uation and activated when the training progress reaches 20%: 

 𝑊(𝑡) =
1−tanh(𝛼(𝑡−0.5))

2
, 𝑡 =

epoch

max_epoch
 (16) 

Sketch Model training. As shown in Fig. 3, we designed three supervisory signals 

for the Sketch Model. First, we compute the gap between the sketch sequence predic-

tion and the ground truth: 

 𝐿𝑠𝑘𝑒𝑡𝑐ℎ
𝑠𝑒𝑞

= 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶𝑝𝑟𝑒𝑑 , 𝐶𝑔𝑡) (17) 

Next, we calculate the distance between the contour vertices obtained by Teh-Chin 

chain approximation and the curve connected by the sketch sequence, and use it as the 

contour loss: 

 𝐿𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = 𝑀𝑆𝐸(𝐷𝑐𝑜𝑛𝑡𝑜𝑢𝑟 , 0) (18) 

To enhance the geometric precision of the Sketch Model further, we calculate a set 

of query points’ distance field of the curve formed the sketch sequence, compare it with 

the distance field ground truth of the query points, and calculate the shape loss: 

 𝐿𝑠ℎ𝑎𝑝𝑒 = 𝑀𝑆𝐸(𝐷𝑝𝑟𝑒𝑑 , 𝐷𝑔𝑡) (19) 

Sketch Model will use all the above losses for calculation during pre-training, while 

omitting the sketch sequence loss in fine-tuning. The total loss function is as follows: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑠𝑘𝑒𝑡𝑐ℎ
𝑠𝑒𝑞

+ 𝜆2𝐿𝑐𝑜𝑛𝑡𝑜𝑢𝑟 + 𝜆3𝐿𝑠ℎ𝑎𝑝𝑒  (20) 
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We set same sequence loss decay strategy in Sketch Model as in Extrusion Model. 

5 Experiments 

In the following part, we evaluate the efficacy of JLGS-CAD on DeepCAD [12, 33] 

dataset and Fusion 360 Gallery [32] dataset. By conducting comprehensive compari-

sons and ablation experiments, we report the efficacy of our method, showing that it 

outperforms current leading baseline techniques in CAD reconstruction. 

5.1 Experimental Setups 

Datasets. We train JLGS-CAD using the DeepCAD dataset and evaluate it on both 

DeepCAD dataset [12, 33] and Fusion 360 Gallery [32]. To unify the annotation for-

mats, we converted the labels from Fusion 360 Gallery to match the sequential format 

used in DeepCAD. We performed a more comprehensive parsing of the DeepCAD da-

taset, extracting data like extrusion boxes, SDF, occupancy representations to satisfy 

the requirements of JLGS-CAD. We generate surface point cloud samples from the 

mesh models in the datasets as input to the network. Following [4, 5], we randomly 

sample query points from the vicinity space of the models and compute their occupancy 

representations. During the self-supervised fine-tuning, we employ the pretrained 

model released by [19] to generate occupancy fields for the shapes. 

Implementation Details. JLGS-CAD is developed with PyTorch and trained on an 

Nvidia RTX 3090 GPU. For the Extrusion Model, the training process is carried out 

using the Adam optimizer [11], set with a learning rate of 1 × 10−4. The model is first 

pretrained using the training set for 200 epochs with 24 samples per batch. Afterward, 

the model undergoes fine-tuning using the test set, where shapes are randomly orga-

nized into batches of 512 and each batch is further trained over 50 epochs, producing a 

fine-tuned model for evaluation on that group. Following SECAD-Net[16], the number 

of predicted primitives is defined as 4. Throughout the training process, we use a mask 

to block the influence of subsequent primitives, which allows the network to predict all 

primitive sketches simultaneously without a significant increase in training time. Our 

approach maintains a parameter scale comparable to SECAD-Net, with about 30% in-

crease in GPU memory usage due to multi-step primitive feature encoding. During in-

ference, the iterative structure leads to approximately a 50% increase in inference time. 

The Adam optimizer is utilized in the Sketch Model, configured with a learning rate of 

1 × 10−4, pretraining it for 300 epochs with 64 samples per batch. We then fine-tune it 

in the same manner as the Extrusion Model—grouping 512 shapes per batch and train-

ing for 50 epochs per group. During both pretraining and fine-tuning stages of the 

Sketch Model, we employ data augmentation such as random rotations, scaling of 

sketches, and injecting noise into the signed distance fields of query points. 

Evaluation Metrics. For quantitative evaluation, we adopt commonly used metrics 

from prior work [33], including Chamfer Distance (CD), Intersection-over-Union 

(IoU), Invalid Rate (IR), Command Accuracy (𝐴𝐶𝐶𝑐𝑚𝑑 ) and Parameter Accuracy 

(𝐴𝐶𝐶𝑝𝑎𝑟𝑎𝑚). 



 

 

Table 1. Quantitative assessment of reconstruction outcomes on DeepCAD dataset. Method 

with * means data that we cite from [18], for the reconstruction code is not publicly available. 

Method MedCD↓ IoU↑ 
IR↓ 

(%) 

ACCcmd↑ 

(%) 

ACCparam↑ 

(%) 

DeepCAD 1.036 0.439 13.68 76.49 68.72 

Point2cyl 0.694 0.697 5.33 34.15 27.56 

SECAD-Net 0.438 0.728 6.62 36.89 28.35 

ExtrudeNet* 0.337 0.403 25.34 28.17 24.73 

HNC-CAD* 0.864 0.653 5.62 82.69 74.58 

CAD-Diffuser* 0.302 0.743 1.48 88.55 82.92 

Ours 0.271 0.783 2.35 89.86 84.11 

5.2 Quantitative results 

We compare our method with several similar CAD reconstruction approaches capable 

of outputting editable sequences. The quantitative results for both DeepCAD and Fu-

sion 360 Gallery datasets are respectively presented in Table 1 and Table 2. For Deep-

CAD [33] and Point2Cyl [30], we retrained and tested their original implementations 

on the same datasets. For SECAD-Net [16], we adapted it by substituting the voxel 

encoder with a point cloud encoder, and then retrained and evaluated it. For the remain-

ing methods, we cite the results reported in CAD-Diffuser [18].  

Table 2. Quantitative assessment of reconstruction outcomes on Fusion 360 dataset. Method 

with * means data that we cite from [18], for the reconstruction code is not publicly available. 

Method MedCD↓ IoU↑ 
IR↓ 

(%) 

ACCcmd↑ 

(%) 

ACCparam↑ 

(%) 

DeepCAD 4.427 0.37 24.14 70.68 62.91 

Point2cyl 0.631 0.638 5.89 35.33 27.94 

SECAD-Net 0.529 0.704 6.98 34.26 25.89 

ExtrudeNet* 0.495 0.373 24.97 27.43 23.75 

HNC-CAD* 3.682 0.635 7.27 75.46 64.52 

CAD-Diffuser* 0.385 0.632 1.65 85.56 80.48 

Ours 0.348 0.744 2.94 85.81 79.54 
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Fig. 5. Visual comparison between reconstruction results. 

As shown, our proposed JLGS-CAD outperforms all other methods across all eval-

uation metrics. In particular, the superior MedCD and IoU values demonstrate our 

method’s high geometric fidelity. The best performance in command and parameter 

accuracy shows that our model effectively recovers human-like modeling sequences. 

We also show some visual comparison between reconstruction results in Fig. 5. 

5.3 Ablation Study 

Ablation studies are conducted to evaluate the efficacy of our architectural design 

within JLGS-CAD. Table 3 reports the quantitative results on the DeepCAD dataset. 

Table 3. Ablation Study results on DeepCAD dataset. E means Extrusion Model. S means 

Sketch Model. 

Settings MedCD↓ IoU↑ 
IR↓ 

(%) 

ACCcmd↑ 

(%) 

ACCparam↑ 

(%) 

Baseline 0.438 0.728 6.62 36.89 28.35 

E 0.329 0.769 3.11 43.76 33.62 

E+S 0.307 0.773 2.76 87.52 79.73 

E Finetune 0.276 0.781 2.49 87.93 82.46 

E+S Finetune 0.271 0.783 2.35 89.86 84.11 

Baseline 0.438 0.728 6.62 36.89 28.35 

E 0.329 0.769 3.11 43.76 33.62 



 

 

 

Fig. 6. (a)Sketch SDF before Extrusion Model finetune. (b)Sketch SDF after Extrusion Model 

finetune. (c)Sketch sequence before Sketch Model finetune. (d)Sketch sequence before Sketch 

Model finetune. 

We take SECAD-Net [16] as the baseline, as our Extrusion Model is built upon its 

design. First, we evaluate the performance gain from using only the improved Extrusion 

Model. The results show a significant improvement in geometric reconstruction accu-

racy, and a modest increase in sequence recovery rate. This demonstrates that incorpo-

rating sequence-level supervision enhances the similarity of the predicted primitives to 

those used in human modeling, providing a strong initialization for geometry recon-

struction. With the addition of the Sketch Model, we observe a substantial increase in 

sequence recovery rate, indicating its effectiveness in predicting sketch sequences. 

Next, we evaluate the impact of fine-tuning both models individually. Fine-tuning the 

Extrusion Model further improves geometric accuracy, validating the effectiveness of 

our self-supervised training strategy in capturing geometric details from input data. 

Fine-tuning the Sketch Model boosts the sequence recovery rate even further, showing 

that the Sketch Model, having established an intrinsic link between geometry and se-

quence during pretraining, can leverage geometric supervision to further refine its se-

quence predictions. Fig. 6 visualizes the improvements achieved through finetuning 

Extrusion Model and Sketch Model. 

6 Conclusion 

This paper presents JLGS-CAD, a novel deep learning framework developed to recon-

struct editable, human-like CAD modeling sequences from point clouds. Unlike prior 

approaches that treat geometry and sequence prediction separately or simplify model-

ing operations, JLGS-CAD embraces a joint learning paradigm that simultaneously op-

timizes geometric reconstruction and sequence generation. By decomposing the task 

into two synergistic sub-models, an Extrusion Model for geometric accuracy and a 

Sketch Model for sequence interpretability, we enable the system to align closely with 

real-world CAD design logic. Furthermore, our hybrid supervision framework lever-

ages both command annotations and geometric signals, facilitating mutual enhance-

ment between geometry and sequence learning. The proposed two-stage training strat-

egy effectively balances labeled and unlabeled data, ensuring scalability and robust 

generalization across datasets. Experimental results demonstrate that JLGS-CAD not 

only achieves superior reconstruction accuracy but also generates modeling sequences 

that are intuitive, reusable, and closely aligned with human design behavior.  
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Our future research will focus on exploring the combination of the Extrusion and 

Sketch Models into a cohesive end-to-end network. Meanwhile, we aim to extend the 

range of command types the network can handle, thereby enhancing the complexity and 

usability of the reconstructed results. Furthermore, replacing the prediction modules 

with large language models may unlock new potentials and greater flexibility to the 

framework. 
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