
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

*Corresponding author: Shuangrong Liu 

ED-GCAE: Efficient and Adaptive Disentanglement via 

Shared Features and Dynamic Noise Injection 

Xingshen Zhang1, Hong Pan2, Bin Chai2, Lin Wang3,1, Bo Yang3,1 and Shuangrong 

Liu1* 

1 Shandong Key Laboratory of Ubiquitous Intelligent Computing, University of Jinan, Jinan 

250022, China 
2 Shandong Institute for Product Quality Inspection, Jinan 250022, China 

3 Quan Cheng Laboratory, Jinan 250100, China 
liusr.constant@gmail.com 

Abstract. Autoencoder-based methods have become a dominant framework in 

disentangled representation learning. However, their reliance on simplistic 

Gaussian density estimation presents significant limitations to better disentangle-

ment performance. The Gaussian Channel Autoencoder (GCAE) was introduced 

to address density estimation flexibility yet suffers from high computational costs 

due to its independent discriminator architecture and sensitivity to noise. To over-

come these challenges, we propose ED-GCAE, a novel framework designed to 

improve the efficiency and dynamic adaptability of GCAE. ED-GCAE incorpo-

rates a shared feature extraction backbone into the discriminator architecture, sig-

nificantly enhancing computational efficiency and training stability. Concur-

rently, we introduce a dynamic latent-variable-dependent noise injection mecha-

nism to achieve the balance between disentanglement and stability. Experiments 

demonstrate that ED-GCAE demonstrates superior performance compared to 

baseline methods, achieving better disentangled representations while exhibiting 

enhanced training stability and computational efficiency.  

Keywords: Disentanglement Representation Learning, Representation Learn-

ing, Deep Learning. 

1 Introduction 

Disentanglement representation learning [1] has been recognized as a promising para-

digm for endowing machines with human-like perception and understanding of the 

world [2][3]. The objective is to automatically disentangle the data into distinct gener-

ative factors within the latent space, which subsequently serve to describe and represent 

the data's characteristics across different aspects. [1][4][5]. Disentanglement represen-

tations have proven beneficial for a mount of downstream tasks, abstract visual reason-

ing [6][7], image generation and manipulation [8][9], enhanced interpretability 

[10][11][12], and zero-shot domain adaptation [13][14][15]. 

To achieve generative factor independence, it is often necessary to ensure the statis-

tical independence of latent variable dimensions. Conventional disentanglement meth-

ods, e.g., Variational Autoencoders (VAEs), 𝛽 -VAE, 𝛽 -TCVAE, largely operate 



 

within the information-theoretic framework, imposing constraints on the correlations 

between latent variable dimensions. Intrinsically, the implementation of correlation 

constraints within disentanglement learning methods relies fundamentally upon the ac-

curate estimation of the data's probability density. However, these methods typically 

assume that the posterior and prior distributions of latent variables follow Gaussian 

distributions. The encoder learns the mean and variance of these Gaussian distributions, 

and the Kullback-Leibler (KL) divergence loss is employed to constrain the posterior 

distribution to approximate the prior. However, owing to the inherent diversity of prob-

lems, the underlying data distribution does not necessarily conform to a Gaussian as-

sumption. The Gaussian distribution assumption inherent in these methods may lead to 

posterior approximation errors, consequently limiting model expressiveness and poten-

tially resulting in the loss of crucial data information. This ultimately hinders the 

achievement of satisfactory disentanglement performance. 

To address these challenges, Yeats et al. [17] introduced the Gaussian Channel Au-

toencoder (GCAE), which adopts a more flexible density estimation approach. GCAE 

employs multiple discriminators, with each discriminator tasked with estimating the 

conditional density of one latent dimension given observations of all other latent di-

mensions. Concurrently, by leveraging the density-ratio trick, GCAE achieves effective 

density estimation for unknown distributions. 

Nevertheless, the GCAE method still has significant limitations. Since each discrim-

inator is only responsible for estimating the conditional density of a single latent vari-

able, the number of discriminators required for training and the data volume needed to 

train them scale rapidly with the dimensionality of the latent space, leading to prohibi-

tively high training costs. Additionally, like most VAE-based disentanglement models, 

GCAE also faces instability in training performance, where different initial states lead 

to significant differences in the model's final disentanglement capability. 

Therefore, we propose Efficient and Dynamic GCAE（ED-GCAE）to enhance the 

GCAE discriminator architecture by incorporating a shared feature extraction backbone 

mechanism. This integrates the original 𝑚 independent discriminators into a multi-

head discriminator with 𝑚 independent output heads. By sharing the discriminator's 

backbone, we achieve more efficient and stable density estimation. Concurrently, to 

more finely balance the quality of disentangled representations and the stability of dis-

entanglement, we design a latent-variable-dependent dynamic noise adjustment mech-

anism. This mechanism adaptively adjusts the capacity of noise injection based on the 

characteristics of different latent dimensions, thereby achieving a more nuanced and 

effective balance between disentanglement capability and stability. 

Our contributions are summarized as follows: 

a) The ED-GCAE is proposed to enhance the disentanglement performance of au-

toencoder-based approaches, specifically improving training stability and effi-

ciency through the introduction of noise perturbation and information sharing 

mechanisms. 

b) Dynamic noise injection adjustment mechanism is proposed to effectively bal-

ance disentanglement performance and stability. 
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c) The proposed method is demonstrated to achieve enhanced disentanglement 

performance and greater stability by extensive experiments compared to the 

baseline methods. 

2 Related Work 

To achieve disentanglement in the latent space, current mainstream methodologies 

predominantly adhere to the information-theoretic framework. These approaches com-

monly impose various constraints to diminish the statistical dependencies among latent 

variable dimensions, thereby encouraging the posterior distribution of latent variables 

to approximate a factorized form. Within these methodologies, the Variational Autoen-

coder (VAE) [16] framework and its variants have emerged as dominant paradigms, 

owing to the VAE's provision of an effective generative model learning framework and 

its capacity to handle intricate posterior distributions through variational inference tech-

niques. 

For instance, β-VAE [13] enhances the constraint imposed by the prior distribution 

on the latent space by introducing a hyperparameter β into the VAE's Evidence Lower 

Bound (ELBO) loss function. This indirectly promotes the independence of latent var-

iable dimensions [18]. β-TCVAE [19], through the decomposition of the ELBO loss 

function in conjunction with importance weighted sampling techniques, explicitly min-

imizes the Total Correlation (TC) of latent representations, further bolstering disentan-

glement efficacy. FactorVAE [20], also committed to reducing the total correlation of 

latent representations, innovatively employs adversarial training and the density-ratio 

trick. This approach leverages a discriminator network to estimate total correlation, cir-

cumventing the challenges associated with directly computing high-dimensional joint 

distributions. The DIP-VAE [21] methods, conversely, directly regularizes the covari-

ance matrix of latent representations. By constraining the covariance matrix to approx-

imate a diagonal matrix, DIP-VAE explicitly encourages the independence of latent 

variable dimensions. DynamicVAE [22] employs an incremental Proportional-Integral 

(PI) controller alongside moving average techniques to dynamically adjust the regular-

ization coefficient β in β-VAE. This method progressively anneals the β value from a 

initially larger value (β>1) to a smaller value (β≤1), mitigating the issue of degraded 

reconstruction quality that often accompanies the enhanced disentanglement achieved 

through setting a larger β value in β-VAE. 

The above VAEs predominantly adopt parametric density estimation strategies, typ-

ically assuming that the posterior and prior distributions of latent variables conform to 

simplistic Gaussian distributions. While Gaussian distributions offer mathematically 

tractable properties, empirical evidence suggests that data posterior distributions are 

often significantly more complex than Gaussian approximations. To address the limi-

tations imposed by the Gaussian distribution assumption in traditional VAE methods, 

Yeats et al. [17] introduced the Gaussian Channel Autoencoder (GCAE). GCAE dis-

penses with the Gaussian posterior assumption and instead employs a discriminator-

based conditional density estimation approach. GCAE leverages multiple discrimina-

tors, each dedicated to estimating the conditional density of a single latent dimension 



 

given the observations of all other latent dimensions. Furthermore, by employing the 

density-ratio trick, GCAE achieves effective density estimation for unknown distribu-

tions, thereby affording the model enhanced density estimation flexibility. 

3 Methodology 

In the original GCAE, discriminators were employed to estimate the conditional den-

sities of latent variables, deviating from the prevalent practice in many VAE-based 

methods of directly using Gaussian distributions as posterior distributions. This depar-

ture allowed for more flexible density estimation. However, as this method needs to 

estimate density for each latent variable, the original GCAE architecture, corresponding 

to the latent space dimensionality 𝑚, utilized 𝑚 mutually independent discriminators, 

each responsible for estimating the conditional density of a single latent variable. While 

this design potentially enabled more accurate estimation of conditional densities for 

different latent variables, it substantially increased the training time and data volume 

required for discriminators. For instance, according to the original paper's recom-

mended settings, each training step of the entire framework required five separate train-

ing steps for the discriminators, resulting in suboptimal overall training efficiency. 

Simultaneously, to ensure the continuity and smoothness of the latent space, the 

original GCAE incorporated Gaussian noise with a fixed parameter sigma for each la-

tent variable. This was intended to prevent the dimensions of the latent variables from 

collapsing into sharp, peaked distributions, which could impede training. However, this 

approach presents several limitations. Firstly, the disentanglement performance of this 

method is sensitive to sigma. As demonstrated in the original experimental results, 

when sigma is within the range of 0.1-0.3, different sigma values often result in signif-

icant variations across various disentanglement metrics, with differences reaching up 

to approximately fivefold. Secondly, even with a constant sigma value, repeated exper-

iments frequently yielded results with significant gaps in disentanglement effective-

ness. The original experiments confirmed this phenomenon across multiple metrics and 

datasets, revealing considerable variance in disentanglement performance for the same 

sigma value over several trials, which points to an underlying instability problem with 

the method. 

 

Fig. 1. Framework of ED-GCAE.  

To mitigate the computational cost associated with discriminator training, we intro-

duce a shared feature extraction backbone mechanism. This approach decouples the 
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original discriminators into a backbone component and prediction heads. The density 

estimation for each latent variable shares the backbone component, while being com-

plemented by m independent prediction heads, thereby enabling efficient discriminator 

training. Recognizing the inherent limitations of a fixed sigma, we design a dynamic 

sigma adjustment strategy. This strategy allows each dimension of the latent variables 

to dynamically adjust the Gaussian noise magnitude based on its information entropy, 

thus improving disentanglement performance while maintaining robust reconstruction 

capabilities. 

 

3.1 Shared Feature Extraction Backbone Multi-Head Discriminator  

To enhance the efficiency and scalability of discriminator training within the GCAE 

framework, and to overcome the inherent parameter redundancy and computational 

bottlenecks of the independent discriminator architecture, we propose a shared feature 

extraction backbone multi-head discriminator architecture (hereafter referred to as the 

shared discriminator architecture). In the original GCAE, the conditional density ratio 

𝐷𝑖(𝑧𝑖 , 𝑧∖𝑖) for each latent dimension 𝑧𝑖  was modeled by an independent discriminator 

𝐷𝑖  ,leading to parameter scaling and computational complexity that increased linearly 

with the latent space dimensionality 𝑚. To address this, we decouple the discriminator's 

functionality and introduce a sharing mechanism, Shared Feature Extraction Backbone 

𝐹, which serves as a generic feature encoder module for the discriminators. Through a 

neural network 𝐹(·), it maps the input latent variable 𝑧 to a shared, high-dimensional 

feature space. The parameters 𝜃𝐹 of module 𝐹 are shared across all conditional density 

estimation tasks, realizing feature reuse and knowledge transfer. 

For each latent dimension 𝑧𝑖, we design a lightweight, independent prediction head 

𝐻𝑖(·), with parameters 𝜃𝐻𝑖
. Prediction head 𝐻𝑖  receives the feature representation out-

put by the shared feature extraction backbone 𝐹 and further maps it to a scalar output, 

approximating the conditional density ratio of the i-th latent dimension. Thus, the func-

tion of the i-th discriminator 𝐷𝑖  can be expressed as: 

 𝐷𝑖(𝑧)  =  𝐻𝑖(𝐹(𝑧); 𝜃𝐻𝑖
;  𝜃𝐹)                                             (1) 

where 𝜃𝐹 are the parameters of the shared feature extraction backbone 𝐹, and 𝜃𝐻𝑖
 are 

the parameters of the i-th prediction head 𝐻𝑖 . Through the parameter-sharing strategy, 

the parameter count and computational complexity of the discriminator architecture are 

significantly reduced, enabling efficient and scalable conditional density estimation. 

3.2 Latent-Variable Dependent Dynamic Sigma Adjustment Strategy 

To overcome the hyperparameter sensitivity to the fixed Gaussian noise scale σ in 

the original GCAE method, and to adaptively balance disentanglement capability and 

reconstruction quality, we propose a latent-variable dependent dynamic Sigma adjust-

ment strategy. This strategy aims to dynamically adjust the scale 𝜎𝑖  of the injected 

Gaussian noise based on the information content of each latent dimension 𝑧𝑖, achieving 



 

fine-grained noise control. Specifically, we integrate simulated annealing and exponen-

tial moving average techniques, and introduce an information entropy-guided adaptive 

adjustment mechanism: 

Information Entropy-Guided Adaptation 

The design of the information entropy mapping function 𝑔(·) is important, as it 

demonstrates how 𝜎𝑖 is adjusted based on 𝐻(𝑧𝑖). To implement information entropy-

guided adaptive noise scale adjustment, we first perform normalization on the estimated 

information entropy values of each latent dimension. This ensures that the information 

entropy values across different dimensions possess comparability and a uniform scale. 

Specifically, we employ min-max normalization, mapping the original information en-

tropy values to a standardized range of [0, 1]. For each training batch, we compute the 

minimum 𝐻𝑚𝑖𝑛 and maximum 𝐻𝑚𝑎𝑥 values of the information entropy estimates 𝐻(𝑧𝑖) 

for all latent dimensions. Subsequently, the normalized information entropy 𝐻̂(𝑧𝑖) for 

each latent dimension 𝑧𝑖 is calculated according to the following formula: 

𝐻̂(𝑧𝑖) =
(𝐻(𝑧𝑖) −  𝐻𝑚𝑖𝑛)

(𝐻𝑚𝑎𝑥  −  𝐻𝑚𝑖𝑛)
(2) 

where 𝐻(𝑧𝑖) represents the original information entropy estimate of latent dimension 

𝑧𝑖 , 𝐻𝑚𝑖𝑛  and 𝐻𝑚𝑎𝑥  represent the minimum and maximum values of information en-

tropy estimates for all latent dimensions within the current batch, respectively, and 

𝐻̂(𝑧𝑖) is the normalized information entropy value corresponding to dimension 𝑧𝑖. This 

normalization process ensures that the information entropy values are bound within the 

[0, 1] range, thereby providing a standardized control signal for subsequent dynamic 

noise scale adjustment. This normalization strategy eliminates discrepancies in the units 

and scales of information entropy values across different latent dimensions, enabling 

us to more effectively leverage information entropy values to guide the adaptive adjust-

ment of noise scale. 

Exponential Moving Average Update 

For each latent dimension 𝑧𝑖, its Gaussian noise scale 𝜎𝑖 is dynamically adjusted in 

each training iteration 𝑡 according to the following EMA update rule: 

𝜎𝑖
(𝑡) =  𝛼𝐸𝑀𝐴  ⋅  𝜎𝑖

(𝑡−1)  +  (1 −  𝛼𝐸𝑀𝐴) ⋅  𝑔 (𝐻(𝑧𝑖
(𝑡−1))) (3) 

where 𝜎𝑖
(𝑡)

 denotes the noise scale at iteration 𝑡, 𝛼 ∈  [0, 1) is the smoothing factor, 

𝐻(𝑧𝑖
(𝑡−1)

) is the estimated information entropy of latent dimension 𝑧𝑖 at iteration (𝑡 −

1), and 𝑔(·) represents the information entropy mapping function, which maps the in-

formation entropy value to an appropriate noise scale adjustment amount. 

Simulated Annealing 

Employing a simulated annealing strategy to anneal σ, the overall coefficient γ is in-

itialized to a value approximating 1 and progressively decreases with increasing 
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training iterations. This annealing strategy imbues 𝜎𝑖 with the capacity for rapid adjust-

ment in the nascent stages of training, helping the identification of optimization direc-

tions favorable for disentanglement. As training deepens and γ diminishes, the respon-

siveness of 𝜎𝑖 to information entropy fluctuations becomes more smoothly, enabling 

more fine-tuned adaptive adjustments and mitigating abrupt shifts in the optimization 

trajectory. 

The overall formula for dynamically adjusting Sigma is presented below: 

σ𝑖
(𝑡)

= max (σ𝑚𝑖𝑛 , [α𝐸𝑀𝐴 ⋅ σ𝑖
(𝑡−1)

   + (1 − α𝐸𝑀𝐴)

⋅ (σ𝑚𝑎𝑥 − (σ𝑚𝑎𝑥 − σ𝑚𝑖𝑛) ⋅
𝐻(𝑧𝑖

(𝑡)
) − 𝐻𝑚𝑖𝑛

(𝑡)

𝐻𝑚𝑎𝑥
(𝑡)

− 𝐻𝑚𝑖𝑛
(𝑡)

)] ⋅ γ𝑔)                     (4) 

4 Experiments 

In our experimental evaluation, we primarily focus on comparing ED-GCAE against 

the original GCAE [17],β-VAE [13], β-TCVAE [19], FactorVAE [20], DIP-VAE-II 

[21] to assess the performance enhancements afforded by our proposed improvements. 

The disentanglement performance of our proposed method and comparative methods 

are quantitatively evaluated using four widely recognized supervised metrics: Mutual 

Information Gap (MIG) [19], Factor Score (FAC) [20], DCI Disentanglement (DCI) 

[23], and Separated Attribute Predictability (SAP) [24]. These metrics, collectively rep-

resenting the three major categories of disentanglement assessment delineated by Car-

bonneau et al. [25], facilitate a rigorous and comprehensive comparative analysis of 

disentanglement capabilities. 

We consider two datasets which cover different data modalities. The Beamsynthesis 

dataset [26] is a collection of 360 timeseries data from a linear particle accelerator 

beamforming simulation. The waveforms are 1000 values long and are made of two 

independent data generating factors: duty cycle (continuous) and frequency (categori-

cal). The dSprites dataset [27] is a collection of 737280 synthetic images of simple 

white shapes on a black background. Each 64 × 64 pixel image consists of a single 

shape generated from the following independent factors: shape (categorical), scale 

(continuous), orientation (continuous), x-position (continuous), and y-position (contin-

uous). 

4.1 Comparison of ED-GCAE with GCAE and Baseline 

Table 1 presents a comparative evaluation of ED-GCAE against several VAE base-

lines and the original GCAE across various disentanglement metrics on dSprites da-

taset. For GCAE, hyperparameters were set to 𝜎 = 0.2,𝑘 = 5, while ED-GCAE was 

configured with 𝜎𝑚𝑎𝑥 = 0.4, 𝜎𝑚𝑖𝑛 = 0.2, 𝛼𝐸𝑀𝐴 = 0.1, 𝛾 = 0.999, 𝑘 = 1. Comparison 

with VAE baselines reveals that ED-GCAE achieves performance superior to or com-

parable with these baselines across all metrics. Furthermore, in direct comparison to 



 

GCAE, our proposed method demonstrates superior mean performance across nearly 

all metrics. Notably, the original GCAE exhibits generally higher variance in metric 

scores, indicating inherent instability. Through the implementation of dynamic noise 

injection adjustment, our method significantly reduces this variance, thereby achieving 

enhanced training stability. 

Table 2 presents a corresponding comparative analysis on the Beamsynthesis da-

taset, consistently demonstrating the superior performance of our proposed method, ex-

hibiting enhanced disentanglement capability compared to the original GCAE. 

Table 1. Disentanglement metric comparison of ED-GCAE with VAE baselines and original 

GCAE on dSprites dataset. 

 MIG FAC DCI SAP 

ED-GCAE 0.358±0.011         0.584±0.007   0.220±0.006   0.586±0.045   

GCAE 0.274 ±0.093 0.554±0.073 0.173±0.065 0.579±0.022 

β-VAE 0.352±0.010 0.600±0.006 0.293±0.059 0.280±0.066 

β-TCVAE 0.321±0.016 0.562±0.060 0.260±0.053 0.244±0.052 

FactorVAE 0.162±0.046 0.714±0.002 0.101±0.033 0.342±0.026 

DIP-VAE-II 0.025±0.001 0.424±0.020 0.022±0.001 0.081±0.046 

 

Table 2. Disentanglement metric comparison of ED-GCAE with VAE baselines and original 

GCAE on Beamsynthesis dataset. 

 MIG FAC DCI SAP 

ED-GCAE 0.369±0.040 0.989±0.008 0.549±0.015 0.395±0.094 

GCAE 0.291±0.052 0.932±0.062 0.312±0.026 0.332±0.082 

β-VAE 0.142±0.044 0.981±0.011 0.512±0.057 0.152±0.034 

β-TCVAE 0.238±0.062 0.986±0.006 0.423±0.087 0.225±0.025 

FactorVAE 0.153±0.051 0.946±0.052 0.424±0.041 0.162±0.021 

DIP-VAE-II 0.082±0.023 0.824±0.047 0.376±0.035 0.163±0.057 

 

4.2 Effect of Shared Discriminator 

Fig 2 presents a comparative analysis of the model incorporating the shared discrim-

inator architecture against the original GCAE. In the original GCAE, we evaluated con-

figurations with k=5 and k=1, where k denotes the number of discriminator iterations 

per training step of the overall framework. The shared discriminator model was config-

ured with k=1. All models were trained for a total of 20,000 steps. As depicted in Figure 

1, when comparing different σ values within the original GCAE framework, a substan-

tial performance gap in disentanglement metrics is evident between the k=1 and k=5 

configurations. In contrast, the shared discriminator model with k=1 demonstrates dis-

entanglement performance generally superior to that of the original GCAE with k=1, 

and in certain metrics, it approximates or even surpasses the performance of the original 
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GCAE with k=5. This observation underscores the capacity of the shared discriminator 

architecture to maintain robust disentanglement performance while requiring fewer dis-

criminator training iterations per step, thereby significantly enhancing training effi-

ciency. 

 

Fig. 2. Comparison of original GCAE with varying k values and whether using a shared dis-

criminator across disentanglement metrics. The x-axis depicts the sigma value employed by the 

model, while the y-axis depicts the value of the corresponding disentanglement metric. 

4.3 Effect of Dynamic Sigma Adjustment Strategy 

Fig 3 presents a comparative analysis of the dynamic sigma adjustment strategy 

against the fixed sigma approach. For this comparison, both model configurations were 

set to k=5. We observe that, in contrast to σ=0.1, configurations with fixed sigma values 

within the range of [0.1, 0.3] exhibit reduced variance and enhanced stability across 

disentanglement metrics. Furthermore, when comparing σ=0.2 with the dynamic sigma 

configurations (σ ∈ [0.2, 0.3] and σ ∈ [0.2, 0.4]), the models employing dynamic 

sigma demonstrate a discernible improvement in disentanglement performance, cou-

pled with superior stability. Notably, the configuration with σ ∈ [0.2, 0.4] particularly 



 

excels, showcasing both exceptional disentanglement efficacy and robustness. 

 

Fig. 3. Comparison between fixed 𝜎 and dynamic 𝜎. A on x-axis means fixed 𝜎 = 0.1, B 

means 𝜎 = 0.2, C means 𝜎 changes in range of [0.1,0.3], D means 𝜎 changes in [0.2,0.3], E 

means 𝜎 changes in [0.2,0.4] 

Conversely, the fixed sigma approach generally displays higher variance across most 

scenarios, highlighting an inherent instability in disentanglement performance. We 

posit that a plausible explanation for this instability lies in the fact that, during later 

stages of training when the information entropy of latent dimensions is diminished, the 

fixed sigma approach continues to inject a substantial level of Gaussian noise. This 

persistent noise injection may inadvertently introduce excessive perturbation to the in-

creasingly stable training dynamics, ultimately contributing to the observed disentan-

glement instability. In contrast, the dynamic sigma adjustment strategy, through the 

integration of simulated annealing and Exponential Moving Average (EMA), ensures 

a more gradual and tempered variation in σ, while concurrently facilitating a progres-

sive reduction in σ during later training phases. This dynamic adaptation contributes to 

the enhanced stability of the model. 

4.4 Ablation Experiments 

To further indicate the individual contributions of the simulated annealing strategy 

and Exponential Moving Average (EMA) to the overall training efficacy, we conducted 

a comparative analysis. Focusing on the previously identified efficacious sigma range 

of [0.2, 0.4] and maintaining k=5, we performed two distinct experimental groups: one 

implementing the GCAE architecture augmented with EMA (hereafter referred to as 

GCAE+EMA), and the other employing GCAE integrated with simulated annealing 
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(GCAE+Annealing). The baseline for this comparison was the original GCAE config-

uration with a fixed σ=0.2. Table 3 reveals that, in comparison to the original GCAE 

baseline, GCAE+EMA demonstrates robust disentanglement capability, maintaining a 

high level of disentanglement performance while concurrently exhibiting minimal var-

iance, indicative of enhanced stability. GCAE+Annealing, in contrast, showcases even 

more pronounced disentanglement efficacy, albeit with a slightly diminished stability 

compared to GCAE+EMA. Notably, ED-GCAE, which integrates both EMA and sim-

ulated annealing, achieves a compelling synthesis, exhibiting both superior disentan-

glement capability and sustained stability. 

Table 3. Ablation study on Exponential Moving Average (EMA) and Simulated Annealing 

 MIG FAC DCI SAP 

GCAE 0.274±0.092 0.554±0.073 0.173±0.066 0.579±0.022 

GCAE+EMA 0.333±0.002 0.604±0.015 0.242±0.004 0.604±0.009 

GCAE+Annealing 0.363±0.022 0.598±0.020 0.253±0.012 0.605±0.027 

ED-GCAE 0.373±0.009 0.590±0.012 0.264±0.006 0.613±0.024 

 

5 Conclusion 

In conclusion, we have presented ED-GCAE, an innovative approach that leverages a 

shared backbone discriminator to alleviate the data and training steps requirements in-

herent in density estimation architectures. Furthermore, through dynamic noise injec-

tion refinement, ED-GCAE achieves superior disentanglement capability and enhanced 

stability compared to GCAE. Concurrently, ED-GCAE consistently outperforms exist-

ing baseline models across a comprehensive suite of disentanglement metrics. 
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