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Abstract. Deep Neural Network (DNN) has demonstrated exceptional perfor-

mance across various domains. However, with the continuous development of 

adversarial attack techniques, DNN faces increasingly serious security threats. 

Existing backdoor attack detection methods are primarily designed for specific 

attack scenarios and often exhibit insufficient effectiveness when confronting 

complex attack forms such as dynamic sensitivity optimization and randomized 

obfuscation. This study proposes an Integration Detection Model for Deep Neural 

Network Backdoor Attacks (ID-Model), aiming to build an integrated detection 

framework capable of addressing various backdoor attacks. The ID-Model con-

sists of three core components: the feature extraction and analysis module, the 

integrated detector module, and the data processing and alert module. Experi-

mental results demonstrate that compared to STRIP and NNCDA methods, the 

ID-Model integrated detection model achieves a 19% improvement in detection 

accuracy under Original-Net and R-Net attacks. This research provides an im-

portant theoretical foundation for DNN security defense. 

Keywords: Deep Neural Network, Backdoor Attack Detection, Integrated De-

tection, Security Enhancement. 

1 Introduction 

Deep Neural Networks (DNN) have revolutionized multiple scientific and technologi-

cal domains [1, 2]. From GPT-3's text generation capabilities and Switch Transformer's 

scalability breakthroughs to computer vision advances in autonomous driving, DNN 

have demonstrated exceptional versatility. Their impact extends to game theory with 

AlphaGo, visual generation with CogView 2.0, and biological sciences where Al-

phaFold2 and RoseTTAFold have solved protein structure prediction challenges with 

unprecedented accuracy. Despite these advancements, the widespread deployment of 

DNN has introduced critical security vulnerabilities, particularly through increasingly 

sophisticated backdoor attacks that threaten critical infrastructure and public trust in AI 

technologies. 

Fortunately, researchers have developed various methods to detect backdoor attacks 

in neural networks. Gao et al. [3] introduced the STRIP algorithm, which identifies 



potential backdoor triggers through input perturbation techniques, though its effective-

ness remains limited against complex trigger patterns. Building on this foundation, 

Doan et al. [4] developed the Februus method, which employs a two-stage prepro-

cessing approach to neutralize backdoor triggers before they can activate. Zeng et al. 

[5] further enhanced detection capabilities by incorporating additional image transfor-

mation techniques into the defensive framework. Taking a different approach, Li et al. 

[6] proposed the Non-Transferability Detection method, which leverages the limited 

transferability properties of backdoor attacks. For text-based systems, Fan et al. [7] de-

signed the InterRNN framework specifically to detect backdoor attacks in recurrent 

neural network text classification systems. These complementary research efforts have 

significantly advanced backdoor defense techniques and established crucial theoretical 

foundations that continue to inform current security strategies. 

However, existing backdoor attack detection methods generally lack effectiveness, 

and their performance significantly deteriorates when facing novel attack techniques 

such as dynamic trigger generation and randomized obfuscation. This lack of effective-

ness primarily arises from their design philosophy, which overly relies on single de-

fense mechanisms based on specific attack features. When attackers optimize the trig-

ger candidate set using sensitivity analysis and combine clustering with a comprehen-

sive penalty strategy involving neuron randomization obfuscation, traditional detection 

methods, such as STRIP and clustering-based detection, struggle to effectively identify 

malicious inputs. Therefore, developing a more adaptive and flexible defense frame-

work that can effectively respond to dynamic attack characteristics has become an ur-

gent challenge requiring immediate attention. 

To address these challenges, the study proposes an integration detection model for 

deep neural network backdoor attacks for DNN backdoor attacks (ID-Model). The 

model innovatively integrates multiple detection mechanisms and constructs a multi-

layer defense system through an ensemble learning strategy, enabling effective identi-

fication of advanced backdoor attacks, including dynamic trigger generation and ran-

domized obfuscation.  

The main contributions of the study are as follows: 

− The study introduces an innovative ensemble detection framework that significantly 

strengthens defense against advanced backdoor attacks—such as dynamically gen-

erated triggers and randomized obfuscation—through multi-dimensional feature 

analysis and holistic decision-making. 

− The study proposes three improved detection methods for backdoor attacks: 

EKLFC-CD enhances the recognition of complex backdoor patterns by analyzing 

features from hidden network layers; SDBD detects backdoor triggers using salt-

and-pepper noise interference, reducing the computational cost of real-time moni-

toring; WSRBD adopts dynamic weight adjustment and multi-dimensional feature 

analysis to counter diverse attack strategies, improving effectiveness and reliability 

of security defenses. 

− To validate the effectiveness of the model, experiments were conducted using two 

benchmark attack schemes: the Original Trigger Generator Network (Original-Net), 

based on a static candidate set, and the improved network (R-Net), which incorpo-

rates sensitivity analysis and a comprehensive penalty mechanism. The experimental 
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results demonstrate that, when facing R-Net backdoor attacks, the ID-Model 

achieved a 19% improvement in detection accuracy compared to well-established 

defense methods such as STRIP and NNCAD. 

2 Related Work 

In recent years, researchers have proposed various innovative methods in the field 

of data-based backdoor attack detection. Gao et al. [3] introduced STRIP, which distin-

guishes between benign data and malicious data with triggers by analyzing perturbation 

differences through constructed input disturbances. However, research by [8] demon-

strates that STRIP has limitations when facing certain types of perturbation-resistant 

attacks. To enhance detection effectiveness, researchers have begun exploring prepro-

cessing-based defense strategies. Liu et al. [9] utilized pre-trained autoencoders to sup-

press backdoor attacks by altering trigger patterns. Inspired by this, Doan et al. [4] pro-

posed the Februus defense method, which employs the Grad-CAM visualization tool 

[10] to identify and remove potential trigger regions, while maintaining model perfor-

mance through GAN-based image restoration [11]. 

In terms of feature analysis, Chen et al. [12] proposed Feature Consistency-based 

Sensitivity Metric to distinguish between poisoned and clean samples. Xue et al. [13] 

introduced a backdoor detection method based on intentional adversarial perturbations. 

Peri et al. [14] designed a deep k-NN method to detect poisoned samples in feature 

collision and convex polytope clean-label attacks. Wei et al. [15] proposed the CCA-

UD defense mechanism, which detects the presence of backdoor attacks through den-

sity-based clustering analysis of training data. Additionally, Chen et al. [16] proposed 

the Anti-Backdoor Model (ABM) defense algorithm, which first embeds controlled 

backdoors to detect poisoned data and then trains an external model via knowledge 

distillation to achieve defense. 

Although these methods perform well in specific scenarios, their adaptability re-

mains insufficient when confronted with backdoor attacks involving dynamic trigger 

generation and neuron randomization obfuscation. Particularly in scenarios where 

backdoor attack triggers exhibit sensitivity optimization and comprehensive penalty 

characteristics, the detection accuracy of existing single defense mechanisms signifi-

cantly declines, failing to provide reliable security guarantees. 

3 Proposed Method 

As backdoor attack techniques become increasingly diverse, traditional single-de-

fense methods lack the effectiveness required for practical applications. To address this 

challenge, this chapter proposes an integrated detection model for DNN backdoor at-

tacks (ID-Model). As shown in Fig. 1, the ID-Model architecture comprises three key 

components: a feature extraction and analysis module, an integrated detector module, 

and a data processing and alerting module. 



 

Fig. 1. Architecture Diagram of ID-Model 

3.1 Feature Extraction and Analysis Module 

The feature extraction and analysis module performs three core functions: configura-

tion file parsing, data preprocessing, and rule file parsing, forming the foundation ar-

chitecture of the defense model, as shown in Fig. 2. This module employs multi-level 

filtering algorithms and regular expressions for data validation, supporting format ver-

ification of parameters such as IPv4/IPv6 addresses and protocol types, while imple-

menting incremental validation to improve processing efficiency. For configuration 

parsing, the module supports automatic conversion of multiple formats including 

JSON, YAML, and XML, and provides configuration hot-update capability, ensuring 

that new settings can be applied without system restart. 

Table 1. Partial parsing strategies improve rule file processing efficiency. 

Configuration Parameter Parameter Assignment 

InputDetetor up 

InputDetectorDA k-mean 

InputDetectorDataType image 

Rules alert,2,set-timestamp,max-num:20 

Rules-Info Found TrojanNN Attack! 

OutputDetector down 

rule[id 2] InputDetector:static, triggerfile:"../trigger/squ.pgm" 

Rule files are parsed into a policy tree structure based on directed acyclic graphs, 

where RTN nodes store basic information such as rule ID, priority, and conditional 

expressions, as shown in Table 1, while RON nodes contain detailed configurations 

including detection algorithm parameters, threshold settings, and feature vector 
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dimensions. The module implements a plugin-based detector architecture, supporting 

dynamic loading and resource-optimized scheduling, while providing an incremental 

rule update mechanism that supports the addition, deletion, and modification of indi-

vidual rules. During the rule compilation process, conflict detection and optimization 

are performed to reduce runtime overhead, while supporting boolean logic combina-

tions of conditional expressions and compound condition evaluation, providing the de-

fense model with a highly configurable security policy framework and scalability. 

 

Fig. 2. Feature Extraction and Analysis Module 

3.2 Integrated Detector Module 

The integrated detector module structure consists of two key components: the Data 

Feature Platform (DFP) module and the Detection Scheduler module. The Data Feature 

Platform, functioning as an independent module, is responsible for data type identifi-

cation and evaluation. The Detection Scheduler module includes a scheduler for feature 

extraction and backdoor attack detection algorithms. 

Data Feature Platform. The Data Feature Platform (DFP) receives pre-processed data 

streams from the Feature Extraction and Analysis Module (Section 3.1) through a spe-

cialized buffer interface that maintains data integrity while transferring parsed config-

uration parameters and rule-based validation results alongside the original data payload. 

The DFP establishes bidirectional communication channels between extraction and 

detection modules utilizing an asynchronous handshake protocol over TCP/IP connec-

tions. Feature vectors are encapsulated within standardized JSON objects containing 

metadata such as timestamp and confidence metrics. An event-driven feedback mech-

anism enables detection results to influence extraction parameters through performance 

metrics propagated via acknowledgment packets. To maintain consistency, a vector 

clock synchronization protocol ensures proper event ordering across processing units. 

The DFP effectively addresses the compatibility issues that deep neural networks 

face when dealing with diverse input data. The platform achieves precise data type 



identification by analyzing header byte sequences of binary file streams. DFP employs 

an extensible plug-in architecture, enabling defense model developers to flexibly inte-

grate custom feature processing logic into existing functional modules by inheriting 

core data processing interfaces. 

Features undergo dimensionality reduction through Principal Component Analysis 

followed by z-score normalization before vectorization. The feature extraction sub-

module employs spectral clustering techniques to analyze neural network hidden layer 

features, while a bidirectional LSTM with attention mechanisms processes temporal 

feature evolution. The resulting feature embeddings traverse to the detection module 

via secure RPC channels implementing TLS 1.3 encryption, establishing an end-to-end 

differentiable pipeline that optimizes detection performance across diverse backdoor 

attack vectors. 

Detection Scheduler. This optional sub-module, controlled via configuration, forwards 

extracted features to the detection algorithm scheduler. The scheduler dynamically as-

signs detection tasks based on DFP classifications, currently supporting three detection 

methods (Section 4) with extensible interfaces for future scalability. Upon completing 

detection operations, the scheduler formats results with standardized metadata tags and 

timestamps before passing them to the Data Processing and Alerting Module (Section 

3.3), where they enter the weight-indexed FIFO queue for further processing and po-

tential alert generation. 

3.3 Data Processing and Alerting Module 

The Data Processing and Alerting Module dynamically manages backdoor attack de-

tection results through a queue mechanism in Fig. 3 (a). It employs a weight-indexed 

First-In-First-Out (FIFO) list structure with a default memory limit of 65536KB. The 

queue performs three operations on input data: Normal data is forwarded to downstream 

systems. Erroneous data gets intercepted to block potential risks. Anomalous data is 

flagged and pushed to a Buffer Queue to trigger alert workflows. When the queue 

reaches full capacity, the system forces discarding new entries until memory space is 

released. This ensures strict control over resource boundaries. Alert content is generated 

by the policy tree parser module according to predefined rules in configuration files. 

Customizable Alert Info and Plug Info fields are integrated with the base data. A Unix 

timestamp records the machine's system time when alerts trigger. Final outputs are 

structured alert messages containing detector identifiers, algorithm types, status flags, 

and multi-layer metadata. 

The alerting system supports dual output modes. The Information Mode generates 

real-time alerts in standard log formats. The File Mode persists alert data as structured 

files. An output selector in configuration files dynamically switches between these 

modes. Alert messages integrate external correlation data through a cloud query inter-

face. Custom analysis logic extends functionality via a plugin architecture. Operators 

conduct alert retrospectives using the log auditing mechanism. The log format (Fig. 3 

(b)) enforces hierarchical nesting containing four layers: basic alerts, custom content, 
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plugin extensions, and timestamp fields. A hybrid enrichment strategy combines local 

policies with cloud-synced rules. This architecture ensures alert traceability and main-

tains defense system sustainability through coordinated metadata management. 

 

Fig. 3. Feature Extraction and Analysis Module 

4 Design and Integration of EKLFC-CD, SDBD, and WSRBD 

in ID-Model 

This section presents a detailed introduction to three innovative backdoor detection 

methods integrated into the detector sub-module of the ID defense model: Enhanced K-

means and Latent Feature Capture Clustering Detection (EKLFC-CD), Salt-based Dif-

ferential Backdoor Detection (SDBD), and Window-based Segmentation and Recon-

struction Backdoor Detection (WSRBD). EKLFC-CD enhances the recognition of 

complex backdoor patterns by analyzing features from hidden network layers; SDBD 

detects backdoor triggers using salt-and-pepper noise interference, reducing the com-

putational cost of real-time monitoring; WSRBD adopts dynamic weight adjustment 

and multi-dimensional feature analysis to counter diverse attack strategies, improving 

effectiveness and reliability of security defenses. 

4.1 Enhanced K-means and Latent Feature Capture Clustering Detection 

The study [17] introduces two clustering-based detection algorithms that rely on the 

activation values of the last hidden layer neurons. However, if an attacker pre-activates 

these neurons, it becomes possible to exploit the resulting anomalous activations, un-

dermining the reliability of the algorithms. To address this limitation, the study focuses 

on neurons across the last three layers. When the target neurons are spaced farther apart, 

achieving optimal classification becomes more difficult, thus reducing the success of 

the attack. By monitoring the changes in these accompanying neurons, the defensive 

capabilities of the system can be enhanced. 

The set of neurons with the highest activation values is selected from the candidate 

network layers including by default the last layer 𝑙1, second-to-last layer 𝑙2, and third-

to-last layer 𝑙3, forming the collection 𝑁 = {𝑁1, 𝑁2, 𝑁3} which corresponds to the three 



default layers. Simultaneously, the set of top𝑚 lower-layer neurons with the highest 

weights is selected, forming 𝑊 = {𝑊1,𝑊2} , as shown in the Fig. 4. For each 𝑁𝑖 ∈ 𝑁, 

𝑖 > 1, there exists a corresponding 𝑊𝑖−1. For any neuron n included in feature extrac-

tion, where 𝑛 ∈ 𝑁𝑖 , a set 𝑛𝑖
′  is identified within 𝑊𝑖−1 , containing the top𝑚  neurons 

from the (i-1)-th layer that connect to neuron n with the highest weights, as shown in 

Eq. 1 and Eq. 2. 

 𝑛𝑖
′ ∈ 𝑊𝑖−1 (1) 

 𝑊𝑖−1 = n1
′ ∪ n2

′ ∪⋯∪ n𝑙𝑛
′  (2) 

The components 𝑁3 and 𝑊2 exhibit structural correlation within the network model. 

As an example, consider 𝑡𝑜𝑝𝑛 = 1 and 𝑡𝑜𝑝𝑚 = 3 to calculate the relationship between 

the third-to-last layer 𝑁3, the second-to-last layer 𝑁2, and 𝑊2. Since 𝑡𝑜𝑝𝑛 = 1, the neu-

ron with the highest activation value from the third-to-last layer is selected.  

Algorithm 1 Enhanced K-Layer Feature Clustering-based Clustering Detection 

Input: Training data set 𝐷𝑝, the highest activation value in each layer 𝑡𝑜𝑝𝑛, the high-

est weights connecting to selected neurons 𝑡𝑜𝑝𝑚; 

Input: Candidate network layers last layer 𝑙1 , second-to-last layer 𝑙2 , third-to-last 

layer 𝑙3; 

Output: The result of clustering discrimination y; 

1: Train DNN model 𝐾 on 𝐷𝑝; 

2: Initialize 𝑁 = {}, 𝑊 = {}; (N for highest activation neurons, W for highest weight 

connections); 

3: for 𝑠𝑖 ∈ 𝐷𝑝 do 

4: Initialize 𝑁1, 𝑁2, 𝑁3,𝑊1,𝑊2 = {}, {}, {}, {}, {}; 
5: 𝑁1 ⇐ Select 𝑡𝑜𝑝𝑛 neurons with highest activation values from last layer 𝑙1 for 

input 𝑠𝑖; 
6: 𝑁2 ⇐ Select 𝑡𝑜𝑝𝑛  neurons with highest activation values from second-to-last 

layer 𝑙2 for input 𝑠𝑖; 
7: 𝑁3 ⇐  Select 𝑡𝑜𝑝𝑛  neurons with highest activation values from third-to-last 

layer 𝑙3 for input 𝑠𝑖; 
8: 𝑊1 ⇐ Select 𝑡𝑜𝑝𝑚  neurons from 𝑙2  with highest weights connecting to each 

neuron in 𝑁1; 

9: 𝑊2 ⇐ Select 𝑡𝑜𝑝𝑚  neurons from 𝑙3  with highest weights connecting to each 

neuron in 𝑁2; 

10: Remove neurons from 𝑁2 that are already in 𝑊1; (Ensure no duplicates); 

11: Remove neurons from 𝑁3 that are already in 𝑊2; 

12: 𝑁 ⇐ {𝑁1, 𝑁2, 𝑁3}; 
13: 𝑊 ⇐ {𝑊1,𝑊2}; 
14: 𝐹 ⇐ Concatenate N and W to form the feature vector for 𝑠𝑖; 
15: Append F to feature matrix A; 

16: end for 

17: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ⇐ Apply clustering method on feature matrix A; 

18: 𝑦 ⇐ Analyze clusters to detect poisoned inputs; 

19: return y; 
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As shown in the Fig. 4, neuron number 7 in 𝑙3 is added to 𝑁3. In the second-to-last 

layer, the top 𝑡𝑜𝑝𝑚 = 3 neurons with the highest weights connected to neuron number 

7 are selected and adding to 𝑊2. Additionally, in the second-to-last layer, apart from 

the three neurons in 𝑊2 that connect to the third-to-last layer, the neuron with the high-

est activation value is selected (with 𝑡𝑜𝑝𝑛 = 1). If the selected neuron is already in-

cluded in 𝑊2, then this neuron is not added to 𝑁2. 

Therefore, three different neurons will be selected in the second-to-last layer, four 

different neurons in the third-to-last layer, and so on, with up to thirteen different neu-

rons potentially selected in the second-to-last layer. Thus, when 𝑡𝑜𝑝𝑛 = 1 and 𝑡𝑜𝑝𝑚 =
3, a maximum of 20 distinct neurons from the internal hidden layers can be extracted 

as potential features of the network's internal input data. In this study, the concatenated 

set F of N and W is considered as the region where potential activated neurons and their 

accompanying activated neurons that need to be examined for defense may exist. This 

represents the one-dimensional feature vector selected from all the features. The full 

algorithm for the EKLFC-CD method is presented in Algorithm 1. 

 

Fig. 4. Critical Neuron Identification by EKLFC-CD 

4.2 Salt-based Differential Backdoor Detection 

The SDBD leverages the sensitivity of backdoor triggers to common image transfor-

mations, preventing potential backdoor activation. To neutralize latent backdoor trig-

gers, this study introduces a backdoor detection mechanism through the incorporation 

of perturbation noise. This method disrupts potential backdoor triggers by perturbing 

potential trigger points and analyzing the disparities before and after the introduction 

of perturbation noise within the test datasets, as shown in Fig. 5. 

Assuming that the network model is expressed as a function 𝐹(𝑥), any input data 𝑥𝑖 
belonging to the input image dataset is I, and its corresponding categorization represen-

tation results in 𝑅𝑖, i.e., any 𝑥𝑖 ∈ 𝐼, are available as in Eq. 3. 

 𝐹(𝑥𝑖) = 𝑅𝑖 (3) 



The trigger data designed by the adversary is t, and the set purpose classification is 

𝑅𝑡 Then the malicious data 𝐼𝑡 with trigger obtained by superimposing the arbitrary in-

put data 𝑥𝑖 over the trigger is Eq. 4. 

 𝐼𝑡 = (1 − 𝜃) ⋅ 𝐼 + 𝜃 ⋅ 𝑡 (4) 

The malicious data 𝐼𝑡  generates a classification result in the network model, as 

shown in Eq. 5. 

 𝐹(𝐼𝑡) = 𝑅𝑡 (5) 

Pepper noise is chosen to salt the input image data thereby changing the classifica-

tion performance of the malicious data. The noise density set here for adding input data 

to the pretzel noise is 𝛼 and the final pretzel noise data obtained is Eq. 6. 

 𝑆 = 𝐺𝑒𝑛𝑆𝑎𝑙𝑡(𝛼) (6) 

The test data 𝐼𝑡 + 𝑆 obtained by adding the generated pretzel noise S to the malicious 

data 𝐼𝑡, the classification result of the test data obtained in the network model is Eq. 7. 

 𝐹(𝐼𝑡 + 𝑆) = 𝑅′ (7) 

If the difference between 𝑅′ and 𝑅𝑡 results in 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑅𝑡 , 𝑅
′), according to the re-

sult of discriminating the difference Distance is the final result of the backdoor detec-

tion of the difference in salt addition. 

 

Fig. 5. SDBD Dynamic Boundary Evolution 

4.3 Window-based Segmentation and Reconstruction Backdoor Detection 

Liu et al. [18] introduced a DNN backdoor attack with a trigger, typically covering less 

than 11% of the total input image pixels. This trigger, when superimposed on input 

data, consistently activates adversary-designed neurons, a characteristic of DNN 
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backdoor attacks. Capitalizing on the smaller trigger backdoor and the stable classifi-

cation expectation produced by the superposition of any data, the researchers intro-

duced the window cut reorganization method for backdoor detection. 

The DNN backdoor trigger overlays input image data, resulting in the same classifi-

cation outcome. This reduces the problem of detecting malicious triggers to identifying 

regions within the input image that, when combined with test data, produce consistent 

results. For any input data x, if there exists a region m such that overlaying any test data 

𝐼𝑡𝑒𝑠𝑡  with 𝑚 + 𝐼𝑡𝑒𝑠𝑡  consistently yields the same output 𝐹(𝑚 + 𝐼𝑡𝑒𝑠𝑡), it suggests that 

region m may contain a backdoor trigger t. To search for region m within x, it is noted 

that malicious triggers usually occupy less than 11% of the input image pixels. There-

fore, a sliding window approach is employed, using a rectangular window of size k to 

define the search area for m. The details of the detection algorithm are provided in 

Algorithm 2. 

Algorithm 2 Window-based Segmentation and Reconstruction Backdoor Detection 

Input: An untrusted training dataset 𝐷𝑝, Sliding window size k, Step size for window 

sliding s; 

Output: Malicious detection result y; 

1: Initialize window parameters k and s; 

2: for each input data 𝑥 ∈ 𝐷𝑝 do 

3: for each window position m do 

4: for each test set data 𝐼𝑡𝑒𝑠𝑡 ∈ 𝑇 do 

5: Overlay test set data 𝐼𝑡𝑒𝑠𝑡 onto the region m of input data x to obtain overlaid 

data 𝑚 + 𝐼𝑡𝑒𝑠𝑡; 
6: end for 

7: if the overlaid data 𝑚 + 𝐼𝑡𝑒𝑠𝑡 generates == 𝐹(𝑚 + 𝐼𝑡𝑒𝑠𝑡) then 

8: Mark current region m as a potential backdoor trigger t; 

9: end if 

10: end for 

11: end for 

12: Put all marked regions m into a boundary detector; 

13: return y; 

With each sliding step of the search window set to s, the window advances by s units 

along the boundary. At each position, the region within the window is extracted and 

overlaid onto the 𝐼𝑡𝑒𝑠𝑡 data from test set T to obtain classification results. These results 

are then subjected to the boundary discriminator to identify malicious input based on 

the superimposed discriminative outcomes. 

An in-depth analysis of the three detection methods reveals their distinct advantages 

in different backdoor attack scenarios. The EKLFC-CD method, which extracts features 

from network hidden layers, provides robust security by identifying both common and 

anomalous backdoor patterns, making it effective during model training. The SDBD 

method leverages salt-and-pepper noise interference to detect backdoor triggers, excel-

ling in real-time monitoring with low computational cost. The WSRBD method uses 

dynamic weight adjustment and multi-dimensional feature analysis to counter various 

attack strategies, offering adaptable and reliable security for network models. 



5 Experimental Evaluation 

The study designed two progressive experimental phases: first, it tested Original-Net 

and R-Net attacks across 7 network model-dataset combinations to evaluate the base-

line performance of five detection methods: EKLFC-CD, SDBD, WSRBD, STRIP, and 

NNCAD; second, it constructed a cross-domain composite dataset containing three cat-

egories of data features and used two attack methods to generate poisoned samples as 

input, with a focus on verifying the effectiveness of the ID-Model integrated defense 

model when confronting complex attack scenarios. The experimental design compre-

hensively covers systematic validation ranging from basic defensive performance to 

cross-domain composite scenarios. 

5.1 Evaluation Criteria 

Drawing from the evaluation of detection results in anomaly detection, relevant evalu-

ation metrics for DNN backdoor attack detection can be introduced. The performance 

evaluation of DNN backdoor detection employs three primary metrics: Accuracy 

(ACC), False Acceptance Rate (FAR), and False Rejection Rate (FRR). These metrics 

are formulated as: 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇+𝑁
⋅ 100%, where ACC represents the ratio of correctly 

classified instances. 𝐹𝐴𝑅 =
𝐹𝑃

𝑁
⋅ 100%, where FAR quantifies the proportion of erro-

neously accepted backdoored samples. 𝐹𝑅𝑅 =
𝐹𝑁

𝑃
⋅ 100%, where FRR measures the 

proportion of incorrectly rejected benign samples. Achieving optimal detection perfor-

mance involves maximizing accuracy while simultaneously minimizing false ac-

ceptance and false rejection rates. 

5.2 Experimental Data and Experimental Models 

Network Models. The network models employed are popular open-source models in 

computer vision: VGGNet16 [19], ResNet [20], and AlexNet [21]. 

Datasets. The datasets include the VGG-Face dataset [22], CIFAR-10 [23], and 

MNIST [24]. 20% of each dataset is allocated as the test set. 

Main Parameters. Prior to model training, basic image preprocessing steps, including 

denoising and normalization, are performed. For CIFAR-10 and MNIST, the experi-

ments are conducted for 10 iterations, with 100 data points per iteration, and a learning 

rate of 0.01. The VGG-Face dataset involves 20 iterations, with 250 data points per 

iteration. The learning rate starts at 0.01 and is reduced to 0.005 after 10 iterations. 

Training is terminated when a significant drop in model performance is observed. If the 

validation loss increases by more than α=0.05 for three consecutive iterations, training 

stops, as shown in Eq. 8. 
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 𝐿𝑣𝑎𝑙(𝑛) > 𝐿𝑚𝑖𝑛 ⋅ (1 + 𝛼) (8) 

Backdoor Attacks. Backdoor attacks use two different trigger generation networks: 

the original trigger generation network based on a static candidate set (Original-Net) 

and the improved network incorporating sensitivity analysis and a comprehensive pen-

alty mechanism (R-Net) [8]. Original-Net uses a fixed, manually selected trigger can-

didate set and optimizes the trigger by minimizing the mean squared error loss function. 

In contrast, R-Net introduces a dynamic sensitivity analysis method to select the can-

didate set and employs a comprehensive penalty mechanism that combines clustering 

obfuscation with randomized neuron activation. These two methods represent the tra-

ditional and improved backdoor attack paradigms, providing comprehensive attack 

benchmarks for this study. 

5.3 Experimental Analysis 

The experiment analyzes the performance of five detection methods across various net-

work model-dataset combinations and verifies the effectiveness of the proposed ID-

Model through composite datasets, demonstrating its effectiveness when confronting 

complex backdoor attack scenarios. 

Performance Comparison Experiment. As shown in Table 2, when facing traditional 

Original-Net attacks, all five detection methods perform well, with accuracy generally 

exceeding 90%. Specifically, EKLFC-CD achieves extremely high accuracy reaching 

up to 99.2% across most network model-dataset combinations while maintaining low 

false acceptance rates with an average of 0.84% and false rejection rates with an aver-

age of 1.19%. In contrast, conventional STRIP and NNCAD methods show relatively 

weaker performance in certain combinations, particularly in the VGGNet16-MNIST 

combination where NNCAD achieves only 93.2% accuracy. 

When confronting advanced R-Net attacks featuring dynamic trigger generation and 

randomized obfuscation characteristics, traditional detection methods exhibit signifi-

cant performance degradation. Data indicates that the accuracy of the STRIP method 

drops dramatically from an average of 97.19% to 78.50%, showing an average decrease 

of 18.69 percentage points, while the NNCAD method declines even more precipi-

tously from an average of 96.37% to 73.11%, representing an average decrease of 23.26 

percentage points. Particularly noteworthy is that when facing R-Net attacks, NNCAD's 

FAR value surges to an average of 26.49%, meaning that over a quarter of malicious 

samples are misclassified as benign. 

The data analysis clearly demonstrates that the three methods proposed in this study 

exhibit significant performance advantages when addressing advanced backdoor at-

tacks with dynamic trigger generation and randomized obfuscation characteristics. 

Compared to conventional methods, these approaches successfully overcome effective-

ness deficiencies, providing more reliable solutions for deep neural network security 

protection. The EKLFC-CD method is particularly noteworthy, maintaining 



performance close to its original capabilities even in the most challenging attack sce-

narios, demonstrating its tremendous potential in practical applications. 

Table 2. Performance comparison of different defense methods across network model-dataset 

combinations. (M-D denotes network model type M and dataset type D, specifically: VGG-

Net16-CIFAR-10 (V-C), VGGNet16-VGGFace-10 (V-V), VGGNet16-MNIST (V-M), ResNet-

CIFAR-10 (R-C), ResNet-MNIST (R-M), AlexNet-CIFAR-10 (A-C), AlexNet-MNIST (A-M). 

Original-Net is abbreviated as O-Net.) 

Attacks M-D 
STRIP NNCAD EKLFC-CD 

ACC FAR FRR ACC FAR FRR ACC FAR FRR 

O-Net 

V-C 97.6% 2.1% 6.3% 96.2% 1.2% 3.2% 98.2% 0.7% 1.2% 

V-V 96.3% 0.2% 7.2% 94.3% 1.7% 1.2% 96.3 0.7% 2.6% 

V-M 99.2% 0.2% 2.6% 93.2% 0.4% 3.6% 91.2% 1.0% 1.2% 

R-C 98.0% 0.7% 1.0% 98.0% 1.8% 0.8% 99.0% 1.2% 0.7% 

R-M 97.7% 0.5% 5.6% 96.7% 0.5% 2.7% 98.7% 0.3% 1.5% 

A-C 99.3% 0.2% 2.7% 98.0% 1.2% 1.5% 97.1% 0.9% 0.7% 

A-M 96.2% 0.7% 7.5% 96.2% 1.5% 7.5% 99.2% 1.1% 0.4% 

R-Net 

V-C 74.6% 7.5% 13.3% 71.5% 28.3% 4.3% 97.2% 2.0% 1.2% 

V-V 82.5% 6.5% 17.3% 72.7% 27.3% 5.6% 97.2% 1.5% 2.0% 

V-M 77.6% 9.0% 13.2% 72.3% 35.2% 4.5% 99.2% 0.7% 2.0% 

R-C 72.3% 10.5% 14.7% 71.3% 27.7% 2.2% 96.7% 1.3% 2.8% 

R-M 87.6% 5.2% 11.8% 69.6% 35.8% 7.8% 99.2% 0.4% 0.4% 

A-C 82.6% 4.6% 16.3% 82.1% 16.6% 2.3% 98.9% 0.9% 1.6% 

A-M 72.3% 8.6% 14.5% 72.3% 14.5% 3.7% 98.2% 1.2% 1.6% 

Attacks M-D 
SDBD WSRBD  

ACC FAR FRR ACC FAR FRR    

O-Net 

V-C 91.7% 3.2% 2.0% 96.3% 0.8% 1.3%    

V-V 89.2% 3.8% 4.8% 98.7% 0.4% 0.7%    

V-M 93.5% 5.2% 3.7% 97.2% 0.9% 2.2%    

R-C 91.7% 1.2% 1.3% 94.9% 1.0% 1.4%    

R-M 95.5% 1.9% 1.9% 95.7% 0.4% 0.7%    

A-C 98.1% 0.9% 0.8% 97.5% 0.4% 0.7%    

A-M 96.9% 2.2% 3.4% 95.4% 0.5% 2.1%    

R-Net 

V-C 97.6% 2.6% 0.4% 94.6% 1.2% 2.3%    

V-V 91.5% 2.2% 2.2% 97.6% 0.6% 0.5%    

V-M 93.4% 1.8% 3.1% 96.5% 0.6% 1.2%    

R-C 93.6% 1.9% 0.9% 95.3% 0.5% 3.1%    

R-M 95.6% 2.8% 2.1% 97.4% 0.7% 1.8%    

A-C 94.6% 1.1% 2.2% 98.1% 0.2% 0.9%    

A-M 94.2% 2.7% 3.5% 95.8% 1.0% 3.5%    

ID-Model Effectiveness Verification. The experiment compared the defensive perfor-

mance of ID-Model, STRIP, and NNCDA against dual-trigger backdoor attacks with 

each maintaining a 10% poisoning rate across three network architectures including 
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Vggnet16, Resnet, and Alexnet, displaying metrics for accuracy, false acceptance rate, 

and false rejection rate. 

 

Fig. 6. Performance Comparison of ID-Model with Traditional Detection Methods Across Dif-

ferent Network Architectures. 

The accuracy metric in Fig. 6 (a) demonstrates the exceptional performance stability 

of the ID model. Although existing methods can maintain high accuracy, above 80%, 

when defending against the Original-Net attack, their performance drops sharply when 

facing the R-Net attack with dynamic trigger generation and random obfuscation. 

STRIP’s accuracy is 19%, and NNCAD experiences an even greater decline, with an 

accuracy of 23%. In contrast, regardless of the attack type, the ID model consistently 

maintains an accuracy of over 94% across all network architectures, showcasing its 

outstanding effectiveness against advanced attack strategies. 

In Fig. 6 (b) and Fig. 6 (c), regarding the R-Net attack, NNCAD exhibits an alarming 

false acceptance rate exceeding 25%, indicating that more than a quarter of malicious 

samples can evade detection. Meanwhile, STRIP’s FAR slightly increases, but its re-

jection rate rises sharply to over 14%, meaning many legitimate samples are incorrectly 

labeled as malicious. The ID model consistently maintains a low false acceptance rate 

and rejection rate across all test configurations, demonstrating balanced and reliable 

performance. This balanced performance is crucial for real-world deployment scenar-

ios, as both security with low false acceptance rate and usability with low false rejection 

rate are key considerations. The experimental results convincingly demonstrate that the 

proposed integrated approach, by leveraging complementary techniques, builds a more 

comprehensive and resilient defense system, providing an effective solution to counter 

complex backdoor attacks. 



6 Experimental Evaluation 

This study proposes an Integrated Detection Model for Deep Neural Network Backdoor 

Attacks (ID-Model), which integrates multiple detection methods to construct a multi-

level defense system that demonstrates excellent effectiveness when facing complex 

attack forms such as dynamic sensitivity optimization and randomized obfuscation. The 

research's main contributions are manifested in three aspects: first, it innovatively de-

signs and implements three complementary detection methods (EKLFC-CD, SDBD, 

WSRBD); second, it constructs an extensible integrated detection framework that em-

ploys a hierarchical decision mechanism to achieve end-to-end protection from feature 

extraction to threat warning; finally, experimental results show that ID-Model achieves 

detection accuracies of 94.3% for Original-Net attacks and over 90% for R-Net attacks, 

representing an average improvement of 19% compared to existing optimal methods. 

Future work will improve efficiency, boost detection sensitivity, and enhance defense 

against emerging backdoor attacks, especially in black-box settings, while broadening 

evaluation against new SOTA defenses and adaptive attacks. 
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