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Abstract. Probability density estimation in time series often encounters missing 

values, which compromise data completeness and usability, making it difficult to 

accurately estimate distributions and leading to biased results. To address this 

challenge, we propose a novel probability density estimation method called 

DDN-GP, which introduces Gaussian Process(GP) to Deconvolutional Density 

Networks(DDN). This approach uses a nonlinear dimensionality reduction ap-

proach, employing GP in the latent space to handle missing input data, and takes 

advantage of DDN to estimate arbitrarily distributed times in time series even 

with missing output data, ultimately improving both prediction accuracy and 

model robustness. We validate DDN-GP on multiple datasets with missing data, 

and the experimental results demonstrate that our approach enhances predictive 

performance quantification compared to existing methods. 

Keywords: Probability Density Estimation, Time Series, Missing Data, Gauss-

ian Processes. 

1 Introduction 

A regression task involves predicting an output given an input 𝑥, it can be viewed as 

modeling the conditional probability distribution of the output random variable given 

the input, which is donated as 𝑝(𝑓(𝑥)|𝑥), where is the random variable 𝑓(𝑥) associated 

with each x, and 𝑝(⋅) denotes the corresponding probability distribution [1]. This finds 

applications in financial market forecasting, clinical monitoring, and cement hydration 

analysis. 

However, in time series regression tasks, the data is commonly subject to missing 

values challenges due to data collection cost, such as sensor failures, data collection 

delays, or system storage anomalies [2], and the data is inherently sequential, meaning 

that variables are correlated with one another, making the presence of missing values 

more complicated to handle. Missing data reduces the overall completeness and con-
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sistency of the time series, which can introduce significant biases in probability estima-

tion and obscure the inherent relationships among variables, further complicating the 

task of modeling the underlying distributions. 

In the context of time series, this missing data problem can arise in two primary 

forms: (1) Missing output data: where certain or all observations of the target variable 

are unrecorded. In this case, the model cannot be fully trained or properly evaluated, 

leading to potential biases in the estimation of the target variable’s probability distribu-

tion. (2) Missing input data: where essential features or external explanatory variables 

are missing. Missing input data limits the model’s ability to capture the full range of 

relationships among variables, which undermines the accuracy of estimating the con-

ditional probability distribution and degrades predictive performance. Therefore, deal-

ing with missing data in time series regression tasks requires strategies that can effec-

tively address both types of missing information. 

Time series can be understood as being influenced by multiple correlated data chan-

nels, each contributing unique information to the overall prediction. In the presence of 

missing data, several strategies can be employed to mitigate its adverse effects. One 

strategy involves leveraging inter-channel correlations: a common technique for han-

dling missing inputs is to perform dimensionality reduction [3],[4] and then use the 

relationships among different channels in the reduced-dimensional space to impute or 

estimate the missing parts. By capturing latent coupling relationships in the reduced-

dimensional space, one can more effectively tackle input data gaps while preserving a 

robust depiction of the system’s dynamic evolution.  

Another strategy is leveraging intra-channel correlations. When only a small number 

of samples are available and some are missing, one typically relies on assumptions of 

distributional smoothness to construct suitable priors or regularization strategies, 

thereby enhancing the robustness of distribution estimation. Furthermore, because real-

world data often exhibit complex, multimodal characteristics [5], it is common to im-

pose minimal constraints on the model and adopt a free-form probability distribution 

approach, which avoids the biases that could otherwise arise from single-mode assump-

tions. 

Unfortunately, current methods often excel in only one particular aspect. Gaussian 

Processes [6] as a classical temporal statistical model, typically capture temporal de-

pendence with kernel functions, yet it rely on complete data for kernel computation and 

parameter estimation, missing values disrupt their covariance structure and reduce pre-

diction accuracy. Meanwhile, probability density estimation methods (e.g. Deconvolu-

tional Density Network (DDN) [7]) achieve more robust distribution learning in set-

tings with limited samples or localized regions through smooth priors, but it is difficult 

to construct sequential dependence. 

To address the above limitations, this paper proposes DDN-GP, which integrates 

Gaussian Process(GP) with the existing free-form probability estimation method DDN. 

By leveraging nonlinear dimensionality reduction to project data with missing values 

into a latent space free of missing values, we incorporate the GP into DDN to capture 

the dynamic temporal pattern, thereby constructing temporal dependencies based on 
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DDN's ability to construct robust distributions and compensating for data incomplete-

ness caused by missing values in the GP. Ultimately, this approach enables robust time 

series probability density estimation with missing data. 

Our contributions are summarized as follows: 

(1) We propose a framework DDN-GP for handling missing values in time series 

probability estimation. It maps incomplete data into a latent space, models temporal 

dynamics there, and then uses a density estimator to produce the final distribution, ef-

fectively addressing missing data issues. 

(2) We propose a strategy that models temporal dynamics in probability density es-

timation tasks by employing a Gaussian Process (GP) in the latent space, effectively 

enhancing probability estimation performance in time series data. 

(3) We evaluate the performance of DDN-GP on datasets covering diverse scenarios. 

Experimental results demonstrate that DDN-GP can effectively handles missing data 

and estimate and outperforms comparison methods. 

2 Related Work 

2.1 Conditional Density Estimation For Regression 

In time series analysis, the challenge of missing data has always been a persistent issue. 

Early methods relied on heuristics, such as mean imputation [8], linear interpolation 

[9], or forward filling [10]. These methods are simple and interpretable, and they con-

tinue to be used in practice to this day. 

 

2.2 Probability Density Estimation Methods 

Regression imputation methods [11] use regression models to handle missing data, as-

suming that a relationship exists within the data. With the development of probabilistic 

models, probability density estimation methods have been increasingly applied due to 

their excellent ability to estimate uncertainty. Examples include Variational Autoen-

coders (VAEs) [12],[13] and Generative Adversarial Networks (GANs) [14],[15]. 

These models can estimate uncertainty effectively; however, challenges arise from the 

multi-modality and sparsity of the data. Meanwhile, Deconvolutional Density Net-

works (DDNs) [7] can propose free-form distributions even with sparse data, but they 

do not account for time dynamics. 

 

2.3 Gaussian Processes 

Gaussian processes (GPs) [16], as a classical Bayesian inference method, have been 

widely applied to tasks such as time series regression. GPs can be viewed as a collection 

of infinitely many random variables [17], and it directly estimates regression probabil-

ities through its mean and covariance functions. By leveraging Bayesian inference, it 

can perform well even with limited data. However, the high computational complex-

ity—mainly due to the need to invert and decompose large covariance matrices—re-

stricts its direct application to large-scale data and complex problems. To overcome 



this, extended forms like sparse Gaussian processes [18] and deep Gaussian processes 

[19] have been developed. These methods approximate the original Gaussian process 

by introducing inducing points or multi-layer structures, significantly reducing compu-

tational demands while preserving the model’s flexibility and expressive power. 

 

2.4 Gaussian Processes For Probability Density Estimation 

Gaussian processes (GPs) can be directly employed in probability density estimation to 

construct data dependence.  The Gaussian Process Conditional Density Estimation (GP-

CDE) [20] using GPs as the decoder to map the extended inputs into samples from the 

conditional distribution, enabling probability estimation in small-sample scenarios, al-

beit still under the Gaussian assumption. Meanwhile, Non-Gaussian Gaussian Pro-

cesses (NGGP) [21] uses normalizing flows to model the Gaussian process posterior as 

an arbitrary non-Gaussian distribution, but its reliance on meta-learning, which requires 

large amounts of domain data, limits its broader applicability. 

In addition, GPs employed in latent space are an important method. GPLVM [22] 

and its variations [23],[24],[25],[26] use Gaussian processes to construct a nonlinear 

latent space, providing an effective tool for dimensionality reduction and feature ex-

traction in high-dimensional data. GP-VAE [27] also applies nonlinear dimensionality 

reduction and constructs GPs in the latent space to handle missing data, particularly in 

time series scenarios, but it is difficult to construct the distribution with strong general-

ization ability in sparse data situations.   

3 Formulation 

We aim to address the task of modeling regression probability distribution in time series 

scenarios with missing data. Existing normal statistical methods like Gaussian Pro-

cesses, which catch temporal dependence and perform well when data is abundant, tend 

to degrade significantly in the presence of missing data, and  probability density esti-

mation models DDN can construct arbitrary distribution even with missing data, but it 

isn't concern time dynamic. To overcome these challenges, we leverage nonlinear di-

mensionality reduction techniques to map input data with missing values into a latent 

space. We then employ Gaussian Processes (GPs) to model the dynamics in this latent 

space, compensating for missing information and obtaining a smoother latent represen-

tation. Additionally, we incorporate a DDN decoder, which exploits inter-channel 

smoothness to construct a piecewise constant probability density estimate through 

multi-scale Deconvolutional operations. This enables accurate estimation of the target 

variable's distribution, even when data is severely missing. We train the DDN-GP using 

Cross-Entropy as the loss function and apply a variational inference method to train the 

latent space, ensuring both predictive accuracy and providing a measure of prediction 

uncertainty. 
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4 Methodology 

 

Fig. 1. The architecture of DDN-GP. (a) is the inputs with missing values. (b) is the Encoder of 

the model, which realize nonlinear reduction dimensions to map inputs with missing values into 

the latent space free of missing values. (c) is the Gaussian Processes Latent Space of the model, 

which simulates time dynamic. For the sake of presentation, we use a two-dimensional case 

[𝑧1, 𝑧2]. (d) is the Deconvolutional Estimator in DDN. The estimator can effectively model free-

form distributions with smooth prior. (e) is the Cross-Entropy loss of the network. 

4.1 Problem Setting And Notation 

Here we briefly describe the baseline model, and other components will be added into 

it progressively. Considering a dataset 𝐷={(𝑋𝑡,𝑦𝑡)|𝑡=1,2...𝑇}, where 𝑇 is the time length 

of the sample. For the k-th sample, 𝑋𝑡
𝐷 epresents the multi-dimensional feature input, 

and 𝑦𝑡 represents the corresponding label. 

We assume that any subset of the data features 𝑋𝑡
𝑑 may be missing, and in extreme 

cases, the entire feature vector 𝑋𝑡 could be absent. Consequently, 𝑦𝑡 may also be miss-

ing. Our goal is to characterize the distribution 𝑝(𝑦{1:𝑇}|𝑋{1:𝑇}). In other words, for each 

time step 𝑡, we only have access to the observed portion 𝑋𝑡
𝑜 of 𝑋𝑡 , which could even 

be empty, and we seek to model how the random variable 𝑦𝑡 is distributed given this 

partial information, while leveraging time dependence. 

The model is based on an Encoder-Estimator architecture. Next, we will provide a 

detailed overview of each component. 

 

4.2 Encoder  

Let 𝑋𝑑    
{1:𝑇} be the input of the model, the vector 𝑋 can represent it, and 𝑦{1:𝑇} be the target 

samples of the input 𝑋, we use 𝑦 to represent, where the feature of 𝑋d 
𝑡  may be missing, 

a straightforward approach is to fill in these missing values (for example, with zeros) 

and then apply a probability estimation model. 

However, this can cause two samples with different missing-value patterns to appear 

very dissimilar, even though their ground truth might actually be quite similar. There-

fore, we employ nonlinear dimensionality reduction methods to map the missing data 



space into a latent space. Specifically, we use an encoder with hidden states ℎ = 𝑓𝑒𝑛𝑐(𝑋) 

to obtain deterministic latent representations of the input, where the 𝑓𝑒𝑛𝑐 is a transition 

function implemented by LSTM [28] or Convolutions [29]. 

To overcome the missing data problem, it is reasonable to transform the determinis-

tic latent representations into random variables. Because the features of the data are 

correlated, the latent representations must capture these correlations and use them to 

compensate for missing features. Accordingly, we map each ℎ to a latent variable 𝑧 by 

applying a stochastic mapping function 𝑔(∼) to model the dynamic. 

 𝑝(𝑧|ℎ)=𝑔(ℎ) +𝜖 (1) 

Where 𝜖∼ 𝑁(0,𝜎2𝐼) is a Gaussian Noise, In addition, to reduce the complexity of the 

representation and mitigate potential overfitting, we should model the latent space in a 

smoother and more interpretable manner than the raw data space, this is represented as 

Fig 1(b). 

Under this framework, the vanilla Deconvolutional Density Network (DDN) can be 

viewed a special case. In the vanilla DDN, the VL layer enforces that the latent varia-

bles are independent of each other, making it difficult to capture the correlation among 

features. 

 

4.3 Gaussian Process Latent Variables 

The learning of 𝑔(∼) is the essential of the model, that need to satisify the follow points: 

(1) It should be capable of incorporating variations in feature correlations, thereby ac-

curately capturing the dynamic dependencies among features and effectively compen-

sating for missing data. (2) The latent space must be smooth and interpretable, ensuring 

that transitions within this space are gradual and the model’s behavior remains explain-

able. 

In this work, we propose to learn the stochastic function 𝑔(∼) using a nonlinear ap-

proach with a functional prior defined by Gaussian Processes. As shown in Fig (1), we 

sample 𝑔(ℎ) from a GP prior, which not only allows for the independent filling of miss-

ing values but also effectively captures the correlations among features. Moreover, the 

latent space induced by the Gaussian Processes consists of correlated variables, mean-

ing that a change in one variable (e.g., 𝑧2). This property is particularly beneficial for 

completing features in the latent space when handling missing data. We define the sto-

chastic function 𝑔(ℎ) according to a GP prior: 

 𝑔(ℎ)∼ 𝐺𝑃(𝑚(ℎ),𝐾(ℎ,ℎ′)) (2) 

with the mean function 𝑚(ℎ) and the covariance function 𝑘(ℎ, ℎ′) as: 

 𝑚(ℎ) = ℎ (3) 

 𝐾(ℎ, ℎ′) = 𝜐2 ||ℎ−ℎ′||2

2𝑟2   (4) 
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where ℎ denotes a deterministic latent state and ℎ′ represents another latent state, The 

parameter 𝜐 controls the average distance of the 𝑔(∼), and 𝑟 regulates the correlation 

among the random variables, increasing 𝑟 strengthens the correlation between 𝑧 and 𝑧′.  

In this work, we adopt a semi-parametric Gaussian Process prior for the latent space, 

where 𝑚(ℎ) is generated from a parametric function 𝑔(ℎ) and the covariance function 

𝑘(ℎ,ℎ′) is non-parametric. This approach not only introduces correlations among the 

random variables to address missing features but also preserves the inherent character-

istics of the original data space, this is represented as Fig 1 (c). 

 

4.4 Decoder with Deconvolutional Estimator  

In this section, we introduce the generative process for the conditional probability dis-

tribution 𝑝(𝑦𝑡|𝑧𝑡) derived from the latent variables 𝑧{1:𝑇}. Due to the inherent sparsity 

and incompleteness of the observed y values, it is crucial to obtain accurate estimates 

even when sample sizes are limited. 

An effective strategy for enforcing smoothness in the estimated distribution is to 

leverage the correlations between outputs. Specifically, we capture the inherent rela-

tionships among outputs through their multi-scale features and hierarchical structure, 

allowing us to extract consistent data patterns rather than merely focusing on random 

occurrences, the Deconvolutional estimator in DDN remains a powerful tool for free-

form modeling. This estimator assumes that the domain D of variable y is finite and 

partitions it into a series of uniform bins B. By constructing a piecewise-constant prob-

ability density estimation using these bins and employing multi-channel, multi-scale 

deconvolution during the modeling process, we ensure that the resulting probability 

distribution is both smooth and precise. 

 The Decoder can be represented using a 𝑓𝑑𝑒𝑐(∼), which divides the output into N 

Bins. The 𝑝(𝑦𝑡|𝑧𝑡) can be represented as: 

 p(y𝑡|𝑧𝑡) = {

…
𝑓𝑑𝑒𝑐(𝑦𝑡|𝑧𝑡)

△𝐵
   𝑖𝑓 𝑦𝑡  ∈ 𝐵𝑖

…
 (5) 

where 𝐵𝑖 is the i-th Bin of 𝑁 bins that pariationing the output space. 

Specifically, the latent vector 𝑧𝑡 is first mapped to a fully connected layer, which is 

then reshaped into a multi-channel initial feature map. This reconstructed feature map 

is subsequently fed into a sequence of Deconvolutional layers constructed using up-

sampling and convolution. Upsampling expands the feature map by an integer scale 

factor, while convolution transforms it by applying shared weights to introduce spatial 

correlations. After these Deconvolutional layers, an unnormalized logit vector is ob-

tained, which is finally passed through a SoftMax layer to produce a discretized prob-

ability vector, this is represented as Fig 1 (d). 

 

4.5 Training DDN-GP 

The likelihood of 𝑃(𝑦𝑡|𝑋) is computed by the output of the Deconvolutional estimator 

and the target 𝑦𝑡, the estimator receives the input 𝑋. Additionally, the variational loss 

𝐿𝐾𝐿 is computed within the latent space of Gaussian processes. 



 −
1

𝑇
∑ 𝐸 [

1

𝐽
∑ log(𝑔(𝑦𝑡|𝑧𝑡))𝑁

𝑗=0 ⋅ 1(𝑦𝑡)] − 𝛽𝐿𝐾𝐿
𝑇
𝑡=0  (6) 

where 𝑇 denote the number of samples and N the number of bins, while 𝛽 is a hy-

perparameter that balances the reconstruction and regularization terms. Inspired by pre-

vious research, we employ variational inference [30] for latent space training. Specifi-

cally, we approximate the true posterior 𝑝(𝑧|ℎ) with the variational posterior 𝑞𝜙(𝑧|ℎ) by 

maximizing the evidence lower bound (ELBO) of the marginal log-likelihood. 

 𝐿𝐾𝐿 = [𝑞𝜙(𝑧|ℎ)||𝑝(𝑧|ℎ)] (7) 

Thereforce, we have the ultimate optimization goal: 

 𝑎𝑟𝑔𝑚𝑖𝑛{−
1

𝑇
∑ 𝐸 [

1

𝐽
∑ log(𝑔(𝑦𝑡|𝑧𝑡))𝑁

𝑗=0 ⋅ 1(𝑦𝑡)] − 𝛽[𝑞𝜙(𝑧|ℎ)||𝑝(𝑧|ℎ)]𝑇
𝑡=0 } (8) 

5 Experiments 

5.1 Datasets With Missing Data 

Toy And Real Regression Datasets To validate the effectiveness of DDN-GP, we em-

ployed four regression datasets: one toy dataset and two real-world regression datasets 

and four time series datasets, we set different data missing rate [10%,30%,50%] to eval-

uate performance using the negative log-likelihood (NLL) metric. 

Testing across these datasets allows for a comprehensive evaluation of the perfor-

mance of DDN-GP in handling various data types and missing value scenarios. We 

used Adam optimizer with the default confguration. The learning rate was set to 1e-3, 

and the batch size is 32. 

 

Fig. 2. TwinGP Dataset Probability Distribution. The above and the bottom distributions are 

composed by Gaussian Process with RBF kernel, the blue lines represents the mean of Gaussian 

Processes, and the regions are confidence interval. 
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Fig. 3. The experimental results of DDN-GP comprised with DDN, DDN(VL) in TwinGP Da-

taset. The left is DDN, the middle is DDN(VL), and the right is DDN-GP. The red points in the 

figures represents the training data, and the blue regions are the probability estimation results of 

models. The hyperparameter of 𝛽 is [0,0.3,0.3]. 

5.2 Effectiveness Verification 

Models In all experiments, because the part of input data is missing, we set mask for 

missing features. The models of all experiments begin with input layer and two hidden 

layers, the num of hidden neurons is [32,64], and we use BatchNorm for every hidden 

layer for batch-normalization. For Gaussian Process in the latent space, we use RBF 

kernel [31] and set the hyperparameter ℓ = 1, 𝜎 = 1. The estimator of DDN contained 

two Upsample-Conv-BatchNorm-LeakyReLU blocks and one Upsample-Conv block 

in each target dimension. We confgured the blocks so that the output space was parti-

tioned into N = 68 bins. We used 16 latent codes in latent variables. In addition, the 

target range of y is important, For the toy TwinGP dataset , we set [-4,4], and for real 

world datasets, we set [𝑦𝑚𝑖𝑛−1,𝑦𝑚𝑎𝑥+1]. 

 

Table 1. Experimental Performance (NLL), 𝛽=0.3, Missing rate = 30%. 

Datasets 𝑁 𝐷𝑖𝑛 𝐷𝑜𝑢𝑡 DDN-GP DDN(VL) DDN 

TwinGP 2000 1 1 -0.7987±0.0021 -0.7813±0.0017 -0.7791±0.0010 

license_plates_acution_data 190 3 1 -1.0137±0.0013 -0.8843±0.0010 -0.3256±0.0003 

daily_gold_rate 10115 5 1 -1.0148±0.0011 -0.9987±0.0012 -0.3125±0.0002 

Concrete_Data Dataset 1031 8 1 -3.2946±0.0023 -3.1196±0.0009 -3.0123±0.0004 

Air Quality Dataset 9358 12 1 -2.9120±0.0006 -2.8978±0.0003 -0.1299±0.0002 

Boston 507 13 1 -3.7294±0.0027 -3.5484±0.0011 -2.8390±0.0008 

Financial Distress 3673 83 1 -1.0377±0.0019 -0.9812±0.0014 -0.2197±0.0006 

 

Ablation Experiments To assess the capability of Gaussian Processes in the latent 

space of DDN, we conducted ablation experiments by comparing DDN, DDN(VL), and 

DDN-GP on datasets with missing data. DDN is the version without a probabilistic 

latent space; we directly set the latent mapping using MLPs. DDN(VL) is the DDN 

augmented with a Variational Layer [7], which can be interpreted as a Gaussian Process 

with an independent kernel that does not model relationships between variables. DDN-

GP, on the other hand, incorporates Gaussian Process latent variables. Both DDN(VL) 

and DDN-GP were trained using variational inference methods. In the variational bot-

tleneck [30], we set the hyperparameter 𝛽 = 0.3. We conducted experiments on the 



Twin Dataset (see Fig. 2). A small portion of the data was retained as observed values, 

while the remaining data was treated as missing, We test each dataset 5 times to take 

the negative log-likelihood(NLL) mean as the evaluation metric. 

 

Table 2. Experimental Performance In Different Missing Rate(NLL) 

Datasets DDN-GP GP-VAE GP 

TwinGP(10%) -0.7977±0.0025 -0.7812±0.0020 5.0016±0.0002 

TwinGP(30%) -0.7987±0.0021 -0.7951±0.0017 4.9543±0.0002 

TwinGP(50%) -0.7614±0.0032 -0.7587±0.0028 4.9709±0.0002 

TwinGP(70%) -0.7215±0.0036 -0.7911±0.0031 4.9543±0.0001 

license_plates_acution_data(10%) -1.1293±0.0009 -1.1136±0.0014 2.2761±0.0003 

license_plates_acution_data(30%) -1.0137±0.0013 -0.8843±0.0010 2.3256±0.0003 

license_plates_acution_data(50%) -2.0981±0.0035 -2.0978±0.0023 2.9813±0.0002 

daily_gold_rate(10%) -1.1431±0.0008 -1.2081±0.0010 2.3121±0.0003 

daily_gold_rate(30%) -1.0148±0.0011 -0.9987±0.0012 2.3125±0.0002 

daily_gold_rate(50%) -0.9341±0.0015 -0.9562±0.0008 2.3341±0.0002 

Concrete_Data(10%) -3.1132±0.0016 -3.2511±0.0013 2.9124±0.0003 

Concrete_Data(30%) -3.2946±0.0023 -3.1196±0.0009 3.0019±0.0004 

Concrete_Data(50%) -2.9813±0.0031 -2.8611±0.0027 3.2371±0.0002 

Air Quality Dataset(10%) -3.0125±0.0013 -3.1266±0.0010 3.5126±0.0002 

Air Quality Dataset(30%) -2.9120±0.0016 -2.8978±0.0013 4.1299±0.0002 

Air Quality Dataset(50%) -2.0981±0.0025 -2.0978±0.0019 4.9813±0.0003 

Boston(10%) -3.6809±0.0023 -3.5612±0.0021 2.3156±0.0003 

Boston(30%) -3.7294±0.0027 -3.5484±0.0011 2.1352±0.0008 

Boston(50%) -3.6146±0.0030 -3.5781±0.0027 2.4376±0.0002 

Financial Distress(10%) -1.2091±0.0015 -1.1392±0.0006 -0.2027±0.0004 

Financial Distress(30%) -1.0377±0.0019 -0.9812±0.0014 -0.2197±0.0006 

Financial Distress(50%) -0.7612±0.0031 -0.7601±0.0010 -0.1892±0.0003 

 

 

Contrast Experiments A similar model to DDN-GP is GP-VAE [27], which maps 

missing data to a latent space using an Encoder–Decoder architecture and leverages 

Gaussian processes to capture sequence dependencies. It is particularly well-suited for 

time-series tasks. We set 2Conv-layers-Encoder, the Gaussian Processes latent dim=2, 

and use RBF kernel, 2MLPs-layers-Decoder [7]. To compare the performance of DDN-

GP and GP-VAE, we selected four different time series datasets, including Air Quality 

Dataset from UCI, daily_gold_rate, license_plates_acution_data, Financial Distress, 

these records multitemporal measurements across various variables and exhibits clear 

temporal dynamics. The quantitative comparison in Table 2 shows that although both 

models map missing data into a Gaussian Process latent space and perform comparably 

on temporal tasks, DDN-GP can construct arbitrary-form distributions with enhanced 
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generalization capabilities using a Deconvolutional estimator. Furthermore, DDN-GP 

adapts to unknown data patterns and, as the missing rate increases, demonstrates robust 

adaptability to arbitrary probability distribution compared to GP-VAE. Gaussian Pro-

cess(GP) [16] is a classical statistical method that estimates time series probability dis-

tributions and is particularly well-suited for sparse datasets. To validate the perfor-

mance of DDN-GP and GP, we conducted experiments comparing DDN-GP with a 

standard GP model (using an RBF kernel) and employed 100 inducing points [18]. The 

results indicate that the performance of GP is lower than that of DDN-GP. This is be-

cause, under conditions of missing data and strict distributional constraints, the standard 

GP struggles to accurately model the underlying data distribution. In contrast, DDN-

GP, with its ability to estimate arbitrary probability distributions, proves to be more 

robust and adaptable in such scenarios. 

6 Conclusion 

This paper addresses the challenges of missing data in time series regression tasks and 

the difficulty of accuracy with existing probability estimation methods. To this end, we 

propose a novel regression predictive distribution estimation model called DDN-GP. 

This model innovatively integrates nonlinear dimensionality reduction, Gaussian Pro-

cess (GP) dynamic modeling, and Deconvolutional Density Network (DDN)-based 

free-form probability distribution estimation. DDN-GP successfully maps high-dimen-

sional input data with missing values into a complete, missing-value-free latent space. 

In this latent space, it captures data dynamic using GP and ultimately constructs an 

arbitrary probability distribution using DDN. 

Experimental results demonstrate that the DDN-GP model effectively handles miss-

ing input and output data, significantly reducing probability estimation bias. By lever-

aging correlations between feature channels and smoothness within channels, the model 

enhances predictive accuracy. Specifically, nonlinear dimensionality reduction allows 

the model to effectively impute missing values, avoiding the difficulties of directly 

dealing with incomplete data. The use of GP ensures predictive accuracy in data-rich 

regions, while DDN provides flexible probability distribution modeling capabilities, 

enabling it to adapt to complex data distributions. 

In summary, the proposed DDN-GP model offers a novel approach and solution for 

regression predictive distribution estimation in the presence of missing data. It im-

proves prediction accuracy and robustness, thereby providing a more reliable basis for 

decision-making. Future research directions may include further optimizing the nonlin-

ear dimensionality reduction algorithm, exploring more effective smoothness prior 

strategies, and applying the model to a wider range of real-world applications, such as 

sensor data imputation and time series forecasting. 
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