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Abstract. The structure of a community is essential for understanding com-

plex networks, yet detecting communities efficiently and accurately remains a 

significant challenge. Although the label propagation algorithm offers linear-time 

complexity, it faces issues with low robustness, high randomness, and a tendency 

to form overly large communities. To overcome these limitations, we propose an 

Overlapping Community Detection Algorithm based on Enhanced Label Propa-

gation with Graph Neural Network Optimization (ELP-GNN). Our approach 

consists of three phases: first, an enhanced label propagation algorithm is em-

ployed to identify initial communities by incorporating core node selection and 

importance-based propagation; second, a Graph Neural Network (GNN) model 

is trained on the initial communities to learn node embeddings and optimize the 

community structures; and finally, a fusion strategy is applied to combine the 

strengths of both methods. We evaluate ELP-GNN on both real-world and syn-

thetic networks, comparing its performance with existing overlapping and non-

overlapping community detection algorithms. The experimental results demon-

strate that our algorithm outperforms state-of-the-art methods in terms of accu-

racy and robustness, particularly in complex network structures with high mixing 

parameters. 

Keywords: Community Detection, Label Propagation, Density Peak Cluster-

ing, Graph Neural Networks, Graph Computation. 

1 Introduction 

Complex networks are ubiquitous in the real world, encompassing diverse domains 

such as railway transportation networks [1], biological networks[2], and social net-

works[3]. A defining characteristic of these networks is their community structure, 
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which refers to groups of nodes that are densely interconnected internally but sparsely 

connected externally[4]. As an intrinsic property of complex networks, community 

structure plays a pivotal role in understanding network functionality, analyzing topo-

logical features, and predicting evolutionary trends. Consequently, it has attracted sig-

nificant attention from the academic community, leading to the development of numer-

ous community detection algorithms. 

Community detection algorithms can be broadly categorized into non-overlapping 

and overlapping types. In real-world networks, nodes often belong to multiple commu-

nities—for example, individuals in social networks may participate in various interest 

groups—making overlapping community detection more practically relevant. Among 

existing algorithms, the label propagation algorithm (LPA) is widely adopted due to its 

near-linear complexity and scalability. However, traditional LPA has key shortcom-

ings: it ignores topological context, treats all nodes equally (leading to "giant commu-

nities"), and relies on random tie-breaking during label updates, which compromises 

robustness and accuracy. 

To overcome these limitations, we enhance LPA through a multi-stage refinement. 

First, we pre-select core nodes based on their structural importance using density peak 

clustering, combining node density and relative distance to identify central nodes. This 

avoids redundant initialization and improves label consistency. Peripheral nodes (de-

gree 1) are directly assigned the label of their nearest core node, simplifying prior ap-

proaches that used compression-recovery strategies. Label propagation is then con-

ducted from updated to unupdated nodes, followed by a correction step where incon-

sistent labels are reassigned to better match local neighborhoods. 

Despite the proposed improvement strategies significantly enhance the robustness 

and accuracy of the traditional label propagation algorithm, some inherent limitations 

still exist. The method still relies heavily on local information and may be sensitive to 

core node selection. Furthermore, it struggles to capture global patterns in highly het-

erogeneous networks. 

In recent years, Graph Neural Networks have emerged as powerful tools for learning 

representations of graph-structured data. Through sophisticated message-passing 

mechanisms, GNNs can effectively capture both local and global structural infor-

mation, making them particularly suitable for community detection tasks. However, 

they typically require large amounts of labeled data and offer limited interpretability. 

Traditional methods like LPA are more transparent but lack representational depth. 

To bridge this gap, we propose a novel hybrid approach that integrates our enhanced 

label propagation algorithm with GNNs. The interpretable communities from LPA 

serve as guidance for the GNN, which refines them using its ability to capture complex 

node interactions. This combination preserves the strengths of both approaches—inter-

pretability from LPA and representational power from GNNs—yielding a more accu-

rate and robust community detection framework. The key contributions of this paper 

are summarized as follows: 

1. We propose an enhanced label propagation algorithm for overlapping community 

detection, incorporating node importance and strategic label assignment to optimize 
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the process, reduce randomness, and improve the accuracy of detecting both over-

lapping and non-overlapping communities. 

2. We design a GNN-based community optimization framework that learns topological 

features and membership information, capturing complex overlapping patterns to 

enhance community boundary detection and improve the quality of identified com-

munities. 

3. We introduce an adaptive fusion strategy that combines enhanced label propagation 

and GNN optimization, leveraging their strengths to improve accuracy and robust-

ness, particularly in complex networks with overlapping communities. 

2 Related Work 

Community detection, as a core task in complex network analysis, has attracted exten-

sive research attention. Based on the characteristics of community structures, existing 

algorithms are mainly divided into non-overlapping and overlapping types. In this sec-

tion, we systematically review related work from these two perspectives. 

Non-overlapping community detection aims to partition nodes into disjoint groups. 

Traditional methods typically rely on modularity optimization to increase intra-com-

munity edge density. For example, Qiao et al.[5] combined the Mountain model and 

Landslide algorithm for efficient optimization, while Shi et al. [6] proposed quasi-La-

placian centrality with adaptive merging. However, such methods struggle with scala-

bility and cannot capture overlapping structures. 

For large-scale networks, label propagation-based methods have gained attention 

due to their efficiency. Yang et al.[7] introduced GLPA based on label similarity, Li et 

al.[8] incorporated neighbor label frequency and node influence, and Tang et al.[9] pro-

posed a parallel algorithm using weights and random walks. Although effective, these 

methods are prone to randomness and giant community formation. Meanwhile, strate-

gies based on node importance and community centers also emerged. For example, 

Zhao et al.[10] proposed compressing low-degree vertices and selecting seed nodes via 

density, Li et al.[11] introduced a stable method combining density peak clustering and 

label propagation, and Roghani et al.[12] developed a parallel Spark-based framework 

that computes node importance via multiple criteria. 

In real-world networks, nodes often belong to multiple communities, making over-

lapping community detection more applicable. Roy et al.[13] proposed a fuzzy method 

using neighborhood similarity and improved local random walks. Gao et al.[14] used 

constrained personalized PageRank to suppress redundant label diffusion, while Tang 

et al.[15] employed local maximal cliques and label propagation. Despite their 

strengths, these methods often lack robustness in networks with heterogeneous com-

munity sizes and densities. 

Recent advances in Graph Neural Networks (GNNs) have enabled powerful repre-

sentation learning on graph-structured data. Jin et al.[16] proposed a graph attention 

model that adaptively weighs neighbor importance, enhancing detection in heterogene-

ous networks. However, GNN-based methods often require large amounts of labeled 

data and suffer from poor interpretability, limiting their practical deployment[17]. 



Although existing algorithms have made significant progress, challenges remain in 

terms of accuracy, stability, and efficiency in processing large-scale networks with 

complex overlapping community structures[18]. Most GNN-based methods require ex-

tensive supervision, while traditional algorithms struggle with network heterogene-

ity[19]. To address these issues, we propose a hybrid approach combining the interpret-

ability and efficiency of enhanced label propagation with the expressive power of 

GNNs, offering a more robust and accurate solution for community detection in diverse 

network environments. 

3 Method 

In this section, we present our novel community detection approach that combines en-

hanced label propagation with Graph Neural Network optimization. Our method con-

sists of three main components: (1) Enhanced Label Propagation, (2) GNN-based Com-

munity Optimization, and (3) Adaptive Fusion Strategy. Figure 1 illustrates the overall 

framework of our approach. 

 

Fig. 1. ELP-GNN Framework. 

The input is a graph 𝐺(𝑉, 𝐸), where 𝑉 = {𝑣1, . . . , 𝑣𝑛} represents a set of n nodes and  
𝐸  represents the set of edges connecting pairs of nodes in 𝑉. Our approach begins with 

an enhanced label propagation algorithm that identifies initial communities through 

strategic core node selection and importance-based label propagation. Then, a GNN 

model is trained on these initial communities to learn node embeddings and refine com-

munity boundaries. Finally, an adaptive fusion strategy combines the results from both 

methods to produce the final community structure. 

3.1 Enhanced Label Propagation 

Traditional label propagation algorithms suffer from several limitations, including high 

randomness, poor robustness, and the tendency to form "giant communities." To 
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address these issues, we propose an enhanced label propagation algorithm that incor-

porates node importance and strategic label assignment. 

Core Node Selection. The first step in our enhanced label propagation algorithm is to 

identify core nodes as initial community centers. Unlike traditional methods that ini-

tialize each node with its own label, we select core nodes based on two key metrics: 

local density and minimum distance. The local density of a node is calculated as: 

 ρ𝑖 =
2∗(𝐸𝑁(𝑖)+𝑑(𝑖))

|𝑁(𝑖)|∗(|𝑁(𝑖)|+1)
∗ 𝑑(𝑖)2, (1) 

where 𝐸𝑁(𝑖) is the number of edges between neighbors of node 𝑖, 𝑑(𝑖) is the degree 

of node 𝑖, and 𝑁(𝑖) is the set of neighbors of node 𝑖. 
To measure the relative distance between nodes, we propose a "trust degree" metric 

based on common neighbors and edge relationships: 

 𝑑𝑖𝑠𝑡𝑖𝑗 =
1

log(1+α𝑖,𝑗)⋅log(1+β𝑖,𝑗)
, (2) 

where 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 capture the similarity and edge density between nodes 𝑖 and 𝑗, re-

spectively. 

 α𝑖,𝑗 =
|𝐶𝑁(𝑖,𝑗)|+1

𝑚𝑎𝑥(|𝑁(𝑖)|,|𝑁(𝑗)|)
 (3) 

 𝛽𝑖,𝑗 = {

2∗(𝐸(𝐶𝑁(𝑖,𝑗)))

|𝐶𝑁(𝑖,𝑗)|∗(|𝐶𝑁(𝑖,𝑗)|−1)
, |𝐶𝑁(𝑖, 𝑗)| > 2

1, |𝐶𝑁(𝑖, 𝑗)| ≤ 2
 (4) 

The distance metric  𝑑𝑖𝑠𝑡𝑖𝑗 is based on the "trust degree." By integrating this into the 

density peak distance formula, the relative distance between nodes is defined as: 

 𝛿𝑖 = {

𝑚𝑖𝑛
𝑗:𝜌𝑖<𝜌𝑗

(𝑑𝑖𝑠𝑡𝑖𝑗), 𝑖𝑓∃𝑗𝑠. 𝑡. 𝜌𝑖 < 𝜌𝑗

𝑚𝑎𝑥
𝑗

(𝑑𝑖𝑠𝑡𝑖𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

To identify the core nodes, we multiply the normalized density 𝜌𝑖
∗ by the normalized 

distance 𝛿𝑖
∗ to obtain the node importance measure 𝛾𝑖: 

 𝛾𝑖 = 𝜌𝑖
∗ ∗ 𝛿𝑖

∗ (6) 

 𝜌𝑖
∗ =

𝜌𝑖−𝑚𝑖𝑛(𝜌)

𝑚𝑎𝑥(𝜌)−𝑚𝑖𝑛(𝜌)
 (7) 

 𝛿𝑖
∗ =

𝛿𝑖−𝑚𝑖𝑛(𝛿)

𝑚𝑎𝑥(𝛿)−𝑚𝑖𝑛(𝛿)
 (8) 

We employ Chebyshev's inequality to select the core nodes, where nodes satisfying 

the following condition are identified as core nodes: 

 𝑃(|𝑋 − 𝐸(𝑋)| ≥ 𝜀 ∗ 𝜎(𝑋)) ≤
1

𝜀2
, (9) 



where  𝐸(𝛾) represents the expected value of node importance, 𝜎(𝛾) denotes the 

standard deviation, and 𝜀 is a positive real number. 

Label Propagation Process. We propose an enhanced shortest path algorithm to assign 

edge nodes the label of the nearest core node based on computed distances. Core nodes 

propagate their labels and distances to neighbors, which select the label with the short-

est distance, increment the distance by 1, and forward the updated information to un-

updated neighbors until all nodes are labeled. For edge nodes equidistant from multiple 

core nodes, a trust-based distance metric (Equation 2) determines the nearest core node. 

The algorithm processes large-scale networks efficiently using parallel batches of equi-

distant nodes. 

Nodes are initialized post-labeling: core nodes with their ID and "isUpdated" set to 

true, edge nodes with assigned labels and true, and others with 0 and false. The label 

propagation probability, considering node importance and similarity, is calculated as: 

 𝑝𝑖𝑗 = 𝛾𝑖
𝑆𝑖𝑚(𝑖,𝑗)

∑𝑘∈𝑁(𝑖) 𝑆𝑖𝑚(𝑖,𝑗)
+ 𝑆𝑖𝑚(𝑖, 𝑗) (10) 

Here,  𝑝𝑖𝑗  represents the probability of node 𝑖 propagating its label to node 𝑗. Lever-

aging the characteristic that the greater the distance between two nodes, the smaller 

their similarity, we derive the similarity formula as follows: 

 𝑆𝑖𝑚(𝑖, 𝑗) =
1

𝑑𝑖𝑠𝑡𝑖𝑗
 (11) 

 When a node receives multiple labels, we employ the following formula to calculate 

the weight of each label: 

 𝑃(𝑙𝑖) = ∑𝑗∈𝑁(𝑖) 𝑝𝑗𝑖 ∗ 𝑇𝐹(𝑙𝑖 , 𝑙𝑗) (12) 

Here,  𝑇𝐹(𝑙𝑖 , 𝑙𝑗) indicates whether the labels of the nodes are identical (1 if identical, 

0 otherwise). Based on the weights, we sort the labels in descending order. Subse-

quently, we define a custom threshold 𝜑, which specifies the maximum number of la-

bels a node can possess. If the number of labels is less than or equal to the threshold, 

all labels are selected as the node's labels; if the number of labels exceeds the threshold, 

only the top 𝜑 labels are chosen. 

3.2 GNN-based Community Optimization 

After deriving initial communities via enhanced label propagation, we refine them us-

ing a Graph Neural Network (GNN). This process includes feature extraction, model 

design, training, and final prediction. 

Feature Extraction. We extract both topological and community features: 
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1. Topological Features: Node-level metrics such as degree centrality, clustering co-

efficient, eigenvector centrality, and PageRank. 

2. Community Features: One-hot or multi-hot vectors representing initial community 

assignments. 

These are concatenated into the input matrix 𝐗 ∈ ℝ𝑛×𝑑. 

GNN Model Architecture. Our GNN model consists of multiple graph convolutional 

layers and a final prediction layer: 

 𝐇(𝑙+1) = 𝜎(𝐃
~
−
1

2𝐀
~

𝐃
~
−
1

2𝐇(𝑙)𝐖(𝑙)), (13) 

where 𝐀
~

= 𝐀 + 𝐈, and 𝐇(0) = 𝐗. 

The final output is a probability matrix: 

 𝐏 = sigmoid(𝐇(𝐿)𝐖(𝐿)), (14) 

where 𝐏𝑖𝑗  represents the probability of node 𝑖 belonging to community 𝑗. 

Model Training.  

We train the GNN using a joint loss function: 

 ℒ = ℒ𝐶𝐸 + 𝜆ℒ𝑠𝑡𝑟𝑢𝑐𝑡 , (15) 

where ℒ𝑠𝑡𝑟𝑢𝑐𝑡 encourages dense intra-community and sparse inter-community con-

nections: 

 ℒ𝑠𝑡𝑟𝑢𝑐𝑡 = ∑(𝑖,𝑗)∈𝐸 ∥ 𝐏𝑖 − 𝐏𝑗 ∥2
2− 𝛽∑(𝑖,𝑗)∉𝐸 ∥ 𝐏𝑖 − 𝐏𝑗 ∥2

2. (16) 

Community Prediction. Final community assignments are derived by thresholding: 

 𝐶𝐺𝑁𝑁(𝑖, 𝑗) = {
1, if 𝑃𝑖𝑗 ≥ 𝜃

0, otherwise
 (17) 

3.3 Adaptive Fusion Strategy 

To combine outputs from the label propagation (𝐶𝐿𝑃𝐴) and GNN (𝐶𝐺𝑁𝑁), we propose 

a weighted fusion: 

 𝐶𝑓𝑢𝑠𝑒𝑑(𝑖, 𝑗) = {
1, 𝛼 ⋅ 𝐶𝐿𝑃𝐴(𝑖, 𝑗) + (1 − 𝛼) ⋅ 𝐶𝐺𝑁𝑁(𝑖, 𝑗) ≥ 𝛾
0, otherwise

 (18) 

where 𝛼 controls method preference, and 𝛾 is a threshold. 

We further refine assignments by enforcing local consistency: 



 𝐶𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) = {
1,

∑𝑘∈𝑁(𝑖) 𝐶𝑓𝑢𝑠𝑒𝑑(𝑘,𝑗)

|𝑁(𝑖)|
≥ 𝛿 or 𝐶𝑓𝑢𝑠𝑒𝑑(𝑖, 𝑗) = 1

0, otherwise
 (19) 

This fusion balances the efficiency of label propagation with the expressiveness of 

GNNs, yielding robust, accurate community detection across diverse networks. 

4 Experimental Evaluation 

In this section, we evaluate our enhanced label propagation with GNN optimization 

approach on both real-world and synthetic networks. Our experiments were conducted 

on a cluster of six machines, each with an Intel(R) Core i9-10900K 3.70 GHz 20-core 

CPU, 64 GB of memory, and 1000 MB/s bandwidth. We evaluate both non-overlapping 

and overlapping community detection capabilities. 

4.1 Experimental Datasets 

We used both real-world networks (Table 1) and synthetic networks generated using 

the LFR[20] benchmark. For synthetic networks, we generated both non-overlapping 

(LFR1) and overlapping (LFR2) community networks with parameters shown in Table 

2. 

Table 1. Description of real-world networks 

Name Vertices Edges CN Overlap Density 

Karate[21] 34 78 2 Low 

Football[22] 115 613 12 Medium 

Amazon[23] 334863 925873 75149 High 

Youtube[23] 1134890 2987624 8385 High 

DBLP[23] 317080 1049866 13477 Medium 

Table 2. Description of synthetic networks 

Type Name N K Maxk Minc Maxc 𝑡1/𝑜𝑛 𝑡1/𝑜𝑚 𝜇 

Non-overlapping LFR1 10000 20 100 50 100 2 1 0.1-0.8 

Overlapping LFR2 10000 20 100 50 100 0.1 3 0.1-0.8 

For evaluation, we used several metrics including Normalized Mutual Information 

(NMI), Overlap modularity, F1-Score, and Accuracy (ACC). These metrics measure 

the similarity between detected communities and ground truth communities, with val-

ues closer to 1 indicating better performance. 
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4.2 Baseline Methods 

We compare our method against several baselines, including traditional algorithms 

PCOPRA[24] and PSCAN[25], as well as three variants of our own approach: ELP 

(enhanced label propagation alone), GNN (GNN-based detection without propagation), 

and ELP-GNN (our full model integrating enhanced label propagation, GNN optimiza-

tion, and adaptive fusion). 

4.3 Performance Comparison 

Non-overlapping Community Detection. Table 3 shows the comparison of NMI and 

F1-Score values for non-overlapping community detection on real-world networks. Our 

full approach (ELP-GNN) consistently outperforms both traditional methods and pure 

GNN-based methods across most datasets. 

Table 3. NMI and F1-Score values for non-overlapping communities on real-world networks 

 

Overlapping Communities. To comprehensively evaluate the performance of our pro-

posed ELP-GNN method in detecting overlapping communities, we conducted exten-

sive experiments on both synthetic networks generated using the LFR benchmark and 

real-world networks. We compared our approach with several state-of-the-art methods 

including ELP (our enhanced label propagation algorithm without GNN), standalone 

GNN, PCOPRA, PSCAN.  



 

Fig. 2. Accuracy Compari-

son on Synthetic Networks 

 

Fig. 3. NMI Comparison on 

Synthetic Networks 

 

Fig. 4. F1 Score Evaluation 

on Synthetic Networks 

Fig.2 shows the accuracy of five models on synthetic networks as the mixing param-

eter 𝜇 increases. ELP-GNN achieves the highest accuracy (0.75 at 𝜇=0.1) and remains 

superior (0.35 at 𝜇=0.5, 0.15 at 𝜇=0.8), indicating strong robustness. Fig.3 presents 

NMI trends, where ELP-GNN consistently outperforms others, especially at low 𝜇  

(0.65 at 𝜇=0.1, 0.35 at 𝜇 =0.4), while PASLPA and PCOPRA show limited adaptabil-

ity. As shown in Fig.4, ELP-GNN also leads in F1 score (0.85 at 𝜇=0.1), outperforming 

all baselines, with a notable gap over PASLPA and PCOPRA, particularly at high 𝜇 

values. 

Across all three metrics, a pronounced downward trend is observed for all methods 

as 𝜇 increases. This trend is expected and aligns with the inherent difficulty of commu-

nity detection in synthetic networks. As 𝜇 rises, the community structure becomes in-

creasingly indistinct, thereby escalating the detection challenge. 

 

Fig. 5. Computational Effi-

ciency Analysis 

 

Fig. 6. ACC Evaluation on 

Real-world Networks 

 

Fig. 7. Modularity on Real-

world Networks 

Fig.5 compares the runtime of five methods on real-world datasets. While all meth-

ods perform similarly on small datasets (Karate, Football), ELP-GNN shows signifi-

cantly higher runtime on large datasets (Amazon, DBLP, YouTube), indicating scala-

bility limitations. Fig.6 shows that ELP-GNN and ELP achieve high accuracy on small 

datasets, with ELP-GNN maintaining a clear advantage on larger ones (e.g., 31.9% 

higher than PCOPRA on YouTube, 34.6% on Amazon). As shown in Fig.7, all methods 

attain high modularity on simple datasets, but ELP-GNN stands out on Amazon and 

DBLP, with improvements of 23.2% over PCOPRA and 6% over GNN, highlighting 

its ability to detect tightly connected communities. 
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In summary, ELP-GNN demonstrates significant advantages in terms of accuracy 

and modularity, particularly on complex and large-scale datasets, although it is less 

efficient computationally. ELP performs similarly to ELP-GNN but is slightly inferior. 

GNN shows stable performance but is generally less effective than the former two. 

PASLPA and PCOPRA are computationally efficient but fall short in terms of accuracy 

and modularity compared to other methods. 

5 Conclusion 

In this paper, we propose a novel community detection approach that integrates en-

hanced label propagation with GNN optimization. By integrating node importance met-

rics and refined label assignment, our label propagation alleviates issues like random-

ness and giant communities. A GNN framework further captures complex relationships 

and overlapping structures. An adaptive fusion strategy leverages both components to 

enhance robustness and accuracy. Experiments on real and synthetic networks show 

that our method consistently outperforms state-of-the-art approaches, especially under 

high mixing conditions, while maintaining efficiency for large-scale distributed set-

tings. 
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