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Abstract. Detection based on medical images is crucial for improving disease cure rates and 

patient prognosis. However, existing methods have limitations in feature extraction and compu-

tational efficiency. This paper presents an optimized method for medical image object detection 

using feature enhancement and dynamic loss (FENet-UIoU). It combines receptive field attention 

convolution (RFAConv), efficient up-sampling convolution block (EUCB), large separable ker-

nel attention (LSKA), and a dynamic loss function to address the shortcomings of convolutional 

neural network (CNN) in medical image detection. RFAConv highlights tumor features through 

spatial attention mechanisms, EUCB improves feature map resolution and computational effi-

ciency, LSKA enhances feature capture and expression, and the unified intersection over union 

(UIoU) dynamic loss function uses dynamic weight allocation to optimize the prediction of box 

focus. According to the experimental evaluation, the proposed method yields a maximum 7.8% 

improvement on mean average precision (MAP) over the existing approach. Meanwhile, ablation 

experiments verify the synergistic effect of each module, indicating that this study provides a 

high-precision and high-efficiency solution for medical image object detection.  

Keywords:Medical Image, Object Detection, Feature Enhancement, Dynamic Loss. 

1 Introduction 

Early and accurate detection on disease is of great clinical significance for improving 

patient survival rates and optimizing treatment plans [1][2]. Deep learning-based med-

ical image analysis techniques have witnessed rapid development in recent years 

[3][4][5]. However, the parameter sharing mechanism of convolution kernels in tradi-

tional CNN models limits the flexibility of feature extraction [3]. To address the limi-

tations of feature extraction, researchers have proposed various improvement schemes. 

For example, squeeze and excitation networks enhance key features through channel 

attention mechanisms [6], but their dynamic adaptability in the spatial dimension is 

insufficient [7][8]. MobileNet reduces computational costs using depth-wise separable 

convolutions [9], but it performs poorly in multi-scale feature fusion for medical images 

[10][11]. In terms of loss function design, the researcher group optimizes bounding box 

regression by introducing center point distances [12], but it still cannot dynamically 

balance the weight allocation of high or low-quality prediction boxes [13][14]. Tumor 

edges and texture features were focused on in [15] [16]and long-range dependencies 
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between tumors and surrounding tissues through separable dilated convolutions were 

captured in [16][17]. These issues indicate that existing methods urgently need to im-

prove the synergy of feature enhancement, computational efficiency, and dynamic op-

timization in medical image detection tasks. 

This paper proposes a feature enhancement and dynamic loss-based object detection 

framework (FENet-UIoU) to break through the above technical bottlenecks. First, the 

RFAConv module introduces a spatial attention mechanism to dynamically allocate 

convolution kernel parameters and focus on edges and texture features. Second, the 

EUCB module is designed to combine depth-wise separable convolutions with channel 

shuffle strategies to achieve high-resolution feature reconstruction and computational 

efficiency balance. Furthermore, the LSKA module is adopted to capture long-range 

dependencies through separable dilated convolutions. At the loss function level, we 

introduce the UIoU loss, which integrates dynamic bounding box scaling to enhance 

the responsiveness to high-quality prediction boxes. According to the experimental evalu-

ation, the proposed method yields a maximum 7.8% improvement on mean average precision 

(MAP) over the existing approach. 

2 Methods 

To tackle the fundamental problems of inadequate feature extraction, constrained com-

putational efficiency, and diminished sensitivity in boundary regression within medical 

image object detection, this paper introduces a feature enhancement and dynamic loss-

based object detection framework, named FENet-UIoU. The architecture of the  FENet-

UIoU model is visualized in Fig. 1 with illustrating the complete processing pipeline 

from input image to final detection outcomes. 

 

 

Fig. 1. Architecture of the FENet-UIoU Model. 

The architecture achieves optimization by integrating the design of the feature extrac-

tion network with the loss function. The model accepts medical images of size 

640×640×3 as input and progressively decreases the spatial resolution of the feature 
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maps. The RFAConv module dynamically allocates convolution kernel parameters us-

ing a spatial attention mechanism to improve the key features. The Spatial Pyramid 

Pooling with Feature Fusion (SPPF) captures multi-scale features, while the LSKA 

module captures global contextual information through separable dilated convolutions. 

The EUCB module combines depth-wise separable convolutions with channel shuffle 

strategies to enhance the resolution and computational efficiency of the feature maps. 

The Concat module fuses information from different levels, and the C3k2 module op-

timizes the feature fusion process. Finally, the detection head outputs the detection re-

sults, which include bounding boxes and class probabilities.  

2.1  Feature Enhancement 

RFAConv Model: RFAConv introduces a receptive field attention mechanism that 

customizes convolution kernel parameters for different regions to focus on the key fea-

tures such as edges and shapes, while suppressing irrelevant background interference. 

Specifically, RFAConv dynamically generates attention weights based on different re-

gions of the input feature map and combines these weights with the convolution kernel 

parameters to produce customized kernels for each region. The implementation process 

of RFAConv is shown in Fig. 2. 

 

Fig. 2 . Flowchart of RFAConv Implementation 

Weight generation: The input feature X shapes as (b,c,h,w), where b: batch size, c: chan-

nels, h×w: spatial resolution. Average pooling (AvgPool2d) is applied to X to get the global in-

formation in Equation 1: 

 
),,_ker,(2p sstrideppaddingksizenelXdAvgPoolW ool ====

 
(1) 

Then, a 1×1 convolution (Conv2d) is performed to generate the weight tensor W, as 

shown in Equation 2 : 

)

,,1_ker,_,(2o 2
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Rearrangement and convolution: Use rearrange to reorganize the weighted feature map, 

adjusting its shape to fit subsequent convolution operations. Perform convolution on 

the rearranged data to obtain the final output feature map Y with the shape (b, c, hout, 

wout), as shown in Equation 3 : 

k)=n2k,=n1,' 2)bc(hn1)(wn>-bc(n1n2)hw Frearrange(=conv_data 'weighted  

k)=stridek,=ekernel_siz, c=lsout_channev_data,Conv2d(con=Y out  
(3) 



After completing the above steps, RFAConv produces the output feature map Y, where 

the features have been adjusted according to the attention weights, highlighting key 

regions and suppressing unimportant information.  

 
Fig. 3 . RFAConv Neural Network Diagram 

 

The detailed structure of RFAConvis shown in Fig. 3. The input feature map is divided 

into receptive field blocks (e.g., A11 denotes the block in row 1, column 1). Each block 

is assigned weights via a dynamic attention map, generating an attention weight map 

with the same shape as the input. This emphasizes key areas and reduces background 

noise. The feature map is then element-wise dotted with the attention weights to create 

a weighted feature map, enhancing key features while weakening non-key ones. Fi-

nally, the RFAConv module reorganizes this weighted map to produce the output fea-

ture map. 

 

Efficient Up-sampling Convolution Block (EUCB): EUCB module combines opera-

tions such as up-sampling, depth-wise separable convolution, batch normalization, ac-

tivation functions, channel shuffling, and point-wise convolution to achieve efficient 

up-sampling and feature enhancement. The implementation process of EUCB is de-

signed in Fig. 4. 

 

Fig. 4 . EUCB Process Diagram 

The UpSampling operation effectively restores low-resolution feature maps to match 

the dimensions and resolution of the next skip connection feature map, without adding 

too much computational load. This process accurately captures feature information at 

different levels, providing a rich data basis for subsequent precise analysis. The output 

map Xup is designed in Equation 4: 

 
(X)UpSampling=Xup  

(4) 
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Depth-wise convolution performs convolution operations on each input channel sepa-

rately, using a K×K convolution kernel for each channel. The depth-wise convolution 

operation is expressed in Equation 5: 

 
n)(m,kn)+jm,+(if=j))(i,k(f cc

1-K

0n

1-K

0mcc • ==  
(5) 

Here, fc is the c-th channel of the input feature map, kc is the corresponding convolution 

kernel. Depth-wise convolution is applied to the up-sampled feature map Xup as shown 

in the Equation 6 : 

 
)n(XConvolutio  wise-Depth=X updw  

(6) 

Then batch normalization is applied to the feature map Xdw after convolution, which 

accelerates training and enhances model stability,as shown in Equation 7: 

 
)(2X dwbn XdBatchNorm=
 

(7) 

The ReLU activation function is adopted to the batch-normalized feature Xbn to intro-

duce non-linearity, enhancing the expressive capability as shown in Equation 8: 

 
)ReLU(X=X bnact  

(8) 

The feature map Xact is subjected to channel shuffle operation, which exchanges chan-

nel information to enrich the features, as shown in the following Equation: 

 
)uffle(XChannel_sh=X actshuffle  

(9) 

Finally, A 1×1 convolution kernel is used to perform point-wise convolution on the 

feature map xshuffle as )Conv2d(X=X shuffleout  
adjusting the number of channels to ensure 

the output meets the requirements. Throughout the entire network architecture, the 

smooth flow of data between different modules is essential, and matching the number 

of channels is one of the key factors to ensure accurate data transfer and effective inte-

gration.  This operation helps stabilize the training of the entire network, ensuring that 

each module can fully exert its function and ultimately achieve accurate prediction and 

analysis of medical images.  

LSKA Model: The neural network diagram of LSKA is designed as Fig. 5. It decom-

poses the two-dimensional convolution kernel into cascaded one-dimensional convolu-

tion kernels and attention mechanisms to lower computational costs while improving 

feature extraction and representation. Horizontal one-dimensional Convolution, as 

shown in the following Equation: 

 C

h

C FW =h

CZ
 

(10) 

 



 

Fig. 5 . Neural Network Diagram of the LSKA Module 

where  
h

CW  is the convolution kernel for the horizontal direction, with a shape of 1×k. 

Fc is the Cth channel of the input feature. * denotes the operation of convolution . 
h

CZ is 

the feature map after horizontal convolution. Vertical one-dimensional convolution, as 

shown in the following  Equation: 

                                               
h

C

v

C ZW =v

CZ                                                      (11) 

where v

CW  
is the convolution kernel for the vertical direction, with a shape of k×1,

v

CZ  

is the feature map after vertical convolution.  Dilated convolution for horizontal one-

dimensional convolution, as shown in the following Equation: 

 
v

C

dilatedh

C

dilated

C ZWZ d= __h

 
(12) 

where dilatedh

CW _  is the horizontally dilated convolution kernel with a shape of 1×k.  

∗d denotes the dilated convolution operation, and d is the dilation rate. dilated

CZ _h is the 

feature map achieved by horizontal convolution with dilation. Vertical one-dimensional 

dilated convolution is shown in the following Equation: 

 
dilatedh

C

dilatedv

C

dilated

C ZWZ d ___v =
 

(13) 

where dilatedv

CW _ is the vertically dilated convolution kernel with a shape of k×1. 

dilated

CZ _v is the feature map after vertical convolution with dilation. Attention weights 

are computed via a 1×1 convolution layer to dynamically re-weight the feature map 

which is  shown in the following Equation: 

 
dilated

CC ZWA _v

11 =   
(14) 
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where W1×1 is the 1×1 convolution kernel. Ac is the generated attention weight. By 

performing an element-wise multiplication between the attention weights and the input 

feature map, the final output feature map is obtained, as expressed in the following 

equation: 

 CCC FAF =
 

(15) 

where Ac is the generated attention weight. Fc is the C-th channel of the input feature 

map.  denotes element-wise multiplication, 
CF

 
is the final output feature map. 

2.2  Dynamic Loss 

The conventional Intersection over Union (IoU) metric serves to quantify the overlap 

between predicted and ground truth bounding boxes. The same weight allocation is 

given to low-quality and high-quality prediction boxes, which fails to effectively ad-

dress the problem of sample imbalance. 

 
BgtB

B



 gt

IoU

B
-1=L

 

(16) 

Let B be the predicted box and Bgt the ground truth box. B∩Bgt represents the overlap-

ping area between the predicted and ground truth boxes. B ∪Bgt denotes the total area 

covered by both boxes. The LIoU is the IoU loss function; a smaller value indicates 

closer alignment, with  LIoU = 0 when they perfectly overlap. The formula given is for 

the  LIoU loss function, which assesses the overlap between B and Bgt. 

The dynamic box weighting strategy dynamically adjusts the size of the predicted 

and ground truth boxes, assigning different weights to prediction boxes of varying qual-

ity. This strategy allows the model to focus more on high-quality prediction boxes dur-

ing the training process, thereby improving detection accuracy and convergence speed. 

The dynamic box scaling ratio is adjusted dynamically based on the number of training 

epochs, specifically through a linearly decreasing strategy, as shown in  Equation 17 : 

 20.005- ratio e += Num  (17) 

where 
eNum  is the training epochs, and ratio=2, the model significantly enlarges the 

boxes to focus on a large number of low-quality boxes, accelerating convergence; as 

training progresses, ratio decreases linearly, and the model gradually focuses on high-

quality boxes to improve accuracy. 

 ratio11ww = w ； ratio11hh = h  

 ratio22ww =w ； ratio22hh = h  (18) 

Here, ww1 and hh1 represent the dimensions of the scaled detection box. They are ob-

tained by multiplying the original width and height (w1 and h1) by a scaling factor 



(ratio).  To calculate the boundary coordinates of the predicted box, the Equation is as 

follows: 

 2

ww1
-bb1_xc=bb1_x1 ；

2

ww1
bb1_xc=bb1_x2 + ； 

 2

hh1
-bb1_yc=bb1_y1 ；

2

hh1
bb1_yc=bb1_y2 +

 

(19) 

where bb1xc, bb1yc are the center coordinates of the predicted box, Calculate the bound-

ary coordinates of the ground truth box, the Equation is as follows: 

 2

ww2
-bb2_xc=bb2_x1 ；

2

ww2
bb2_xc=bb2_x2 +  

 2

hh2
-bb2_yc=bb2_y1 ；

2

hh2
bb2_yc=bb2_y2 +

 

(20) 

Where  the predicted box's center is given by (bb2xc, bb2yc), and the ground truth box

's scaled width and height are ww2 and hh2, respectively.After obtaining the scaled bo

unding box coordinates, the next step is to calculate the intersection area (inter) and th

e union area (union), and finally compute the IoU value. The Equations for calculating

 the intersection area inter and the union area, and computing IoU, are as follows: 

                          +inter-h2×w2+h1w1=union         

                                                             union

inter
iou =                                                 (21) 

The intersection (inter) is the area of overlap between the predicted bounding box B 

and the ground truth bounding box Bgt. Here, the predicted box has dimensions (w1, 

h1), and the ground truth box has dimensions (w2, h2). Based on the IoU value, adjust 

the weights dynamically to make the model focus more on high-quality prediction 

boxes.  

3 Experimental Results and Analysis 

The study assesses the performance of the proposed model in breast tumor detection 

tasks. The breast tumor dataset is sourced from the publicly available Breast Ultrasound 

Dataset (BUSI), which was constructed and open-sourced by Al-Dhabyani et al. in 2020 

[19]. This dataset comprises 3172 ultrasound images of breast tumor cases confirmed 

by pathology with benign tumors (1717 images) and malignant tumors (1455 images). 

All images were annotated with tumor bounding boxes and class labels by professional 

radiologists, and the annotation consistency was verified using the Kappa coefficient 

(k=0.92) to ensure reliability. The dataset was divided into training (2,051 images), 
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validation (335 images), and test sets (335 images) using random sampling,  ensuring 

balanced distribution across categories. 

3.1 Comparative Experiments 

The comparison of the training loss between the proposed model and other models 

(YOLOv11, YOLOv8, YOLOv5, Faster-rcnn, SSD) is shown in Fig. 6. The proposed 

model demonstrates significant advantages during the training process. In the first 10 

epochs, the loss of the proposed model rapidly decreases from 5.5 to approximately 1.5, 

while the loss of YOLOv11 decreases from 5.5 to about 2.0, YOLOv8's loss drops from 

5.5 to about 2.5, YOLOv5's loss falls from 5.5 to around 3.0. The loss of Faster-rcnn 

decreases from 5.5 to about 3.5. The loss of SSD drops from 5.5 to about 4.0. At the 

final stage (Epoch 100), the loss of the proposed model further decreases to about 0.5, 

the loss of YOLOv11 stabilizes at about 1.2, YOLOv8's loss stabilizes at about 1.8, 

YOLOv5's loss stabilizes at about 2.2, Faster-rcnn's loss stabilizes at about 2.8, and 

SSD's loss stabilizes at about 3.2. The data indicate that the proposed model not only 

converges faster during the training process but also achieves a lower final loss value. 

 

Fig. 6  Loss Metric Performance                     

The plot of the Map50 metric  for the proposed model and other models (YOLOv11, 

YOLOv8, YOLOv5, Faster-rcnn, SSD) can be seen in Fig. 7. The proposed model 

demonstrates significant advantages during the training process. In the first 10 epochs, 

the Map50 value of the proposed model quickly rises to about 0.75, YOLOv11's Map50 

value increases to about 0.70, YOLOv8's Map50 value rises to about 0.65, YOLOv5's 

Map50 value increases to about 0.60, Faster-rcnn's Map50 value increases to about 

0.55, and SSD's Map50 value rises to about 0.50. At the final stage (Epoch 100), the 

proposed model's Map50 value stabilizes at about 0.88, YOLOv11's Map50 value sta-

bilizes at about 0.82, YOLOv8's Map50 value stabilizes at about 0.78, YOLOv5's 

Map50 value stabilizes at about 0.75, Faster-rcnn's Map50 value stabilizes at about 



0.70, and SSD's Map50 value stabilizes at about 0.65. Judging from the shape and nu-

merical changes of the curves, the proposed model not only shows a faster convergence 

speed at the beginning of training but also maintains a higher Map50 value throughout 

the entire training process.  

 
Fig. 7  Map50 Metric Performance 

The proposed model's Map50 value rises quickly within the first 10 epochs, much faster 

than other models, indicating its ability to quickly learn effective feature representa-

tions. At the mid-stage, the proposed model's Map50 value has already reached 0.85 

and stabilizes at 0.88 at the final stage, while other models' Map50 values are all below 

this level. This shows that the proposed model can continuously optimize during the 

training process, ultimately achieving higher detection accuracy. In summary, the pro-

posed model demonstrates a faster convergence speed, higher Map50 value, and a more 

stable training process during the training, which fully proves its advantages in feature 

extraction, parameter optimization, and computational efficiency. 
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Fig. 8  Comparative Experiment Identification Effect Diagram 

The inference results of the proposed model and models such as (YOLOv11, YOLOv8, 

YOLOv5, Faster-rcnn, SSD) in breast tumor detection tasks are shown in Fig. 8. The 

proposed model significantly outperforms other models in terms of detection accuracy 

and confidence. Confidence of the proposed model for tumor detection reaches 0.89, 

while the confidence levels for YOLOv11, YOLOv8, YOLOv5, Faster-rcnn, and SSD 

are 0.83, 0.77, 0.80, 0.75, and 0.69, respectively.  

Table 1 presents total comparison between the proposed model and other models 

in breast tumor detection tasks. The proposed model shows a marked advantage in 

breast tumor detection tasks, providing more reliable and accurate detection results for 

clinical diagnosis. 

 



Table 1. Model Performance Results Comparison Table 

Models Map50 Map50.90 FPS Accuracy Recall 

Faster.rcnn 

SSD 

0.816 

0.797 

0.336 

0.324 

12.86 

54.61 

0.7390 

0.6208 

0.7559 

0.6598 

YOLOv5 0.804 0.528 40.90 0.8341 0.8415 

YOLOv8 0.812 0.524 42.30 0.8095 0.8190 

YOLO11 0.824 0.532 32.20 0.8354 0.8484 

Our Model 0.876 0.584 28.40 0.8736 0.8812 

This indicates that the proposed model captures tumor features more precisely and can 

identify tumor types with greater confidence. The detection boxes of the proposed 

model are closer to the actual tumor boundaries, effectively reducing false positives and 

false negatives.  

3.2 Ablation Study 

Ablation experiments were carried out to analyze the individual contributions of 

RFAConv, EUCB, LSKA to the proposed model. The plot of the Map50 metric during 

the training process for the proposed model and models without some modules can be 

seen in Fig. 9.  

 

Fig. 9 .Map50 Metric Performance 

In the first 10 epochs, the Map50 value of the proposed model quickly rises to about 

0.75, while the values for Our Model-RFAConv-LASK, Our Model-RFAConv-EUCB, 

Our Model-LSKA-EUCB, Our Model-RFAConv, Our Model-LSKA, Our Model-
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EUCB, and YOLO11 are 0.50, 0.40, 0.45, 0.55, 0.65, 0.60, and 0.70, respectively. At 

the final stage (Epoch 100), the proposed model's Map50 value stabilizes at about 0.88, 

while the values for Our Model-RFAConv-LASK, Our Model-RFAConv-EUCB, Our 

Model-LSKA-EUCB, Our Model-RFAConv, Our Model-LSKA, Our Model-EUCB, 

and YOLO11 are 0.68, 0.62, 0.65, 0.72, 0.78, 0.75, and 0.82 respectively. 

      The inference results comparison of the proposed model with ablation experimental 

models in breast tumor detection tasks is demonstrated in Fig. 10. The proposed model 

outperforms other ablation experimental models in terms of detection accuracy and 

confidence.  

 

 

Fig. 10 .Ablation Study Inference Effect Diagram 

The confidence of the proposed model for benign tumor detection reaches 0.93, while 

the confidence levels for Our Model-RFAConv-LASK, Our Model-RFAConv-EUCB, 

Our Model-LSKA-EUCB, Our Model-RFAConv, Our Model-LSKA, Our Model-



EUCB, and YOLO11 are 0.91, 0.93, 0.91, 0.90, 0.88, 0.85, and 0.84, respectively. This 

indicates that the proposed model captures tumor features more precisely and can iden-

tify tumor types with greater confidence. 

 

Table 2. Results of Ablation Study  

Models Map50 Map50-90 FPS 

-EUCB 

-LSKA 

-RFAConv 

-LSKA-EUCB 

-RFACon-

vLASK 

-RFACon-

vEUCB 

Our Model 

0.827 

0.829 

0.848 

0.831 

0.828 

0.83 

0.876 

0.525 

0.542 

0.558 

0.546 

0.545 

0.538 

0.584 

28.5 

29.3 

31.5 

30.4 

32.1 

32.3 

28.4 

  

The results shown in Table 2 indicate that, while using each technique alone improves 

model performance to some extent, integrating them yields significantly better data on 

Map50, Map50-90 and FPS. The experimental results fully demonstrate that the 

RFAConv, EUCB, LSKA technologies have significant advantages in breast tumor ob-

ject detection. These methods significantly boost the model's feature extraction ability, 

address the limitations of convolution kernel parameter sharing, and enhance computa-

tional efficiency. In clinical practice, they enable more accurate and efficient breast 

tumor detection, offering robust support for early diagnosis and treatment. 

Conclusion 

This study, by integrating feature enhancement and dynamic loss techniques, proposes 

a model that incorporates three technological improvements in the feature enhance-

ment, including RFAConv, EUCB, and LSKA technologies. After enhancing model 

performance and reducing computational costs, it integrates the UIoU loss function to 

improve model detection accuracy through dynamic box weighting strategies. Experi-

mental results show that the proposed method yields a maximum 7.8% improvement 

on mean average precision (MAP) over the existing approach. Ablation experiments of 

each component have been performed, demonstrating optimal performance of the inte-

grated model. Future research will explore the combination of the techniques in this 

study with the latest deep learning technologies to further enhance model performance; 

additionally, we will further investigate the application in the diagnosis of other dis-

eases, such as breast cysts, to assess its universality and effectiveness in disease detec-

tion. 
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