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Abstract. Cardiovascular disease is a common major chronic disease character-

ized by high mortality rate, and high difficulty in rehabilitation. This paper con-

structs a Cardiovascular diseases Knowledge Graph (CvdKG). According to the 

medical vocabulary and medical knowledge base, CvdKG has determined 15 en-

tity types and 74 relationship types with diseases and operations as the core. The 

Cascading pointer network (CASRELpclBERT) model suitable for the medical field 

is used to automatically extract knowledge from medical texts and manually 

proofread them. Knowledge fusion is carried out based on multi similarity 

weighting. The constructed CvdKG includes 217 core cardiovascular diseases, 

8,845 related diseases, 433 surgeries, and 68,316 triples. CvdKG can provide data 

support for intelligent question answering and auxiliary diagnosis of cardiovas-

cular diseases. 

Keywords: Knowledge graph; Cardiovascular disease; Cascading pointer net-

work 

1 Introduction 

Cardiovascular diseases are chronic diseases with high incidence rates and low control 

rates. In the disease mortality composition ratio of urban and rural residents in China, 

in 2020, they accounted for 48.00% and 45.86% of deaths in rural and urban areas, 

respectively, having a significant impact on the health and safety of the Chinese people. 

However, the public's awareness of this disease is only 51.5% [1], which is one of the 

main reasons for the high mortality rate of cardiovascular diseases. For the general pub-

lic, understanding the knowledge of cardiovascular diseases helps in timely and effec-

tive treatment. On one hand, cardiovascular disease-related information is highly spe-

cialized; on the other hand, there is a lack of data to support intelligent applications for 

cardiovascular diseases. 

The concept of the knowledge graph was formally proposed by Google in 2012 [2]. 

A knowledge graph organizes unstructured data resources into structured knowledge 

through techniques such as knowledge extraction, processing, and fusion. It consists of 

head entities, tail entities, and relationships. Depending on the domain of knowledge 

described in the graph, knowledge graphs can be divided into general knowledge graphs 

and domain-specific knowledge graphs. General knowledge graphs mainly focus on 



 

 

common knowledge and emphasize breadth, with typical examples being FreeBase [3], 

DBPedia [4], and Wikidata [5]. Domain-specific knowledge graphs are oriented toward 

knowledge in a particular field and emphasize depth, usually requiring the inclusion of 

fine-grained concepts for description. In the medical field, knowledge granularity needs 

to be controlled at levels such as diseases, drugs, symptoms, and other relevant hierar-

chical relationships. 

The medical field is complex, with text data that is highly specialized, has complex 

relationships, and includes numerous types. Many scholars have worked on construct-

ing medical knowledge graphs. Existing medical knowledge graphs have significantly 

improved standardization, formalization, and systematization compared to medical re-

sources. However, due to the complexity of cardiovascular diseases, with treatment 

methods primarily based on surgery, current data cannot accurately describe these dis-

eases. 

This paper takes cardiovascular diseases and surgeries as the core and establishes a 

knowledge description framework. It uses a cascading pointer network-based automatic 

medical knowledge extraction model, combined with iterative extraction methods, to 

extract cardiovascular disease-related knowledge and construct a Cardiovascular Dis-

eases Knowledge Graph (CvdKG). 

2 Related Work 

In the medical field, thanks to the rapid development of information technology and the 

widespread adoption of medical information systems, massive medical term sets and 

knowledge resources have accumulated in medical databases. Typical examples include 

ICD-10, ATC, and MeSH [6]. Among them, ICD-10 is the international disease classi-

fication code maintained by the World Health Organization (WHO); ATC is the ana-

tomical, therapeutic, and chemical classification system maintained by the WHO, 

which includes 14 major anatomical concepts corresponding to drug components and 

their usage and dosage standards; MeSH is a medical subject heading list compiled by 

the U.S. National Library of Medicine, which includes 15 major categories. Medical 

term sets and other resources lay the foundation for constructing the knowledge repre-

sentation system of knowledge graphs. 

Currently, scholars around the world have established vast medical knowledge ba-

ses. For example, Aodema et al. [7] constructed a Chinese Medical Knowledge Graph 

(CMeKG), which includes 6,310 diseases and over a million medical concept relation-

ship instances. Cheng et al. [8] constructed a stroke medical knowledge graph using a 

similarity-based method linked to existing knowledge graphs. Zhang et al. [9] built a 

Chinese pediatric epilepsy knowledge graph (CPeKG). Chen et al. [10] constructed a 

knee osteoarthritis knowledge graph. Zhang et al. created a personalized treatment 

knowledge graph for depression [11]. In these studies, most use a disease-centric 

knowledge representation system, while some scholars have also employed symptom- 

and drug-centric systems. Zan Hongying et al. [12] constructed a Chinese symptom 

knowledge base (CSKB) centered on symptoms. Current research is mainly focused on 

building knowledge graphs with disease, symptoms, drugs, etc., as the core. However, 
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cardiovascular diseases involve a significant number of surgical treatments, requiring 

the introduction of a surgery-centric knowledge graph. 

The main processes in knowledge graph construction are knowledge extraction, 

knowledge processing, and knowledge fusion, among which knowledge extraction is 

the key step that determines the efficiency and quality of graph construction. With the 

rise of deep learning, automatic extraction based on deep learning has become a hot 

topic in knowledge extraction research. Tan C et al. [13] proposed a boundary-aware 

neural network model to predict the category information of entities. Yuan Qi et al. [14] 

proposed a semi-automated knowledge graph construction method from semi-struc-

tured and unstructured data. Wei Z et al. [15] proposed a framework that models rela-

tionships as functions that map subjects to objects in sentences, thereby handling over-

lapping issues more accurately. Experimental results show that this framework is suit-

able for constructing cardiovascular knowledge graphs. 

In summary, current medical knowledge graphs rarely adopt a surgery-centric 

knowledge representation system. Existing medical knowledge graphs are insufficient 

to describe the complex knowledge of cardiovascular diseases. The entity-relationship 

joint extraction model can improve the efficiency of knowledge extraction. Therefore, 

this paper focuses on the research of knowledge representation systems and knowledge 

extraction methods based on cascading pointer networks, and constructs a cardiovas-

cular disease knowledge graph. 

3 CvdKG Construction Process 

The construction process of CvdKG is divided into four key steps: data collection and 

preprocessing, knowledge representation system construction, knowledge extraction, 

and knowledge fusion. The overall framework is shown in Figure 1. 
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Fig. 1. CvdKG constructs the overall framework 

Based on the knowledge representation system of CMeKG, a knowledge represen-

tation system is established by incorporating the characteristics of cardiovascular dis-

eases and surgeries. A rule-based method is used to label training data, and deep learn-

ing techniques are employed to automatically extract knowledge from medical texts. 

Manual proofreading is performed in a semi-automatic annotation platform. 

Knowledge from multiple sources is fused based on similarity and visualized. 

3.1 Entity Classification Framework 

The professionalism and authority of the entity classification framework are crucial to 

the quality of medical knowledge graphs. Through the analysis of medical texts in the 

cardiovascular field and with guidance from professional doctors, an entity classifica-

tion framework centered on diseases has been developed. This framework includes nine 

categories of entities: diseases, symptoms, epidemiology, examinations, sociology, 

drugs, anatomical sites, prognosis, and adjuvant therapies. According to "The 2021 

White Paper on Cardiovascular Surgery and Extracorporeal Circulation Data in China", 

the number of cardiovascular surgeries exceeded 280,000[16], highlighting surgery as 

a critical treatment modality for cardiovascular diseases. Based on this, we propose an 

additional entity classification framework centered on surgical procedures, which in-

cludes six categories of entities: surgery, terminology, medical devices, explanations, 

surgical treatment, and surgical methods (steps). 
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3.2 Relationship Classification Framework 

To provide a more fine-grained description of cardiovascular disease knowledge, this 

paper establishes a set of relationship descriptions tailored to entities within the cardi-

ovascular domain. Examples include relationships such as <Disease, Symptom, Clini-

cal Manifestation>, <Surgery, Method (Steps), Surgical Method (Steps)>, and others. 

The Cardiovascular Disease Knowledge Graph (CvdKG) defines a total of 73 types of 

relationships. Among these, several are particularly noteworthy. 

Complications in cardiovascular diseases are complex [17] and can be categorized 

into three main types: disease-related complications, which are directly caused by the 

disease itself; surgery-related complications, which arise from surgical procedures and 

may involve damage, loss, or dysfunction of other tissues or organs; and drug-related 

complications, which are caused by the use or prolonged use of certain medications, 

leading to adverse effects on other tissues or organs. Under the guidance of professional 

physicians, these complications have been classified into three categories: Complica-

tion, Complication (Drug), and Complication (Postoperative). 

Cardiovascular disease patients typically undergo a variety of medical examinations 

during diagnosis, such as physical examination, CT scans, electrocardiograms (ECG), 

and others. With input from medical professionals, these examinations have been cate-

gorized into six types: auxiliary examination, laboratory examination, imaging exami-

nation, pathological examination, endoscopic examination, and screening. 

Cardiovascular surgeries are inherently complex. Medical guidelines contain exten-

sive clinical recommendations for surgical procedures. Through analysis of these 

guidelines, it is evident that different types of patients (based on gender, age, disease 

stage, disease subtype, etc.) require tailored surgical approaches. Moreover, preopera-

tive and postoperative examinations, as well as precautions, vary significantly [17]. 

Guided by professional physicians, the following relationships related to surgeries have 

been defined: method steps, which describe detailed procedural steps for performing 

the surgery; indications, which specify conditions under which the surgery is recom-

mended; contraindications, which outline conditions under which the surgery should 

be avoided; preoperative preparation, which includes necessary preparations before the 

surgery; postoperative care, which involves follow-up care required after the surgery; 

and suitable patient types, which identify patient profiles for whom the surgery is ap-

propriate. Figure 2 illustrates the knowledge description framework centered on dis-

eases and surgeries, using "Acute Coronary Syndrome" and "Radiofrequency Ablation" 

as examples. 
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Fig. 2. Example of CvdKG relationship description 

4 CvdKG Data Processing 

4.1 Data Collection and Preprocessing 

The construction of CvdKG uses four types of data: medical textbooks, medical vocab-

ularies, medical guidelines, and medical knowledge bases. The characteristics and scale 

of the corpus used for CvdKG construction are shown in Table 1. 

Under the guidance of professional doctors, cardiovascular knowledge and hierar-

chical relationships from the medical vocabulary are extracted and used as the 

knowledge definition standards and the foundational knowledge description frame-

work. The knowledge obtained from the medical vocabulary is used as the standard for 

knowledge extraction. Structured triples and corpus with entity-relationship annota-

tions are extracted from medical knowledge bases. Medical textbooks and guidelines 

are downloaded from medical websites, and the acquired text is processed with OCR, 

data cleaning, manual proofreading, and preprocessing to obtain formatted medical 

text. 
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Table 1. CvdKG basic corpus statistics 

Text Type Data Characteristics Data Scale 

Medical Textbooks 
Rich in knowledge about diseases, symptoms, 

drugs, surgeries, etc., with high authority. 
6,001,580 words 

Medical Vocabulary Highly authoritative, with publicly reliable data. 11,457 terms 

Medical Guidelines 

Standardized protocols for evaluation or treat-

ment, characterized by reliability, repeatability, 

clarity, and clinical applicability. 

247,358 words 

Medical Knowledge 

Base 
Structured text 10,694 triples 

4.2 Rule-Based Training Corpus Annotation 

In this paper, the existing cardiovascular disease-related triples from the medical 

knowledge graph are extracted, and their accuracy is confirmed by professional doctors. 

The extracted triples are then annotated in the medical text using methods such as Chi-

nese word segmentation and text matching. The specific process is shown in Figure 3. 

A total of 12,350 training samples were obtained in this stage. 
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Fig. 3. Training corpus construction process 

4.3 Cascading pointer network 

Medical texts often involve multiple relationships centered around the same core entity 

(disease, surgery, drug, etc.). Therefore, the knowledge extraction task can be regarded 

as a "one-to-many" extraction and classification task. CvdKG uses CASREL as the 

knowledge extraction model, where the input is the text, and the output is all the triples 

<subject, predicate, object; s, p, o> in the text. The model structure is shown in Figure 

4. The model first identifies all possible subjects (head entities); then, under the given 

category relationships, it identifies the objects (tail entities) related to the subject. 

The shared encoding layer of CASREL uses the pre-trained BERT model [18]. The 

Pengcheng Laboratory has launched a pre-trained model suitable for Chinese medical 

texts, ness of pclBERT. To obtain a more accurate joint entity-relationship extraction 



 

 

model for cardiovascular diseases, this paper uses ness of pclBERT as the shared en-

coding layer of the CASREL model to capture contextual semantic information and 

represent words and characters. Additionally, ness of pclBERT’s pre-trained encoding 

is used in the perception representation stage of the subject (s). 
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Fig. 4. CASREL entity relationship joint extraction model 

In the head entity recognition stage, the input text is encoded by the shared encoding 

layer, and the resulting sequence is denoted as H. H is then passed into the Layer Nor-

malization layer, where a "half-pointer, half-annotation" structure is used to predict the 

start and end positions of the head entity s. The calculation formulas are shown in Equa-

tions (1) and (2). 

𝑝𝑖
𝑠𝑡𝑎𝑟𝑡 = 𝜎(𝑊𝑠𝑡𝑎𝑟𝑡𝑋𝑖 + 𝑏𝑠𝑡𝑎𝑟𝑡) (1) 
𝑝𝑖
𝑒𝑛𝑑 = 𝜎(𝑊𝑒𝑛𝑑𝑋𝑖 + 𝑏𝑒𝑛𝑑) (2) 

Here, 𝑝𝑖
𝑠𝑡𝑎𝑟𝑡 and 𝑝𝑖

𝑒𝑛𝑑  represent the probabilities that the i-th word is the start and 

end of the entity, respectively. 𝑊(.) and 𝑏(.) represent the trainable parameters and bias. 

If 𝑝𝑖
(.) exceeds the threshold, it is set to 1; otherwise, it is set to 0. When the input is 

"Unstable angina acute attack can be treated with nitroglycerin." the model identifies 

the disease entity as "Unstable angina" The entity start 'Un' and entity end 'angina' are 

marked with 1, and the others are marked with 0. If multiple entities are predicted at 

this stage, the nearest matching principle is used to pair the identified start and end to 

obtain the candidate head entity set. 

In the tail entity recognition stage, s is re-encoded through the shared encoding layer, 

and a sequence vector H′ of the same length as H is obtained. Both H and H′ are passed 

into the Conditional Layer Normalization for the perception representation of the sub-

ject 𝑠, where a "half-pointer, half-annotation" structure is constructed for each relation 
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ppp to predict the corresponding start and end positions of the tail entity 𝑜. The calcu-

lation formulas are shown in Equations (3) and (4). 

𝑝𝑖
𝑠𝑡𝑎𝑟𝑡𝑜 = 𝜎(𝑊𝑠𝑡𝑎𝑟𝑡𝑟(𝑋𝑖 + 𝑉𝑠

𝑘) + 𝑏𝑠𝑡𝑎𝑟𝑡𝑟) (3) 

p𝑖
𝑒𝑛𝑑𝑜 = 𝜎(𝑊𝑒𝑛𝑑𝑟(X𝑖 + V𝑠

𝑘) + 𝑏𝑒𝑛𝑑𝑟) (4) 

Here, 𝑝𝑖
𝑠𝑡𝑎𝑟𝑡_𝑜 and 𝑝𝑖

𝑒𝑛𝑑_𝑜 represent the probabilities that the 𝑖-th word is the start 

and end of the tail entity under the relation encoding 𝑟, respectively. 𝑉𝑠
𝑘 represents the 

encoding vector of the subject entity 𝑠. Similar to head entity extraction, 𝑝𝑖
(.) is set to 

1 if it exceeds the threshold; otherwise, it is set to 0. In the example sentence in Figure 

4, the relationship "drug treatment involves the entity nitroglycerin", while no relevant 

entities exist for other relations such as "adjunctive treatment", "synonyms", etc. There-

fore, the final output of the model is the triple <Unstable angina, Drug treatment, Ni-

troglycerin>. 

There may be multiple entities in the text, i.e., 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}. During training, 

one labeled entity 𝑠 is randomly sampled for perception representation. During predic-

tion, all 𝑠 are traversed one by one, completing the perception representation for n en-

tities. 

4.4 Knowledge Proofreading and Iterative Extraction 

In this study, the trained model is first applied to a small-scale unstructured text. After 

prediction, the extracted results are manually proofread. Once the accuracy of the data 

is confirmed, the results are merged with the original data and the model is retrained. 

Through multiple iterations, the model’s accuracy is gradually improved. During the 

manual proofreading phase, to enhance the accuracy of proofreading, this paper uses 

the entity-relationship annotation platform developed by Zhang et al. [19]. The triples 

extracted by the machine are pre-annotated in the text using text-matching techniques, 

improving the proofreading efficiency. 

4.5 Experiment 

This paper designs two sets of experiments: the performance experiment of the Cascad-

ing Pointer Network model and the consistency check between the automatically ex-

tracted results from random sampling during the iterative extraction process and the 

manually annotated results. The evaluation metrics used for the experiments are Preci-

sion (P), Recall (R), and F-Score (F). 

Three datasets are used for the experiments, including the publicly available datasets 

NYT [14], WebNLG [14], and the self-constructed dataset CvdKG. The NYT dataset 

was originally generated using distant supervision, containing 1.18 million sentences 

and 24 predefined relation types. The WebNLG dataset was initially created for the 

NLG task, containing 5,019 sentences and 246 predefined relation types. CvdKG is the 

cardiovascular disease entity-relationship joint extraction dataset constructed in this pa-

per, containing 12,350 sentences and 12 predefined relation types, such as diseases, 

drugs, symptoms, etc.  



 

 

To verify the effectiveness of pclBERT, three different encoding layer settings of the 

Cascading Pointer Network were selected for comparison experiments. These include 

random initialization of all parameters in the BERT model, an LSTM-based pre-trained 

model framework, and a BERT-based pre-trained model framework. The experimental 

results are shown in Table 2. From the table, it can be seen that in CvdKG, the F-score 

of CASRELpclBERT  increases by 3.3% compared to CASRELpclBERT , indicating that 

CASRELpclBERT performs better in medical texts. The results in the public datasets also 

show that the model used can achieve good performance in entity-relationship joint 

extraction in the public domain. 

Table 2. Experimental results of CASREL in NYT, WebNLG and CvdKG 

Model 
NYT WebNLG CvdKG 

P R F P R F P R F 

CASRELrandom 81.5 75.7 78.5 84.7 79.5 82.0 - - - 

CASRELLSTM 84.2 83.0 83.6 86.9 80.6 83.7 - - - 

CASRELBERT 89.7 89.5 89.6 93.4 90.1 91.8 70.4 69.3 69.8 

CASRELpclBERT 88.4 88.1 87.9 90.1 89.6 90.3 73.4 72.8 73.1 

Table 3. Iterative extraction manual proofreading consistency comparison 

Number Machine Manual Consistent Count Consistency (%) 

1 162 172 157 91.28 

2 106 113 106 93.81 

3 128 126 124 96.88 

4 220 223 218 97.76 

5 145 147 144 97.79 

4.6 Knowledge Fusion 

This paper uses entity alignment and entity normalization for fusion. The triples ob-

tained during the knowledge extraction phase are fused by calculating entity similarity 

using text similarity methods, and the final entity form is selected based on the medical 

vocabulary. The text similarity methods mainly include attribute similarity functions, 

structural similarity functions, and similarity functions based on edit distance. 

In the actual knowledge base entity alignment process, the similarity between two 

entities 𝑒𝑖 and  𝑒𝑗 is defined as shown in Equation (5). 𝑠𝑖𝑚(𝑒𝑖 , 𝑒𝑗) represents the attrib-

ute similarity function, and 𝑠𝑖𝑚𝑁𝐵(𝑒𝑖 , 𝑒𝑗) represents the structural similarity function. 

𝑀𝑖,𝑗 is the similarity function based on edit distance, which is calculated by the mini-

mum number of editing operations required to convert between two strings. The basic 

operations include swapping positions, insertion, replacement, etc. This similarity func-

tion can effectively handle sensitive issues. A commonly used similarity function based 

on edit distance is the Levenshtein distance [21]. 

𝑆𝐼𝑀 = 𝜃1𝑠𝑖𝑚(𝑒𝑖 , 𝑒𝑗) + 𝜃2𝑠𝑖𝑚𝑁𝐵(𝑒𝑖 , 𝑒𝑗) + 𝜃3𝑀𝑖,𝑗 (5) 
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M𝑖,𝑗 = 

{
 

 
M𝑖−1,𝑗−1,

if s1,𝑖 = s2,𝑗;

1 + min{M𝑖−1,𝑗 , M𝑖,𝑗−1, M𝑖−1,𝑗−1},

otherwise

(6) 

The Levenshtein distance between two strings S1 and S2 is computed using dynamic 

programming: The algorithm initializes a matrix M of size (|S1| + 1) ×（|S2| + 1）, 

where the element at the i-th row and j-th column of M is denoted as 𝑀𝑖,𝑗. The values 

of 𝑀𝑖,𝑗 for 0 ≪ 𝑖 ≪ |S1| and 0 ≪ 𝑗 ≪ |S2| can be computed using Equation (6). 

This paper uses the aforementioned three methods to calculate the similarity scores be-

tween two entities. Through multiple experiments, the weights 𝜃1, 𝜃2, and 𝜃3 for the 

three methods are determined to be 0.02, 0.49, and 0.49, respectively, with an entity 

similarity threshold of 0.85. Examples of entity alignment and normalization are shown 

in Table 4. 

Table 4. Example of entity alignment and normalization 

Standard Entity Similar Entities 

Hemoglobin elevation Hemoglobin elevation | Hemoglobin increase 

Electrophysiological examination 
Electrophysiological examination | Electrophysiologi-

cal test 

Left atrial enlargement Left atrial enlargement | Left heart enlargement 

Heart failure Heart failure | Cardiac failure 

5 Knowledge Graph Analysis and Visualization 

This study constructs a knowledge graph for cardiovascular diseases, which includes 

15 types of entities centered on diseases and surgeries, along with 73 types of relation-

ships. Detailed information about the entities is presented in Table 5. According to the 

statistical results, CvdKG contains 9,062 diseases and 433 surgical procedures. Among 

these, 217 diseases are classified as core cardiovascular diseases based on the ICD-10 

standard. The distribution of relationships within CvdKG is shown in Figure 5, with the 

most frequent relationship types including adverse reactions, clinical manifestations, 

drug treatments, and etiology. These findings align with the characteristics of cardio-

vascular diseases, which are diverse and involve complex features such as symptoms, 

causes, diagnostic tests, and drug treatments. 

Table 5. CvdKG entity quantity statistics 

Entity Type Number Entity Type Number 

Disease 9,062(217) Terminology 785 

Symptoms 7,353 Adjuvant Therapies 621 

Drugs 6,514 Explanations 502 

Sociology 4,771 Surgical Treatments 490 

Examination 2,140 Other Categories 434 

Anatomical Sites 1,734 Prognosis 165 
Other Treatments 1,139 Medical Devices 138 

Surgery 433 Surgical Methods (Steps) 97 



 

 

Through the analysis of entities and relationships in CvdKG, experts have confirmed 

that the knowledge graph provides a meaningful and structured description of cardio-

vascular disease knowledge. This structured representation has significant potential to 

support clinical decision-making, research, and education in the field. 

To visualize the construction results of CvdKG, this study employs Echarts, primar-

ily showcasing its network structure. For each entity, the visualization highlights triples 

where the entity serves as the subject. Nodes connected to the same entity are color-

coded to represent identical semantic relationships. An example of this visualization is 

provided in Figure 6. This approach enables an intuitive understanding of the relation-

ships between entities and their semantic connections, further enhancing the usability 

and interpretability of the knowledge graph. 

 

Fig. 5. CvdKG relation distribution 

 

Fig. 6. CvdKG sample -Acute coronary syndrome 
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6 Conclusion 

Based on the existing framework for medical knowledge graph descriptions, this study 

develops a knowledge description framework centered on diseases and surgeries and 

constructs the CvdKG. A medical text automatic extraction model, CASRELpclBERT, is 

proposed based on the cascaded pointer network for joint entity-relation extraction. Ex-

periments are designed to validate the effectiveness of this method in extracting 

knowledge within the cardiovascular disease domain. Through iterative extraction and 

knowledge fusion, the construction and visualization of CvdKG are completed. CvdKG 

can provide data support for applications such as intelligent question-answering sys-

tems and computer-aided diagnosis for cardiovascular diseases. Moreover, the method-

ology used in constructing the knowledge graph in this study is transferable to other 

diseases. In future research, efforts will continue to improve the automated construction 

methods for medical knowledge graphs and enhance the accuracy of the automatic ex-

traction model. 
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