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Abstract. Human pose estimation models are increasingly deployed on low-

computation devices, with extensive applications in motion capture and sports 

rehabilitation. The multi-scale feature extraction capability of high-resolution 

networks (HRNet) effectively addresses the issue of varying human body scales, 

enhancing the accuracy of lightweight models based on HRNet. However, the 

high-resolution architecture results in a more complex network structure and in-

creased computational overhead. This paper introduces MPPose, a top-down hu-

man pose estimation framework that integrates coordinate classification based on 

keypoint heatmap representation. We design a single-branch network based on a 

high-resolution architecture, which implicitly retains and fuses multi-scale fea-

tures. The multi-path network maintains both the simplicity of single-branch net-

work and the effectiveness of high-resolution network, resulting in a simpler and 

more efficient architecture. 

Based on the high-resolution architectures, we retain only the blocks in the 

lowest-resolution branch and employ both cross-resolution and same-resolution 

feature fusion. We redesign an efficient block inspired by the shuffle block, 

which we called the Channel Expansion Attention Module (CEAM). CEAM 

compensates for the reduction in channel information caused by channel splitting 

by introducing a channel scaling module and a channel attention module. We 

evaluate our model against state-of-the-art top-down methods on the COCO and 

MPII datasets. Results show that it reduces computational overhead by 20% and 

improves inference speed by 37%, while achieving accuracy on par with Lite-

HRNet. 

Keywords: 2D Human Pose Estimation, Lightweight Network, Efficient Block. 

1 Introduction 

Human pose estimation aims to predict keypoints of interest from an image and assem-

ble them into a representation of the human pose. It has broad applications in fields 

such as sports monitoring and medical rehabilitation training [1-3]. Typical human pose 



estimation can be categorized into two paradigms: top-down [4-9] and bottom-up [6,10-

12]. The top-down paradigm first detects people in an image via a person detector, and 

then performs single-person pose estimation for each detected person. These methods 

benefit from straightforward operations and the excellent performance of human detec-

tors, enabling higher accuracy. In contrast, the bottom-up paradigm directly predicts all 

human keypoints and then groups these keypoints to obtain each person's keypoints. 

Although current research tends to focus on end-to-end approaches, the top-down 

method is simpler and can achieve higher accuracy, making it more suitable for low-

density crowd scenes and the design of lightweight human pose estimation models [13-

15]. 

Human pose estimation study based on high-resolution networks typically requires 

high-resolution representations to achieve high performance [7,10-18], resulting in high 

computational complexity and low inference speed. Existing studies mainly desgin 

lightweight networks from two perspectives. One is to optimize the efficient blocks 

[18,19], such as MobileNet [20-22] and ShuffleNet [23,24]. These efficient blocks typ-

ically adopt unique approaches to reduce convolution operations with minimal perfor-

mance sacrifice. The other is to use attention mechanisms to focus on important fea-

tures, which can significantly enhance performance. Lite-HRNet [18] uses the proposed 

conditional channel weighting block to replace the residual block in HRNet [7]. They 

employed cross-resolution weight and spatial weight in the Shuffle block to replace 11 

convolution, aiming to reduce the computational complexity of the block. However, 

this complex weight calculation is detrimental to inference speed, and no modifications 

are made to the high-resolution network structure. 

In fact, computation in high-resolution network is primarily concentrated on the 

high-resolution branches, but some studies [19,25] have shown that high resolution ar-

chitecture is not necessary for lightweight network. To focus computational resources 

on high-level semantics, we first remove most of the blocks from Lite-HRNet. Specif-

ically, we remove all blocks except for the blocks in the lowest resolution branch in 

each stage, resulting in a single-branch structure. We still retain feature fusion opera-

tions between different branches within each stage to benefit from high-resolution rep-

resentations. In addition to using cross-resolution feature fusion, we also fuse the fea-

tures within the same-resolution branch. In high-resolution networks, as the resolution 

decreases, the number of channels increases, but the model cannot always extract more 

information from the additional channels, making an excessive number of channels un-

necessary. Therefore, following the principle proposed by ShuffleNet, we perform a 

channel split on each branch to reduce the number of channels. We split each branch 

into two parts based on the number of channels. One part is used to fuse cross-resolution 

features, while the other part is used to fuse same-resolution features in the subsequent 

stage. 

Attention mechanisms [26-28] in high-resolution networks are primarily employed 

within the same-resolution branch or the same stage. In Lite-HRNet, both spatial weight 

and cross-resolution weight are used to replace 1  1 convolution in the shuffle block. 

Although this method significantly improves the performance, complex weight com-

putation impacts the model's inference speed. In our work, we add a basic channel at-
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tention block [26] to the original shuffle block to focus on important features. We be-

lieve that the channel split, which halves the number of channels, becomes a bottleneck 

for the performance improvement brought by basic channel attention. To further en-

hance the efficiency of the proposed basic block, two convolution layers in the shuffle 

block are used to expand and reduce the number of channels. The 33 convolution 

operates on the expanded feature map, and the channel attention block is then used to 

compute weights between channels for channel scaling. The expansion and shrinking 

operations significantly enhance the performance of the channel attention block in the 

low-channel shuffle block structure, and we call the proposed block as CEAM. By re-

placing the basic blocks in the proposed network structure with CEAM, we obtain a 

new simple and efficient network, called MPPose. 

Results show that the proposed MPPose outperforms ShuffleNet, MobileNet and 

Lite-HRNet. We believe that the superiority of our model is attributed to the proposed 

network structure, which is more aligned with the demands of lightweight network de-

sign. The proposed CEAM significantly improves efficiency and speed compared to 

mainstream efficient blocks. 

Our main contributions include: 

• We redesign the high-resolution network structure by removing the blocks in high-

resolution branches, resulting in a new multi-path network. This structure retains the 

advantages of a single-branch network while benefiting from both cross-resolution 

and same-resolution feature fusion. 

• We propose a simple and efficient CEAM block, which is more suitable for light-

weight networks. CEAM compensates for the performance bottleneck caused by the 

channel splitting in the shuffle block by introducing channel scaling and channel 

attention, further improving the performance of the efficient block. 

• Experiments on the COCO and MPII datasets demonstrate the effectiveness of our 

method. Compared to the advanced Lite-HRNet model, our model achieves approx-

imately a 20% reduction in computational complexity and a 37% improvement in 

inference speed. 

2 Related Work 

2.1 Top-down Human Pose Estimation 

human pose estimation aims at identifying the positions of keypoints on the human 

body to determine the action and pose. Typical top-down approaches decompose the 

task into two processes: first, a person detector is used to identify each person in the 

image, and then a single-person pose estimation is performed for each individual. 

Among these methods, HRNet [7] achieve better performance than single-branch ar-

chitectures. HRNet designed a multi-branch architecture to allow multi-resolution fu-

sion, which has been proven effective in solving scale variation problems. However, it 

significantly increases the computational demands, making it less suitable for deploy-

ment on mobile devices and challenging to support real-time applications. Some light-



weight HRNet-related studies [10,18,29] such as Lite-HRNet [18] proposed a more ef-

ficient and simpler module combined with attention mechanism (incorporating spatial 

and Cross-resolution weighting information). However, these complex attention mech-

anisms are not computationally friendly. In this work, we redesign a simpler network 

and module based on Lite-HRNet and replace heatmap-based regression method with 

computationally-friendly coordinate regression method. 

2.2 Efficient CNN Blocks 

Previous studies have introduced group convolutions and depthwise separable convo-

lutions, which have gained increasing attention in the design of lightweight models, 

such as Xception [30], MobileNet, and ShuffleNet. Many studies have demonstrated 

that these lightweight convolution operations are effective, significantly reducing com-

putation with little performance decrease, and now widely used in the design of light-

weight networks [31]. ShuffleNetV2 proposed an efficient shuffle block and explored 

four principles for designing lightweight modules. Lite-HRNet proposed a new condi-

tional channel weighting block based on shuffle block, which replaced the costly 11 

convolution with spatial weight and cross-resolution weight, similar to attention mech-

anisms. However, the conditional channel weighting block is complex, and the channel 

split significantly reduces the number of channels, making information exchange across 

channels challenging. In our work, we use 11 convolution to adjust the number of 

channels. The primary feature extraction operations are performed after channel expan-

sion, and we employ a channel attention module to capture important channel features, 

making it more efficient in leveraging the benefits of channel expansion. 

2.3 Single Branch and High-Resolution 

Single-branch network structures [32-34] have long been the mainstream structure for 

lightweight network design. These networks have a simple structure, consisting of a 

main upsampling and downsampling path, forming an encoder-decoder structure. With 

the introduction of high-resolution networks, the performance of human pose estima-

tion models has significantly improved. This structure maintains multiple high-resolu-

tion paths, effectively addressing the issue of scale variation, and significantly improv-

ing performance compared to single-branch networks. Recent studies have started to 

focus on designing lightweight networks based on high-resolution architecture. How-

ever, lightweight studies focusing on high-resolution architectures are still limited to 

multi-branch structures. Some previous studies have indicated that high-resolution 

branches in high-resolution architectures are redundant for lightweight models, and re-

allocating computational resources to low-resolution branches can yield greater perfor-

mance improvements. In our work, we revisit high-resolution networks and design a 

single-branch network that integrates both cross-resolution and same-resolution feature 

fusion, achieving better performance and efficiency. 
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3 Method 

3.1 Structure 

The basic architecture of our proposed MPPose is presented in Fig. 1. We will introduce 

an overview of our model and our design philosophy. We first take Lite-HRNet as our 

basic backbone network, which redesigned from small HRNet. The original high-reso-

lution network comprises four parallel branches, each performing substantial computa-

tional operations, resulting in significant computational overhead. To address this issue, 

we remove the computational operations from the high-resolution branches at each 

stage, retaining only the lowest resolution branch's operations. However, to maintain 

the ability to handle scale variation, we preserve the feature fusion operations across 

different resolution branches. This result in our model's main structure: a single-branch 

structure that integrates multi-resolution features. 

 

Fig. 1. The architecture of MPPose. MPPose consists of four parallel branches, including stem 

layer, transition layer, stage layer, and fusion layer. The transition layer is responsible for gen-

erating new low-resolution branches. The stage layer comprises the core operations of the net-

work, including CEAM block and cross-resolution feature fusion. The fusion layer is designed 

for same-resolution feature fusion. 

To reduce the model's parameters and computational cost, we employ the CEAM as 

the main feature extraction block, which is redesigned from the Shuffle block. The 

whole network can be divided into three parts: stem, backbone, and head. The stem 

consists of a 33 convolution followed by a basic shuffle block, both downsampling 

with a stride of 2, reducing the feature map resolution by a factor of four, expanding 

the number of channels from 3 to 32 and 128, respectively. 

The backbone can be divided into three stages, each with 2, 3, and 4 branches, re-

spectively. The structure of the branches remains consistent with the HRNet design, 

where the lower-resolution branches are downsampled from higher-resolution 

branches, with the channel doubling at each stage. However, in our model's backbone, 



each stage retains blocks only on the lowest resolution branch for feature extraction, 

while the other branches are not processed and are used only for feature interaction. In 

addition, the high-resolution network includes cross-resolution feature fusion, to which 

we add same-resolution feature fusion. Specifically, in each stage, we initially split the 

branches on channels and then concatenate and shuffle them at the end of the branch. 

Ultimately, each branch retains original features and fusion with other branches, ef-

fectively adding extra residual connections throughout the structure. These residual 

connections preserve original features while reducing model complexity, which is a 

common practice in lightweight network design. The cross-resolution fusion block rep-

resents the feature fusion between the current branch and other branches, similar to the 

operation in the high-resolution network. The same-resolution feature fusion block first 

fuses the features split in the previous stages, then performs channel concatenation and 

shuffling operations with the features split in the current stage to fully fuse the same-

resolution features. Table 1 shows the detailed structure of our proposed MPPose. 

Table 1. Structure of MPPose. The resolution branch indicates the number of branches within 

the current module and their respective downsampling ratios relative to the original input resolu-

tion. The repeat denotes the number of times each operation is repeated, while the modules spec-

ifies the number of times each module is repeated. 

Layers operator Resolution branch repeat modules 

image  1   

stem 
Conv2d 2 1 

1 
Shuffle Block 4 1 

stage2 
CEAM Block 4 8 3 

2 
Cross-resolution Fusion Block 4 8 1 

fusion2 Same-resolution Fusion Block 4 8 1 1 

stage3 
CEAM Block 4 8 16 3 

4 
Cross-resolution Fusion Block 4 8 16 1 

fusion3 Same-resolution Fusion Block 4 8 16 1 1 

stage4 
CEAM Block 4 8 16 32 3 

2 
Cross-resolution Fusion Block 4 8 16 32 1 

fusion4 Same-resolution Fusion Block 4 8 16 32 1 1 

FLOPs    0.16G 

Params    4.2M 

We finally use proposed regression-based method [35] as the head for our model. 

The output of the backbone is processed through two linear layers to predict the hori-

zontal coordinate and vertical coordinate, respectively. First, the feature map from each 

channel is flattened into a one-dimensional vector. These vectors are then passed 

through two linear layers for prediction, resulting in horizontal coordinate and vertical 

coordinate. The horizontal coordinate and vertical coordinate for the same keypoint are 

combined to obtain the final coordinate. Compared to directly outputting a heatmap, 
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this method does not require post-processing, allowing for direct keypoint coordinate 

extraction, which provides a speed advantage. 

3.2 CEAM Module 

Many lightweight blocks have been proposed, benefiting from their efficient light-

weight design concepts and excellent performance [36,37], increasing the variety of 

lightweight modules available. ShuffleNetV2 is a classic efficient block that proposed 

four principles for designing efficient CNN architecture. It introduces the ShuffleNetV2 

Block, as shown in Fig. 2(a), based on these principles. Its basic unit consists of two 

paths: first, the feature map split into two branches via channel split, one branch remains 

unprocessed, while the other passes through a 1 1 convolution, 33 depthwise convo-

lution, and another 11 convolution sequentially. Finally, the two parts undergo chan-

nel concatenation and shuffle. In this process, the unprocessed branch reduces the over-

all computation and parameters of the module while retaining some original feature 

information through residual connections. The success of the Shuffle Block is due to 

channel split, but this also leads to a reduction in the number of channels, causing a 

performance bottleneck. 

 

Fig. 2. Building Blocks. (a) The shuffle block. (b) Our proposed CEAM. Two 11 convolutions 

are used to expand and reduce the number of channels. F = channel weighting function. 

Our module introduces channel expansion on this basic shuffle block, using the orig-

inal 11 convolution to expand and shrink the number of channels. The 33 convolu-

tion is performed on the expanded part, and channel attention is introduced to more 

efficiently utilize the benefits brought by channel expansion. The proposed block, 

called the Channel Expansion Attention Module (CEAM), is illustrated in Fig. 2(b). 

The first 11 convolution expands the number of channels to five times the original, 



and then the 33 depthwise convolution extracts feature on the expanded feature map. 

Finally, the second 11 convolution reduces the channel back to the original size. This 

process forms an inverted bottleneck structure similar to that proposed in MobileNetV2, 

which has been shown to be effective in their results. Additionally, we consider the 

limitations of simple channel expansion operations and use a channel attention to focus 

on important channel features, fully utilizing the benefits brought by channel expan-

sion. Attention modules focus on important parts or features of the input data to enhance 

model performance and effectiveness. Considering the complexity of attention mecha-

nisms, we use basic channel attention module that only includes global pooling and two 

linear layers. After max pooling to obtain the average along the channel dimension, two 

linear layers compress and expand dimensions, and an activation function generates 

weights to weight the original feature map, producing the final feature map. Formula 

(1) shows the calculation formula for basic attention function. 
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4 Experiments 

4.1 Dataset & Metrics 

COCO. COCO [39] contains over 200K images and 250K person instances with 17 

keypoints, and it is divided into train, val, test-dev sets. We trained our model on 

train2017 (includes 57K images and 150K person instances) and validated it on val2017 

(includes 5K images) and test-dev2017 (includes 20K images).  The test-dev set is a 

subset of the test set. In the COCO dataset, neither the test set nor the test-dev set is 

publicly labeled. They are mainly used to verify the generalization of the model on 

unknown datasets. The test set is mainly used for competitions, while the test-dev set 

can be used for development. All our experiments are trained exclusively on the COCO 

train set. And we report the results on COCO val set and COCO test-dev set. 

MPII. MPII [40] includes full-body pose annotations taken from real-world human ac-

tivities. It consists of 25K images and 40K human instances annotated with 16 key-

points, and it is divided into train/test sets with 28K person instances and 12K person 

instances, respectively. Unlike the COCO dataset, the MPII dataset has 16 keypoints, 

including the top of the head, neck, left and right shoulders, left and right elbows, left 

and right wrists, left and right hips, left and right knees, left and right ankles, and left 

and right toes. Since the MPII dataset contains the annotations of the top of the head, 

neck, and toes, it is more suitable for human motion analysis and can also test the mod-

el's prediction performance for asymmetric keypoints. 
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Evaluation Metrics. Object Keypoint Similarity (OKS) is used in the field of human 

pose estimation to predict the similarity between keypoints and ground-truth keypoints. 

It is a popular evaluation metric for current human keypoint detection algorithms and 

we report standard average precision and recall scores: mAP (the mean of AP scores at 

10 positions, OKS = 0.50, 0.55, ..., 0.90, 0.95) on COCO. A higher OKS indicates a 

closer match between predicted and ground-truth keypoints. Formula (2) shows the cal-

culation formula for OKS. 
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PCKh quantifies the proportion of normalized distances between predicted keypoints 

and their corresponding ground-truth keypoints that fall below a specified threshold. 

For MPII, we use the standard metric PCKh@0.5 (head-normalized probability of cor-

rect keypoint) to evaluate the performance. Formula (3) shows the calculation formula 

for PCKh. 
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4.2 Experiment Setting 

The network is trained on a single GeForce RTX 4090D GPU with min-batch size of 

128, and the speed experiments are tested in RTX 3090. All experiments adopt Adam 

optimizer with an initial learning rate of 1e-3, with epochs set to 210. The learning rate 

was reduced to 1e-4 and 1e-5 at the 170th and 200th epochs, respectively. The human 

detection boxes were expanded to a fixed 4:3 ratio before cropping from the image. The 

image sizes for the COCO dataset were adjusted to 256192 or 384288, and 256256 

for the MPII dataset. Consistent with HRNet and Lite-HRNet, data augmentation in-

cludes random rotation ([-30,30]), random scale [0.75,1.25], random translation ([-

40,40]), and random flip. 

As a two-stage top-down approach [41], we first used a human detector to identify 

human instances, followed by keypoint prediction. The human detector used on the 

COCO dataset was consistent with that of HRNet and Lite-HRNet. For the MPII da-

taset, the provided person boxes were used, following standard testing strategies to 

comparison with other methods. Specifically, we used simple coordinate regression to 

predict keypoints, predicting the x and y coordinates to get the keypoint positions in the 

image. 



4.3 Experiments Results 

COCO val. The results of our method compared to other state-of-the-art methods are 

reported in Table 2. 

Table 2. Comparisons of various networks on the COCO val set. Params and GFLOPs are cal-

culated for the pose estimation network, GFLOPs is for convolution and linear layers only. 

Model Input Size Params GFLOPs mAP AP50 AP75 APM APL AR 

Hourglass 256192 25.1M 14.3 66.9 - - - - - 

CPN 256192 27.0M 6.20 68.6 - - - - - 

SimpleBaseline 256192 34.0M 8.90 70.4 88.6 78.3 67.1 77.2 76.3 

HRNet 256192 28.5M 7.10 73.4 89.5 80.7 70.2 80.1 78.9 

DARK [38] 12896 63.6M 3.60 71.9 89.1 79.6 69.2 78.0 77.9 

MobileNetV2 256192 9.6M 1.48 64.6 87.4 72.3 61.6 71.2 70.7 

MobileNetV2 384288 9.6M 3.33 67.3 87.9 74.3 62.8 74.7 72.9 

ShuffleNetV2 256192 7.6M 1.28 59.9 85.4 66.3 56.6 66.2 66.4 

ShuffleNetV2 384288 7.6M 2.87 63.6 86.5 70.5 59.5 70.7 69.7 

Lite-HRNet 256192 1.1M 0.20 64.8 86.7 73.0 62.1 70.5 71.2 

Lite-HRNet 384288 1.1M 0.45 67.6 87.8 75.0 64.5 73.7 73.7 

MPPose(ours) 256192 4.2M 0.16 64.8 86.5 72.6 61.8 70.8 70.8 

MPPose(ours) 384288 10.7M 0.37 67.7 87.9 75.1 64.7 73.8 74.3 

Our MPPose, trained with an input size of 256192, achieved an AP score of 64.8, 

the same as Lite-HRNet-18 and outperforms other models with fewer GFLOPs. 

MPPose achieves the same performance with only 80% of the GFLOPs of Lite-HRNet-

18. Compared to MobileNetV2 and ShuffleNetV2, MPPose achieves accuracy im-

provements of 0.2 and 4.9 points, respectively, with only 11% and 13% of their com-

putational complexity. Compared to some large network, such as Hourglass, CPN, Sim-

pleBaseline, HRNet and DARK, MPPose achieves comparable AP score with far low 

complexity. When trained with an input size of 384288, MPPose achieved an AP of 

67.7, surpassing Lite-HRNet and other light-weight methods. 

To compare the inference speed between MPPose and Lite-HENet, we measured the 

total time taken to predict keypoints on the COCO validation set. Fig. 3 compares the 

Lite-HRNet with our proposed MPPose, demonstrating that MPPose achieves higher 

speed while maintaining the same performance. MPPose achieves comparable perfor-

mance to Lite-HRNet while utilizing only 80% of the GFLOPs and improves inference 

speed by 37%. This indicates that MPPose's multi-path network structure achieves a 

better balance between lightweight design and performance. Compared to Lite-HRNet, 

MPPose reduces computational operations in the high-resolution branches, focusing the 

limited computational resources on extracting high-level semantic information. Fur-

thermore, multi-scale feature fusion allows the model to consider both global infor-

mation and local details, resulting in more accurate keypoint representations with core 

predictive features. Additionally, the simple coordinate classification method replaces 
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the heatmap-based post-processing, improving the speed of keypoint localization and 

significantly enhancing the overall prediction speed of the model. 

 

Fig. 3. Compared with the Lite-HRNet-18 on GFLOPs, mAP and valid time. The valid time is 

tested on COCO val use RTX 3090. The valid time is compared based on the total time taken 

from inputting the model to obtaining the keypoint coordinate JSON file for all images in the 

COCO val set using the detection box, with a total of 104,125 samples. 

To analyze the actual prediction performance of the MPPose model, the paper ex-

tracts some prediction results on the COCO validation set and visualizes the predicted 

keypoint coordinates on the images. From the prediction visualization in Fig. 4, it can 

be seen that the MPPose predictions closely match the actual keypoint locations, espe-

cially when the human body occupies a significant portion of the image, where the 

results are even more accurate. This reflects the typical scenario in real-world applica-

tions, indicating the feasibility and effectiveness of MPPose in practical use. 

 

Fig. 4. The model visualizes results on the COCO val set. The visualizations demonstrate that 

our model has an advantage in addressing scale variations of human body. 

COCO test-dev. The results of our method compared to other state-of-the-art methods 

in COCO test-dev are reported in Table 3. With an image input size of 384288, our 

MPPose achieves an AP score of 66.9 with only 0.37 GFLOPs, the same as Lite-

HRNet-18 and outperforms other models. We also test the image input size of 256192, 



our MPPose achieves 63.8 AP with 0.16GFLOPs, even outperforming ShuffleNetV2 

and Small HRNet with input size of 384288. 

Table 3. Comparisons of various networks on the COCO test-dev set. Params and FLOPs are 

calculated for the pose estimation network, GFLOPs is for convolution and linear layers only. 

Model Input Size Params GFLOPs mAP AP50 AP75 APM APL AR 

Mask-RCNN - - - 63.1 87.3 68.7 57.8 71.4 - 

CPN 384288 - - 72.1 91.4 80.0 68.7 77.2 78.5 

SimpleBaseline 384288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0 

HRNet 384288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1 

DARK 384288 63.6M 32.9 76.2 92.5 83.6 72.5 82.4 81.1 

MobileNetV2 384288 9.8M 3.33 66.8 90.0 74.0 62.6 73.3 72.3 

ShuffleNetV2 384288 7.6M 2.87 62.9 88.5 69.5 58.9 69.3 68.9 

Lite-HRNet 384288 1.1M 0.45 66.9 89.4 74.4 64.0 72.2 72.6 

MPPose(ours) 256192 4.2M 0.16 64.3 88.8 71.6 61.5 69.5 70.2 

MPPose(ours) 384288 10.7M 0.37 66.9 89.7 74.5 63.7 72.6 73.3 

MPII val. We also report the results on MPII dataset in Table 4. The performance of 

our method is similar to Lite-HRNet and other prior light-weight methods with fewer 

GFLOPs. our MPPose achieve 83.3 PCKh@0.5 with only 0.22GFLOPs. MPPose 

achieves performance close to other lightweight human pose estimation models on the 

MPII dataset, with a PCKh of 83.3%. However, there is still a noticeable gap compared 

to current state-of-the-art models. This can be attributed to two main factors: first, the 

relatively small size of the MPII dataset limits the model's ability to learn image fea-

tures effectively during cross-resolution and same-resolution feature fusion. Second, 

the MPII dataset contains color-related features due to human clothing, which interact 

with similar environments and objects. These irrelevant features may be learned by the 

model, introducing erroneous information that results in a performance decline during 

the final prediction. 

Table 4. Comparisons of various networks on the MPII val set. The image input size for all net-

works is 256256, GFLOPs is for convolution and linear layers only. 

Model Params GFLOPs PCKh 

MobileNetV2 9.6M 1.97 85.4 

MobileNetV3 8.7M 1.82 84.3 

ShuffleNetV2 7.6M 1.70 82.8 

Small HRNet 1.3M 0.72 80.2 

Lite-HRNet 1.1M 0.27 86.1 

MPPose(ours) 5.6M 0.22 83.3 
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4.4 Ablation Study 

CEAM Block. As shown in Table 5, without using channel expansion and channel 

attention, the module is the original Shuffle module, achieving only 56.1 mAP. When 

using channel attention and channel expansion separately, the performance improves 

to 57.9 mAP and 62.2 mAP, respectively. When both channel attention and channel 

expansion are used together, the final performance reaches 64.8 AP. These results val-

idate the effectiveness of using channel expansion and channel attention, demonstrating 

significant improvements when used together compared to their individual use. 

Table 5. Comparing the impact of channel expansion and channel attention in CEAM on model 

performance. The integration of channel expansion and channel attention demonstrates signifi-

cant performance enhancement in the CEAM block. 

Channel Expansion Channel Attention Params GFLOPs mAP 

  3.3M 0.10 56.1 

 √ 3.3M 0.10 57.9 

√  4.2M 0.16 62.2 

√ √ 4.2M 0.16 64.8 

Number of Branches. As shown in Table 6, while maintaining a similar number of 

parameters and computations, the performance of the model improves as the number of 

branches decreases. This demonstrates that multiple branches in high-resolution net-

works are not essential for lightweight models. The single-branch network built by our 

proposed MPPose proves to be more efficient. 

Table 6. Under similar parameters and GFLOPs, compare the impact of different numbers of 

branches on model performance. 

Number of Branches Params GFLOPs mAP 

4 3.5M 0.17 62.1 

3 3.7M 0.18 63.5 

2 4.3M 0.17 64.5 

1 4.2M 0.16 64.8 

5 Conclusion 

To enhance the computational efficiency and accuracy of lightweight human pose esti-

mation models, we reconsider the design of lightweight model structure and basic 

block. In this paper, we design the CEAM, an improved Shuffle block, addressing the 

issue of reduced channel numbers due to channel split. Structurally, we adopt the main-

stream single-branch architecture while implicitly retaining high-resolution features to 

benefit from high-resolution representation. In addition, based on the high-resolution 



network structure, we also implemented same-resolution feature fusion. Experimental 

results demonstrate that our model achieves higher accuracy with significantly lower 

computational requirements compared to other models. Specifically, our model outper-

forms Lite-HRNet-18, achieving better performance with only 85\% of its computa-

tional cost, making it more suitable for practical applications and real-time interface.  

Despite using a simple structure and basic blocks to achieve lightweight design, re-

ducing computational demands and improving inference speed, our model's parameters 

still has room for further reduction. This limitation may hinder its applicability in de-

vices with extremely limited storage capacity. This issue might stem from the simplicity 

of the model design. In future work, it will be necessary to optimize the model's param-

eter requirements while maintaining a relatively simple structure to meet the needs of 

a broader range of applications. 
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