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Abstract. This paper studies the Safety Policy Improvement (SPI) problem in 

Batch Reinforcement Learning (Batch RL), which aims to train a policy from a 

fixed dataset without environment interaction, while ensuring its performance is 

no worse than the baseline policy used for data collection. Most existing SPI 

methods impose constraints on training, but these constraints often make the 

training overly conservative, especially in complex environment where satisfying 

the constraints requires large amounts of data. Meanwhile, ε-bisimulation, a gen-

eral state abstraction technique, has been widely used to enhance sample effi-

ciency in reinforcement learning (RL). However, applying ε-bisimulation trans-

forms the original dataset into one over abstracted observation, which typically 

violates the assumption of independent and identically distributed (i.i.d.) samples 

required by existing SPI methods. To address this limitation, this paper proposes 

a constraint for policy learning that incorporates ε-bisimulation to improve sam-

ple efficiency while ensuring that the learned policy satisfies the SPI requirement. 

 

Keywords: Batch Reinforcement Learning, Safe policy Improvement, ε-bisim-

ulation. 

1 Introduction 

Recently, Reinforcement Learning (RL) has achieved remarkable success in tasks in-

volving long-term planning, global optimization, and sequential decision-making [1]. 

Representative breakthroughs include the Deep Q-Network (DQN), which enabled 

end-to-end control in Atari games; AlphaGo, which defeated the world Go champion 

Lee Sedol [2]; and Reinforcement Learning from Human Feedback (RLHF) [3], a key 

technique for aligning large language models such as ChatGPT with human intentions. 

Classical RL relies on an agent interacting with its environment through trial and error, 

gradually learning an optimal behavior policy based on reward signals from past inter-

actions. However, this paradigm is often impractical in domains where trial-and-error 

incurs high costs or involves significant risks, such as healthcare, industrial control, and 

finance. Batch Reinforcement Learning (Batch RL) provides an alternative by learning 

effective policies directly from fixed data, without requiring further interaction with the 

environment [4, 5]. 

Safe Policy Improvement (SPI) is a fundamental topic in Batch RL, focusing on 

learning a policy from fixed data that performs at least as well as the baseline policy 

that generated it [6-9]. SPI also holds significant practical value. For example, policies 



 

may need to be deployed simultaneously across many independent devices (e.g., wide-

spread software updates on smartphones), where failures can lead to extremely high 

repair costs. Moreover, policy evaluation may require a long period of time (e.g., in 

crop management or clinical trials), during which deploying a bad policy could cause 

severe consequences. Research on SPI can greatly reduce the risks associated with such 

scenarios, ensuring the stability and consistency of deployed policies. 

Most SPI approaches focus on the model-based RL paradigm to address this funda-

mental problem in the context of infinite-horizon discounted Markov decision pro-

cesses (MDPs) [6-9]. These approaches impose constraints that restrict training, allow-

ing policy learning only when the constraints are met. Typically, the constraints depend 

on the available data, as sufficient samples are needed to accurately capture the agent-

environment interaction dynamics. As a result, the learned optimal policy from these 

samples is more likely to perform well in the true environment, thus outperforming the 

baseline policy. A fundamental constraint is that training is permitted only if the number 

of samples for each state-action pair in the MDP exceeds a threshold. Based on this, 

several algorithms have been proposed to improve policy learning efficiency. However, 

since the available data is usually limited, existing SPI methods often result in con-

servative training. As a result, improving sample efficiency has become a critical chal-

lenge for enabling the practical application of SPI in the true environment. 

At the same time, ε-bisimulation (also known as approximation stochastic bisimula-

tion), a general state abstraction technique, reduces the size of an MDP while ensuring 

that the loss compared to the original problem remains bounded[10, 11]. In recent years, 

this technique has been applied within model-based RL paradigms to reduce learning 

complexity and improve sample efficiency [12-14]. ε-Bisimulation can maps states 

with similar transition probabilities and rewards into an abstracted state (or abstract 

observation). This approach is naturally suited to improving sample efficiency in the 

SPI problem, as it enables the sharing of samples across grouped states, which helps 

alleviate the issue of insufficient data and better meets the constraints. However, since 

shared samples are not perfectly equivalent, the policies learned from these samples 

often differ from those learned without sharing. As a result, the existing constraints 

must be adjusted to account for these differences.  

This paper investigates the SPI problem with ε-bisimulation, which involves an ε-

bisimulation function that maps similar states to abstract states. This allows the fixed 

dataset to be transformed into an abstract one, thereby improving sample efficiency in 

RL. However, such abstract datasets often violate the independent and identically dis-

tributed (i.i.d.) assumption, which most state-of-the-art SPI methods rely on, making it 

challenging to directly apply existing SPI techniques for policy learning. To address 

this issue, we propose a policy learning constraint that supports non-i.i.d. abstract da-

tasets. The main contribution of this work is the design of this constraint, which can be 

used when applying reinforcement learning with ε-bisimulation to improve sample ef-

ficiency. Additionally, we prove that the policy learned under this constraint will out-

perform the baseline policy with high probability. 
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2 Preliminaries 

2.1 MDPs and Reinforcement Learning 

We briefly introduce the notations for Markov Decision Processes (MDPs) and Rein-

forcement Learning (RL). For a comprehensive introduction, we refer readers to the 

relevant literature [1, 15].  

An MDP is defined by 𝑀 = (𝑆, 𝐴, 𝑇, 𝑅, 𝑠𝑖𝑛𝑖𝑡 , 𝛾), where 𝑆 is the state space, 𝐴 is the 

action space, 𝑅: 𝑆 × 𝐴 → ℝ is the reward function, where 𝑅(𝑠, 𝑎) represents the reward 

the agent receives after taking action 𝑎 in state 𝑠, 𝑠𝑖𝑛𝑖𝑡  is the initial state, and 𝛾 ∈ [0,1) 

is the discount factor. The true environment is modelled as an unknown finite MDP 

𝑀∗ = (𝑆, 𝐴, 𝑅, 𝑇∗, 𝛾, 𝑠𝑖𝑛𝑖𝑡) with unknown transition probability 𝑇∗.  

A policy is defined as 𝜋: 𝑆 → ∆(𝐴), where ∆(𝐴) denotes a probability distribution 

over the action set 𝐴. The value function of a policy 𝜋 in MDP 𝑀 is defined as 𝑉𝑀
𝜋(𝑠) =

𝐸𝜋,𝑀[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)𝑡≥0 |𝑠0 = 𝑠, 𝑎𝑡~𝜋(𝑠𝑡)], representing the expected discounted return 

when starting from state s and following π. The value of 𝑀 is denoted as 𝜌(𝜋, 𝑀) =
𝑉𝑀

𝜋(𝑠𝑖𝑛𝑖𝑡) . The optimal policy over all policies Π: {𝜋: 𝑆 → ∆(𝐴)}  is 𝜋∗ =
arg max𝜋∈Π𝜌(𝜋, 𝑀) , while the Π′ -optimal policy over a subset Π′ ∈ Π  is 𝜋Π′

∗ =

arg max𝜋∈Π′𝜌(𝜋, 𝑀). The value function is upper bounded by 𝑉𝑚𝑎𝑥 ≤
𝑅𝑚𝑎𝑥

1−𝛾
, where 

𝑅𝑚𝑎𝑥 is the maximum reward. 

In this paper, we consider the batch RL setting [4], where the algorithm does its best 

at learning a policy from a fixed set of experience. Given a dataset of transitions 𝐷 =

{(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]}, we denote by 𝑁𝐷(𝑠, 𝑎) the state-action pair counts, and by 

𝑁𝐷(𝑠, 𝑎, 𝑠′) the number of transitions from (𝑠, 𝑎) to 𝑠′. A vanilla batch RL approach, 

referred to as Basic RL, adopts a model-based manner [16] by explicitly constructing a 

Maximum Likelihood Estimation (MLE) MDP 𝑀̂ = (𝑆, 𝐴, 𝑅, 𝑇̂, 𝑠𝑖𝑛𝑖𝑡 , 𝛾), where the es-

timated transition probability is given by: 

∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑇̂(𝑠′|𝑠, 𝑎) =
𝑁𝐷(𝑠, 𝑎, 𝑠′)

𝑁𝐷(𝑠, 𝑎)
(1) 

Once the model 𝑀̂ is constructed, the optimal policy can be derived through dynamic 

programming on 𝑀̂ [17], Q-learning with experience replay until convergence [18], etc. 

If the estimated MDP 𝑀̂ closely approximates 𝑀∗, the optimal policy learned from 

𝑀̂ may perform optimal in the true environment. However, datasets are often limited, 

particularly in high-risk fields such as healthcare and finance. With insufficient data, 

the learned policy may lack robustness in state-action pairs with fewer samples, poten-

tially leading to high-risk decisions. 



 

2.2 Safe Policy Improvement 

 
Fig.1. Illustration of the SPI problem in Batch RL 

The Safe Policy Improvement (SPI) problem focuses on guaranteeing the performance 

of policies learned from fixed datasets in the true environment [6-9]. Fig. 1 illustrates 

the framework of the SPI problem. This problem typically assumes a baseline policy 

𝜋𝑏, which generates the fixed dataset 𝐷 = {(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]}. The goal of SPI 

is to learn a policy  𝜋𝐼 from 𝐷 such that, with probability at least 1 − 𝛿, its performance 

deviates from that of the behavior policy 𝜋𝑏 by no more than an admissible perfor-

mance loss ζ: 
𝜌(𝜋𝐼 , 𝑀∗) ≥ 𝜌(𝜋𝑏 , 𝑀∗) − 𝜁 (2) 

Constraints in Policy Learning. We consider a representative constraint for SPI [6], 

which specifies 𝛿 and 𝜁 in advance and derives a corresponding minimum sample size 

requirement. Specifically, learning is allowed only if the number of samples 𝑁𝐷(𝑠, 𝑎) 

for every state-action pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴  exceeds a threshold 𝑁∧, which is derived 

based on the specified 𝛿 and 𝜁 as follows: 

∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑁𝐷(𝑠, 𝑎) ≥ 𝑁∧ =
8𝑉𝑚𝑎𝑥

2

𝜁2(1 − 𝛾)2
log

2|𝑆||𝐴|2|𝑆|

𝛿
(3) 

This work marks a milestone in the development of SPI. Earlier methods typically 

imposed MDP-level constraints, often assuming uniformly distributed environment dy-

namics, which limited their applicability [19, 20]. In contrast, this work introduces 

state-action-pair-wise constraints, significantly expanding SPI to a broader class of 

MDPs. This idea has inspired many follow-up studies. For example, SPIBB builds on 

this theory to guarantee safe policy improvement even with partial state-action cover-

age [7, 21, 22]. Leveraging this property, later works have further extended SPI to more 

challenging settings, such as partially observable MDP [9]. 

Analysis of the i.i.d. Assumption for Samples. The constraints in this work, as well 

as those in other SPI methods not discussed here, are all derived under the i.i.d. (inde-

pendent and identically distributed) sample assumption[6, 8, 9]. To highlight this de-

pendency, we review how the constraints in this work are derived based on the i.i.d. 

assumption. 

     First, we introduce the i.i.d. assumption for samples in the fixed dataset. An agent 

may revisit a state 𝑠 ∈ 𝑆 multiple times and take an action 𝑎 ∈ 𝐴. The i.i.d. assumption 
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means that, at any given time, the sampling of the next state 𝑠′ is always based on the 

transition function 𝑇(∙ |𝑠, 𝑎), and the samples are independent of each other. Formally, 

let 𝜏1, 𝜏2, … 𝜏𝑁𝐷(𝑠,𝑎) denote the 𝑁𝐷(𝑠, 𝑎) time steps where the agent takes action 𝑎 in 

state 𝑠 within the dataset 𝐷. The sequence of the 𝑁𝐷(𝑠, 𝑎) next states 𝑠′,sampled after 

taking action  𝑎 in state 𝑠, is denoted by 𝑌𝑠,𝑎 = (𝑠(𝜏1+1)
′ , 𝑠(𝜏2+1)

′ , … , 𝑠
(𝜏𝑁𝐷(𝑠,𝑎)+1)

′ ). De-

fine 𝑌𝑠,𝑎
𝑖  to represent the 𝑖-th element in the sequence 𝑌𝑠,𝑎, where 1 ≤ 𝑖 ≤ 𝑁𝐷(𝑠, 𝑎). If, 

for all (𝑠, 𝑎) ∈ 𝑆 × 𝐴, each 𝑌𝑠,𝑎
𝑖  in the sequence 𝑌𝑠,𝑎 is independently drawn from the 

transition function 𝑇(∙ |𝑠, 𝑎), then dataset 𝐷 is considered to satisfy the i.i.d. assump-

tion. 

Next, we discuss the relationship between the number of the state-action pairs 

𝑁𝐷(𝑠, 𝑎) in 𝐷 and the accuracy of the estimated 𝑀̂, which is crucial for deriving learn-

ing constraints. Intuitively, having more 𝑁𝐷(𝑠, 𝑎) samples help 𝑀̂ better approximate 

the true environment 𝑀∗. If 𝑀̂ is sufficiently accurate, the optimal policy learned from 

𝑀̂ is likely to perform optimally in 𝑀̂, and thus outperform the behavior policy. The 

accuracy of the estimated MDP 𝑀̂ is typically measured by the difference between its 

transition function 𝑇̂ and the true transition function 𝑇∗. A common metric is the 𝐿1 

distance, which sums the absolute differences in transition probabilities over all state-

action pairs.  

Lemma 1 (𝐿1 inequality) [23]. According to Hoeffding's inequality, if dataset 𝐷 sat-

isfy the i.i.d. assumption, then, for all 𝜖 > 0, 

∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴, Pr (‖𝑇∗(𝑠′|𝑠, 𝑎) − 𝑇̂(𝑠′|𝑠, 𝑎)‖
1

≥ 𝜖) ≤ (2|𝑆| − 2)𝑒𝑥𝑝−
1
2

𝑁𝐷(𝑠,𝑎)𝜖2

(5) 

Here, ‖∙‖1 denotes the 𝐿1 distance, i.e., the sum of the absolute differences of the cor-

responding components of two vectors. 

Finally, we show that the 𝐿1 inequality plays a crucial role in deriving the learning 

constraint, which in turn highlights the necessity of the i.i.d. assumption. Let uncer-

tainty set 𝛯𝑒
𝑀̂ is the set of MDPs with transition function 𝑇(∙ |𝑠, 𝑎), such that  𝐿1 dis-

tance between 𝑇(∙ |𝑠, 𝑎)  and 𝑇̂(∙ |𝑠, 𝑎)  is smaller than 𝑒(𝑠, 𝑎)  for every state-action 

pair, that is: 

𝛯𝑒
𝑀̂ = {𝑀 = (𝑆, 𝐴, 𝑅, 𝑇, 𝛾, 𝑠𝑖𝑛𝑖𝑡)| ∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑠′ ∈ 𝑆 𝑠. 𝑡.

‖𝑇(𝑠′|𝑠, 𝑎) − 𝑇̂(𝑠′|𝑠, 𝑎)‖
1

≤ 𝑒(𝑠, 𝑎)} (6)
 

By setting 𝑒(𝑠, 𝑎) = 𝜖 = √
2

𝑁(𝑠,𝑎)
log(

2|𝑆||𝐴|2|𝑆|

𝛿
), and applying the 𝐿1 inequality, we 

have Pr (𝑀∗ ∉ 𝛯𝑒
𝑀̂) ≤ 𝛿, which means that 𝛯𝑒

𝑀̂ includes the true environment 𝑀∗ with 

a probability of 1 − 𝛿 (the proof can be found in Proposition 9 of  [6]). Therefore, if 

the optimal policy 𝜋𝐼, learned based on 𝑀̂, is optimal for all MDPs in 𝛯𝑒
𝑀̂, then 𝜋𝐼 will 

outperform the baseline policy 𝜋𝑏 with a probability of 1 − 𝛿. Therefore, the SPI prob-

lem is formulated as follows: 

𝜋𝐼 ∈ arg max
𝜋

𝜌 (𝜋, 𝑀̂), s. t. ∀𝑀 ∈ Ξ𝑒
𝑀̂ , 𝜌(𝜋, 𝑀) ≥ 𝜌(𝜋𝑏 , 𝑀) − 𝜁 (7) 

According to Theorem 8 in [6], the solution can be derived by enforcing the learning 

constraint specified in Equation (3). Specifically, if the sampling of all state-action pairs 

in the dataset 𝐷 is at least the threshold 𝑁∧ described in equation (3), then the formula 

can be solved. 



 

In summary, the constraints presented in this paper, as well as those proposed by 

other SPI methods, rely on the i.i.d. assumption of 𝐷 to derive learning constraints, en-

suring that the strategy trained under these constraints is likely to outperform the base-

line strategy with an admissible performance loss. 

2.3 RL based on ε-Bisimulation 

ε-Bisimulation (also known as approximation stochastic bisimulation) is a state abstrac-

tion technique that maps the original states space 𝑆 in an MDP into smaller abstract 

state 𝑆̅ in an abstract MDP, which reduces the problem complexity while maintaining 

a bounded loss with respect to the original problem [11, 24]. Recently, driven by the 

rapid advancements in reinforcement learning, ε-bisimulation has also been incorpo-

rated into the RL paradigm to improve sample efficiency [12, 14, 25, 26].  In their 

setting, there exits an ε-bisimulation function 𝜙: 𝑆 → 𝑆̅. And the agent acts in an MDP 

that returns states 𝑠, but instead of observing the true state 𝑠, the agent observes abstract 

states 𝜙(𝑠).  

    In this section, we introduce the notion of ε-bisimulation and discuss how to learn 

policies in RL based on ε-Bisimulation. 

Definition 1 (ε-bisimulation function, 𝜙) [11, 24]. Given two states 𝑠1, 𝑠2 ∈ 𝑆, if for 

any action 𝑎 ∈ 𝐴, the difference in their transition probabilities to any abstract state 

𝑠̅′ ∈ 𝑆̅ is bounded by 𝜂, then 𝑠1 and 𝑠2 can be mapped into the same abstract state under 

the function 𝜙, i.e.: 

𝜙(𝑠1) = 𝜙(𝑠2) ⟹  ∀𝑠̅′ ∈ 𝑆̅, 𝑎 ∈ 𝐴: |𝑇(𝑠̅′|𝑠1, 𝑎) − 𝑇(𝑠̅′|𝑠2, 𝑎)| ≤ 𝜂 (8) 

Under the ε-bisimulation function 𝜙: 𝑆 → 𝑆̅ , the original dataset 𝐷 =

{(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]} collected from the underlying MDP can be transformed into 

an abstracted dataset 𝒟 = {(𝑠̅𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗
′)|𝑗 ∈ [1, 𝑁]} , where 𝑠̅𝑗 = 𝜙(𝑠𝑗)  and 𝑠̅𝑗

′ =

𝜙(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′). This dataset captures the transitions between abstract states, thereby 

enabling policy learning in the abstracted state space. 

An abstract policy 𝜋̅: 𝑆̅ → ∆(𝐴) can be optimized using batch RL algorithm in a 

model-based manner. Specifically, we consider the estimated abstract MDP 𝑀̂̅ =

(𝑆̅, 𝐴, 𝑇̂̅, 𝑅, 𝑠̅0, 𝛾), where 𝑇̂̅ denotes the transition dynamics over the abstract states, 

which can be derived from the abstracted dataset 𝒟 as follows: 

∀𝑠̅, 𝑠̅′ ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑇̂̅(𝑠̅′|𝑠̅, 𝑎) =
𝑁𝒟(𝑠̅, 𝑎, 𝑠̅′)

𝑁𝒟(𝑠̅, 𝑎)
(11) 

Where 𝑁𝒟(𝑠̅, 𝑎) denotes the number of samples in 𝒟 where action 𝑎 is taken in 𝑠̅, and 

𝑁𝒟(𝑠̅, 𝑎, 𝑠̅′) denotes the number of samples transitioning to 𝑠̅′. The value of abstract 

MDP, 𝜌(𝜋̅, 𝑀̂̅), naturally mirrors that of the original MDP. The optimal abstract policy 

is defined as 𝜋̅∗ ∈ arg max𝜋∈Π𝜌(𝜋̅, 𝑀̂̅), and can be directly learned by vanilla batch 

RL algorithms[17, 18, 27]. 

While ε-bisimulation facilitates improved sample efficiency, it inevitably incurs a 

performance gap between the policy learned from the abstract dataset and that learned 

from the original dataset, thereby presenting challenges in ensuring the performance of 

the abstract policy. 
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3 SPI based on ε-Bisimulation 

 
Fig.2. Illustration of the SPI with ε-bisimulation 

To enhance the sample efficiency of Safe Policy Improvement (SPI), we study the 

SPI problem under ε-bisimulation. As illustrated in Fig. 2, the framework assumes an 

ε-bisimulation function 𝜙: 𝑆 → 𝑆̅ , which maps the original dataset 𝐷 =

{(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]} into an abstract dataset 𝒟 = {(𝑠̅𝑗, 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗

′)|𝑗 ∈ [1, 𝑁]}. The 

objective is to design constraints that enable learning an abstract policy 𝜋̅𝐼 from 𝒟, such 

that it outperforms a baseline policy 𝜋𝑏 in the true environment 𝑀∗. Formally, given 𝛿 

and 𝜁 , the goal is to learn 𝜋̅𝐼 satisfying: 

𝜌(𝜋̅𝐼 , 𝑀∗) ≥ 𝜌(𝜋𝑏 , 𝑀∗) − 𝜁 

Where 𝜌(∙, 𝑀∗) denotes the expected return (also called performance) in 𝑀∗.  

3.1 Theoretical Challenges 

The key challenge lies in designing appropriate constraints for learning the abstract 

policy. However, existing SPI methods cannot directly provide such constraints, as they 

rely on the i.i.d. assumption, which does not hold for the abstract dataset 𝒟. To illustrate 

why this assumption may be violated, we present a simple example shown in Fig. 4. 

As shown in Fig. 4, the environment is a simple MDP, where the circles denote the 

state set 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}, and the agent can take the same action A={a} in all states 

(for simplicity, this unique action is omitted in the figure）. The arrows with associated 

probabilities indicate state transitions by taking the unique action. The colored circles 

represent the abstract state set 𝑆̅ = {𝑠̅0, 𝑠̅1, 𝑠̅2}. According to the ε-bisimulation function 

𝜙, states 𝑠0 and 𝑠2are clustered into the same abstract state  𝑠̅0. 

 
Fig.3. A Simple MDP [12] 

Example 3.1. Take 𝑠̅0 in Fig. 3 as an example. The i.i.d. assumption means that 

whenever the agent visits 𝑠̅0 and takes the same action, the next abstract state (𝑠̅1 or 𝑠̅2) 

is drawn from the same distribution, and each sample is independent.  



 

First, we show that transitions from 𝑠̅0 under the same action do not follow the same 

distribution. Let 𝜙−1( 𝑠̅0) = {𝑠0,𝑠2} denotes the set of all states that are mapped to 𝑠̅0 

by 𝜙. In different time steps, the agent may be in either 𝑠0 or 𝑠2, both corresponding to 

the same abstract state 𝑠̅0. However, after taking the same action, their transition prob-

abilities to other abstract states are different: for 𝑠0 , the transition distribution is 

{𝑠̅1: 0.65, 𝑠̅2: 0.35}, while for 𝑠2, it becomes {𝑠̅1: 0.4, 𝑠̅2: 0.6}. Clearly, these distribu-

tions are not identical, violating the i.i.d. assumption. 

Next, we show a counterexample to illustrate that the transitions originating from 𝑠̅0 

are not independent. Define 𝑌𝑠̅0

0 = 𝑠̅1 and 𝑌𝑠̅0
1 = 𝑠̅1 as two transitions collected from 𝑠̅0 

by taking same action, both of which lead to the abstract state 𝑠̅1. If these two transitions 

are independent, their joint probability should satisfy the following condition: 

Pr(𝑌𝑠̅0

0 = 𝑠̅1, 𝑌𝑠̅0
1 = 𝑠̅1) = Pr(𝑌𝑠̅0

0 = 𝑠̅1) Pr(𝑌𝑠̅0
1 = 𝑠̅1) (12) 

Example 3.2. Suppose that when the agent visits 𝑠̅0 for the first time, the underlying 

environment state is 𝑠0. The probability of transitioning to 𝑠̅1 is then Pr(𝑌𝑠̅0

0 = 𝑠̅1) =

Pr(𝑠̅1|𝑠0) = 0.5. For the second visit to 𝑠̅0, we do not fix the underlying state. Instead, 

we consider all possible states that may lead to this visit. 

Pr(𝑌𝑠0̅

1 = 𝑠̅1) = ∑ Pr(𝑌𝑠0̅

1 = 𝑠̅1|𝑌𝑠0̅

0 = 𝑠̅)

𝑠̅∈𝑆̅

Pr(𝑌𝑠0̅

0 = 𝑠̅) 

= Pr(𝑌𝑠0̅

1 = 𝑠̅1|𝑌𝑠0̅

0 = 𝑠̅0) Pr(𝑌𝑠0̅

0 = 𝑠̅0) + Pr(𝑌𝑠0̅

1 = 𝑠̅1|𝑌𝑠0̅

0 = 𝑠̅1) Pr(𝑌𝑠0̅

0 = 𝑠̅1) 

+ Pr(𝑌𝑠0̅

1 = 𝑠̅1|𝑌𝑠0̅

0 = 𝑠̅2) Pr(𝑌𝑠0̅

0 = 𝑠̅2) 

= Pr(𝑌𝑠0̅

1 = 𝑠1|𝑌𝑠0̅

0 = 𝑠1) Pr(𝑌𝑠0̅

0 = 𝑠1) + Pr(𝑌𝑠0̅

1 = 𝑠1|𝑌𝑠0̅

0 = 𝑠3) Pr(𝑌𝑠0̅

0 = 𝑠3) 

= 0.65 × 0.65 + 0.35 × 0.35 
= 0.545 

Additionally，the joint probability is given by: 

Pr(𝑌𝑠0̅

0 = 𝑠̅1, 𝑌𝑠0̅

1 = 𝑠̅1) = Pr(𝑌𝑠0̅

0 = 𝑠̅1) Pr(𝑌𝑠0̅

1 = 𝑠̅1|𝑌𝑠0̅

0 = 𝑠̅1) 

= Pr(𝑠̅1|𝑠0) (Pr(𝑠̅1|𝑠0) Pr(𝑠0|𝑠̅1)) 
= 0.65 × (0.65 × 1) 
= 0.4225 

Here, Pr(𝑌𝑠̅0
1 = 𝑠̅1|𝑌𝑠̅0

0 = 𝑠̅1) = Pr(𝑠̅1|𝑠0) Pr(𝑠0|𝑠̅1), since the abstract state 𝑠̅1 tran-

sitions to 𝑠0 with probability 1. Clearly, the samples in this example do not satisfy the 

independence condition (Equation 13), as Pr(𝑌𝑠̅0

0 = 𝑠̅1) Pr(𝑌𝑠̅0
1 = 𝑠̅1) = 0.52 × 0.6 ≠

Pr(𝑌𝑠̅0

0 = 𝑠̅1, 𝑌𝑠̅0
1 = 𝑠̅1), meaning the sampling of 𝑌𝑠̅0

0  and 𝑌𝑠̅0
1  are not independent. 

In summary, in the SPI problem based on ε-Bisimulation, the abstract dataset 𝒟 does 

not satisfy the i.i.d. assumption. Existing methods, relying on this assumption to design 

policy constraints, cannot be directly applied to ensure the performance of the learned 

policy from 𝒟. 

3.2 Constraints for Non-i.i.d. Datasets  

For the SPI problem based on ε-bisimulation, where the abstract datasets 𝒟 does not 

satisfy the i.i.d. assumption, we propose constraints to ensure the generated policy 

meets the problem's performance requirements. 

We investigate how to design learning constraints for 𝒟 to ensure that the generated 

abstract policy 𝜋̅ outperforms the baseline 𝜋𝑏 in the true environment with high proba-

bility. This problem be converted into ensuring that 𝜋̅ outperforms an abstract baseline 
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𝜋̅𝑏: 𝑆̅ → 𝐴, which can be compute by 𝜙: 𝑆̅ → 𝑆 and 𝜋𝑏: 𝑆 → 𝐴 (See Appendix A for de-

tailed definition.). This is because, given a true MDP 𝑀∗ = (𝑆, 𝐴, 𝑇∗, 𝑅, 𝑠0, 𝛾) and the 

corresponding MDP 𝑀̅𝜔
∗ = (𝑆̅, 𝐴, 𝑇̅𝜔

∗ , 𝑅, 𝑠̅0, 𝛾),the performance difference between the 

policy in the abstract model and its performance in the true model is bounded. In the 

case of strict abstraction, the two performances are nearly identical（Detailed proof 

can be found in Lemma 6 of [12]）. 

RL with a model-based manner first constructs an estimated abstract MDP 𝑀̂̅ =

(𝑆̅, 𝐴, 𝑇̂̅, 𝑅, 𝑠̅0, 𝛾) and then learns the optimal policy in 𝑀̂̅. The error between 𝑀̂̅ and the 

true abstract MDP 𝑀̅𝜔
∗  cannot be measured using the 𝐿1 inequality, as it depends on the 

i.i.d. assumption. Fortunately, for a dataset 𝒟 that does not follow the i.i.d. assumption, 

the difference between 𝑀̂̅ and 𝑀̅𝜔
∗  can be quantified using Azuma-Hoeffding Inequal-

ity. 

Lemma 2 (Abstract 𝐿1  inequality)[12]. Given an abstract dataset 𝒟 =

{(𝑠̅𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗
′)|𝑗 ∈ [1, 𝑁]}, the deviation between the transition function 𝑇̂̅  in 𝑀̂̅ the 

true transition function 𝑇̅𝜔
∗  in 𝑀̅𝜔

∗ is bounded by the following inequality: 

∀𝑠̅, 𝑎 ∈ 𝑆̅ × 𝐴, 𝑠̅′  ∈ 𝑆̅, Pr (‖𝑇̂̅(𝑠̅′|𝑠̅, 𝑎) − 𝑇̅𝜔(𝑠̅′|𝑠̅, 𝑎)‖
1

≥ 𝜖) ≤  2|𝑆̅|𝑒−
1
8

𝑁𝒟(s̅,a)𝜖2

(13) 

This inequality characterizes how the number of samples 𝑁𝒟(s̅, a) collected for each 

abstract state-action pair in 𝒟 affects the accuracy of the estimated transition function 

𝑇̂̅ in terms of its 𝐿1 distance to the true transition 𝑇̅𝜔
∗ . 

Constraints for Training with the Abstract Dataset 𝒟. Given parameters 𝛿 and 𝜁′, 

the abstract dataset 𝒟 = {(𝑠̅𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗
′)|𝑗 ∈ [1, 𝑁]}  is required to contain sufficient 

samples for every abstract state-action pair  (𝑠̅, 𝑎).  

Lemma 3(Constrains in 𝒟). The number of samples 𝑁𝒟(𝑠̅, 𝑎) must satisfy: 

𝑁𝒟(𝑠̅, 𝑎) ≥ 𝑁∧ =
32𝛾2𝑅𝑚𝑎𝑥2

𝜁′2(1 − 𝛾)4
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
(14) 

Under this condition, with probability at least 1 − 𝛿, the optimal policy 𝜋̅𝐼 learned from 

the estimated abstract MDP 𝑀̂̅ constructed from 𝒟  is an approximate improvement 

over the baseline policy 𝜋̅𝑏, i.e., 𝜌(𝜋̅𝐼 , 𝑀̅𝜔
∗ ) ≥ 𝜌(𝜋̅𝑏 , 𝑀̅𝜔

∗ ) − 𝜁′. 
The proof is provided in Appendix B.  
Then, we derive the performance guarantee in the true environment 𝑀∗. 

Theorem 1. Based on Lemma 3 and the performance gap of the abstract policy be-

tween the abstract MDP and the true MDP 𝑀∗, we can further derive that: 

 

𝜌(𝜋̅𝐼 , 𝑀∗) ≥ 𝜌(𝜋𝑏 , 𝑀∗) − 𝜁 (15) 

Here, 𝜁 = 𝜁′ +
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1−𝛾)2 . 

The proof is provided in Appendix C.  

Based on Theorem 1, the user can set an acceptable performance error 𝜁 and derive 

the sampling threshold 𝑁∧ for every abstract state-action pair. Specifically, 𝜁′ is calcu-

lated as 𝜁′ = 𝜁 −
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1−𝛾)2 , and 𝑁∧ is derived from equation (14). When the sample size 



 

for every abstract state-action pair 𝑁𝒟(𝑠̅, 𝑎) ≥ 𝑁∧ in the abstract dataset 𝒟, the policy 

learned from 𝒟 satisfies the SPI problem requirements in the true environment. 

4 Related Works 

Batch reinforcement learning (Batch RL)[4], also known as offline reinforcement 

learning [5], focuses on how to learn a policy from pre-collected fixed dataset when the 

agent cannot directly interact with the environment. This paper addresses the safety 

policy improvement (SPI) problem in batch RL [6-9], which involves learning a policy 

from a fixed dataset and guaranteeing that the learned policy outperforms the baseline 

policy used to generate those samples. In reinforcement learning, the concept of 

"safety" can have multiple meanings [28], including parameter uncertainty [29], model 

uncertainty [30], external interruptibility [31, 32], and safety concerns in exploration in 

risky environments [33, 34]. The SPI problem primarily concerns safety related to pa-

rameter uncertainty.  

Early approaches to the SPI problem mainly used the model-free RL paradigm, 

where policies are learned from a dataset without constructing an environment model 

[19, 20]. These methods work well only when nondeterministic parameters, like tran-

sition probabilities, follow a uniform distribution. Otherwise, they return the baseline 

policy and cannot generate the target policy. The paper [6] adopts a model-based ap-

proach, minimizing robust baseline regret, which transforms the SPI problem into a 

state-action pairs version, allowing it to handle nondeterministic parameters that don't 

follow a uniform distribution. It proves that the SPI problem is NP-hard and introduces 

constraints to approximate target policy learning, though scalability remains limited. 

Paper [7] proposes the baseline-guided SPI method (SPIBB), which builds on [6] by 

adding constraints for different state-action pairs, ensuring performance even when 

some pairs don't satisfy the constraints. Other works either improve effectiveness [21, 

22] or extend SPI to more complex settings, such as partially observable MDPs [9]. A 

common feature of these works is their reliance on the i.i.d. assumption of fixed dataset. 

5 Conclusion and Future 

We propose a constraint for SPI based on ε-bisimulation. Given a fixed dataset, a 

safety requirement parameter, and a ε-bisimulation function, the proposed constraint 

restricts policy trains only when the specified constraint is satisfied. This approach fa-

cilitates adopt ε-bisimulation and provides with high probability guarantees that the 

learned policy outperforms the baseline policy that generated the dataset. 

There are two promising directions for future research. The first is to adaptively learn 

the ε-bisimulation function from different datasets, and further derive corresponding 

training constraints under such learned ε-bisimulation function. The second is to extend 

our framework to more complex models, such as partially observable Markov decision 

processes (POMDPs), to improve sample efficiency. 
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Appendix 

A． Definition of the Abstract Baseline Policy 

We define an abstract baseline policy 𝜋̅𝑏 that preserves the action choices of the 
original baseline policy 𝜋𝑏  under the ε-bisimulation function 𝜙: 𝑆 → 𝑆̅ . Specifi-
cally, for any abstract state 𝑠̅ ∈ 𝑆̅, 𝜋̅𝑏(𝑠̅) selects an action consistent with 𝜋𝑏 over 
the set of original states mapped to  𝑠̅, i.e., 

∀𝑠̅ ∈ 𝑆̅, 𝜋̅𝑏(𝑠̅) = {
𝑎𝑖 , 𝑖𝑓 𝑠𝑖 ∈ 𝜙−1(𝑠̅) 𝑎𝑛𝑑 𝜋𝑏(𝑠𝑖) = 𝑎𝑖

𝑎𝑗 , 𝑖𝑓 𝑠𝑗 ∈ 𝜙−1(𝑠̅) 𝑎𝑛𝑑 𝜋𝑏(𝑠𝑗) = 𝑎𝑗

⋯

 

By construction, 𝜋̅𝑏 can be viewed as the abstraction of 𝜋𝑏 in the abstract MDP. 
Consequently, 𝜋̅𝑏 and 𝜋𝑏 are performance-equivalent in their corresponding 
models. 
 

B． Proof of Lemma 3. 

In this section, we prove Lemma 3. First, we start with uncertainty set 𝛯𝑒
𝑀̂: 

𝛯𝑒
𝑀̂̅ = {𝑀̅ = (𝑆̅, 𝐴, 𝑅, 𝑇̅, 𝛾, 𝑠̅0)|∀(𝑠̅, 𝑎) ∈ 𝑆̅ × 𝐴, 𝑠̅′ ∈ 𝑆̅ 𝑠. 𝑡. ‖𝑇̅( 𝑠̅′|𝑠̅, 𝑎) − 𝑇̂̅( 𝑠̅′|𝑠̅, 𝑎)‖

1
≤ 𝑒(𝑠̅, 𝑎)} (20) 

which is the set of MDPs with transition function 𝑇(∙ |𝑠, 𝑎), such that  𝐿1 distance 
between 𝑇(∙ |𝑠, 𝑎) and 𝑇̂(∙ |𝑠, 𝑎) is smaller than 𝑒(𝑠, 𝑎) for every state-action pair. 

Let 𝑒(𝑠̅, 𝑎) = √
8

𝑁𝒟(𝑠̅,𝑎)
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
. By the abstract 𝐿1  inequality (Lemma 2), we 

have: 

Pr (𝑀̅𝜔
∗ ∉ 𝛯𝑒

𝑀̂̅) ≤ 𝛿 (21) 

This means that with at least 1 − 𝛿 probability, 𝛯𝑒
𝑀̂̅  contains the true abstract MDP 

𝑀̅𝜔
∗ . The SPI problem can be reformulated as: 

𝜋̅𝐼 ∈ arg max
𝜋̅

𝜌 (𝜋̅, 𝑀̂̅), s. t. ∀𝑀̅ ∈ 𝛯𝑒
𝑀̅𝑌 , 𝜌(𝜋̅, 𝑀̅) ≥ 𝜌(𝜋̅𝑏 , 𝑀̅) − 𝜁′ (22) 

 This seeks the approximate optimal policy 𝜋̅𝐼 based on 𝑀̂̅, ensuring that for any 

MDP 𝑀̅ in 𝛯𝑒
𝑀̅𝑌 , it is a approximate improvement over 𝜋̅𝑏 . Theorem 8 in [6] can be 

used to solve this, yielding: 

𝜌(𝜋̅𝐼 , 𝑀̅𝜔
∗ ) ≥ 𝜌(𝜋̅∗, 𝑀̅𝜔

∗ ) −
2𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
‖𝑒‖∞ ≥ 𝜌(𝜋̅𝑏 , 𝑀̅𝜔

∗ ) −
2𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
‖𝑒‖∞ (23) 

Where ‖∙‖∞ is the infinity norm, representing the maximum absolute value in the 
vector. Let 𝑁⋀ denote the minimum sample size for the abstract state-action pair, 

then ‖𝑒‖∞ = √
8

𝑁⋀
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
. Let 𝜁′ =

2𝛾𝑅𝑚𝑎𝑥

(1−𝛾)2
‖𝑒‖∞, then: 

𝑁⋀ =
32𝛾2𝑅𝑚𝑎𝑥2

𝜁′2(1 − 𝛾)4
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
(24) 

 Thus, when the sample size for all abstract state-action pairs 𝑁𝒟(𝑠̅, 𝑎) satisfies: 

𝑁(𝑠̅, 𝑎) ≥ 𝑁∧ =
32𝛾2𝑅𝑚𝑎𝑥2

𝜁′2(1 − 𝛾)4
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
(25) 

the approximate optimal abstract policy 𝜋̅𝐼 is an approximate improvement over 
𝑀̅𝜔

∗ ,i.e., 



 

𝜌(𝜋̅𝐼 , 𝑀̅𝜔
∗ ) ≥ 𝜌(𝜋̅𝑏 , 𝑀̅𝜔

∗ ) − 𝜁′ (26) 
This concludes the proof. 
 

C． Proof of Theorem 1. 

In this section, we prove Theorem 1. We begin with the performance gap between 
an abstract policy 𝜋̅ in the true abstract MDP 𝑀̅𝜔 and its corresponding true MDP 
𝑀. According to Lemma 6 in [18], the performance gap satisfies the following ine-
quality constraint: 

|𝜌(𝜋̅, 𝑀̅𝜔) − 𝜌(𝜋̅, 𝑀)| ≤
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(27) 

Let 𝜋 in equation (27) be 𝜋̅𝐼 , then equation (27) can be rewritten as: 

|𝜌(𝜋̅𝐼 , 𝑀) − 𝜌(𝜋̅𝐼 , 𝑀̅𝜔)| ≤
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(28) 

Moreover, 𝜋̅𝑏 , derived from the baseline policy 𝜋𝑏 , has the same performance in 
both the abstract and actual MDPs as  𝜋𝑏 . Therefore, 
 

|𝜌(𝜋̅𝑏 , 𝑀) − 𝜌(𝜋̅𝑏 , 𝑀̅𝜔)| = 0 (29) 
 Then, by adding both sides of equation (28) and equation (29), we obtain: 

|𝜌(𝜋̅𝐼 , 𝑀) − 𝜌(𝜋̅𝐼 , 𝑀̅𝜔)| + |𝜌(𝜋̅𝑏 , 𝑀) − 𝜌(𝜋̅𝑏 , 𝑀̅𝜔)| ≤
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
 

|𝜌(𝜋̅𝐼 , 𝑀) − 𝜌(𝜋̅𝑏 , 𝑀) − (𝜌(𝜋̅𝐼 , 𝑀̅𝜔) − 𝜌(𝜋̅𝑏 , 𝑀̅𝜔))| ≤
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
 

𝜌(𝜋̅𝐼 , 𝑀) − 𝜌(𝜋̅𝑏 , 𝑀) − (𝜌(𝜋̅𝐼 , 𝑀̅𝜔) − 𝜌(𝜋̅𝑏 , 𝑀̅𝜔)) ≥ −
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
 

𝜌(𝜋̅𝐼 , 𝑀) − 𝜌(𝜋̅𝑏 , 𝑀) ≥ 𝜌(𝜋̅𝐼 , 𝑀̅𝜔) − 𝜌(𝜋̅𝑏 , 𝑀̅𝜔) −
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
 

We have 𝜌(𝜋̅𝐼 , 𝑀̅𝜔) − 𝜌(𝜋̅𝑏 , 𝑀̅𝜔) ≥ −𝜁′(Lemma 3), so  

𝜌(𝜋̅𝐼 , 𝑀) ≥ 𝜌(𝜋̅𝑏 , 𝑀) − 𝜁′ −
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(30) 

Let 𝜁 = 𝜁′ +
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1−𝛾)2 , the above expression can be written as 

𝜌(𝜋̅𝐼 , 𝑀) ≥ 𝜌(𝜋̅𝑏 , 𝑀) − 𝜁 (30) 

Where 𝜁 = 𝜁′ +
𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1−𝛾)2 . 

This concludes the proof. 
 

 
 

 

 

 

 


