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Abstract. To address limited feature representation, insufficient cross-scale fu-

sion, and localization inaccuracies in complex scenes, we propose DTS-YOLO, 

a lightweight single-stage detector. It improves detection through dynamic fea-

ture aggregation, fine-grained texture encoding, and precise bounding box regres-

sion. Specifically, the Dynamic Route Enhanced Aggregation Module (DREAM) 

integrates multi-branch depthwise convolutions and lightweight Transformers to 

enrich multi-scale representations. To mitigate semantic inconsistency in fusion, 

Dynamic Cross-scale Feature Fusion (DCFF) combines Scale-aware Channel At-

tention Fusion (SCAF) and Intra-layer Feature Fusion Attention (IFFA) for en-

hanced semantic alignment. Additionally, edge and texture perception is rein-

forced via Sobel and Laplacian Pyramid modules. For robust localization, a novel 

Closed Complete IoU (CCIoU) loss introduces morphological closure operations 

to refine bounding box alignment under occlusion. Experiments on Vis-

Drone2019 and DOTA-v1.5 (HBB) demonstrate consistent performance gains 

over baseline YOLO11, especially for small and dense objects in complex envi-

ronments. 

Keywords: Object detection, multi-scale fusion, texture encoding, semantic at-

tention, bounding box regression. 

1 Introduction 

Object detection is a core task in computer vision, widely applied in autonomous driv-

ing, aerial surveillance, and industrial inspection. The YOLO series[1] has achieved 

strong performance by balancing speed and accuracy through advanced neck design 

and efficient backbones. However, YOLO11 still struggles in complex environments 

due to limited feature representation, suboptimal multi-scale fusion, and inaccurate lo-

calization under occlusion or crowding. 

To overcome these issues, we propose DTS-YOLO, a fully enhanced detector that 

improves feature richness, semantic fusion, and localization accuracy. Our key contri-

butions are as follows: 

https://www.youbianku.com/475001


1. DREAM (Dynamic Route Enhanced Aggregation Module): Replaces YOLO11’s 

C3k2 with multi-branch, re-parameterized convolutions and Transformer units to 

enlarge receptive fields and enrich representations, especially for small and complex 

targets. 

2. DCFF (Dynamic Cross-scale Feature Fusion): Strengthens semantic consistency in 

top-down fusion using IFFA for intra-layer attention and SCAF for scale-aware 

cross-level fusion. 

3. Edge and Texture Enhancement: Incorporates Sobel edges and Laplacian pyramids 

to improve low-level structure perception and robustness in texture-rich scenarios. 

4. CCIoU Loss: Enhances box regression for dense, occluded, and rotated objects by 

simulating morphological alignment. 

Extensive experiments on VisDrone and DOTA-v1.5 confirm that DTS-YOLO sur-

passes YOLO11 in both accuracy and robustness while maintaining real-time inference. 

The remainder of this paper is organized as follows: Section 2 reviews related work; 

Section 3 presents our model architecture; Section 4 shows experiments; and Section 5 

concludes the paper. 

2 Related Work 

2.1 Single-Stage Object Detectors 

Single-stage detectors, represented by the YOLO series, are widely used for real-time 

detection due to their high efficiency. From YOLOv1 to YOLOv4 [2], and further to 

anchor-free models like YOLOv5 and YOLOX [3], performance has steadily improved. 

YOLO11 [4] enhances speed and accuracy via lightweight modules and refined post-

processing. However, its backbone struggles with small targets and detailed regions in 

dense scenes. To address this, DTS-YOLO integrates DREAM, a dynamic multi-

branch convolutional module with attention, to enhance feature expressiveness and lay 

the foundation for effective fusion and localization. 

2.2 Multi-Scale Feature Fusion 

Multi-scale fusion is essential for detecting objects of varying sizes. FPN and PANet 

use bidirectional paths to combine cross-layer features, while BiFPN [5] introduces 

weighted fusion to improve efficiency. However, YOLO11’s shallow fusion neglects 

inter-layer semantic gaps. Attention-based methods offer improvements but lack dy-

namic semantic integration. To this end, DTS-YOLO introduces SCAF, which com-

bines residual-aware semantic weighting with DREAM features to robustly integrate 

cross-scale information and improve performance in complex scenes. 

2.3 Edge and Texture Enhancement 

Edge and texture cues are critical for accurate boundary localization and small object 

detection. Traditional methods like Gabor, HOG, or HRNet [6] preserve details but are 
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computationally expensive. YOLO11, though efficient, underperforms in modeling 

fine textures. To compensate, DTS-YOLO incorporates lightweight Sobel edge and La-

placian pyramid modules [7], fusing them with backbone features before feeding into 

SCAF, thereby enhancing structural perception without significant overhead. 

2.4 IoU-Based Localization Loss 

IoU-based losses guide bounding box regression. While IoU and GIoU [8] rely on over-

lap, CIoU and DIoU [9] introduce distance and aspect penalties. However, YOLO11’s 

CIoU is unstable in dense, occluded, or rotated scenarios. Though EIoU [10] aims to 

improve convergence, gains are limited. DTS-YOLO adopts CCIoU, which adds a mor-

phological closure to CIoU, improving alignment in challenging scenes and enhancing 

robustness. 

3 Method 

3.1 Overview of DTS-YOLO 

The overall architecture of DTS-YOLO is shown in Fig. 1. The model enhances object 

detection through four key aspects: feature extraction, multi-scale fusion, detail percep-

tion, and precise localization. Compared to YOLO11, DTS-YOLO significantly im-

proves detection accuracy in complex scenes while maintaining real-time performance. 

It also demonstrates strong applicability in aerial surveillance, dense crowd analysis, 

and industrial defect detection by addressing limitations in feature representation, se-

mantic fusion, and boundary accuracy. 

DREAM.  

YOLO11's C3k2 module struggles with small targets and complex regions, especially 

under cluttered backgrounds. To address this, DREAM introduces a multi-branch di-

lated convolutional structure, combined with Layer Normalization (LN) [11] and Effi-

cient Channel Attention (ECA) [12], to reduce inter-branch variation and improve 

downstream feature fusion. By enhancing key feature representations, DREAM signif-

icantly boosts detection accuracy for small objects, providing richer inputs for subse-

quent fusion modules. 

DCFF.  

YOLO11’s shallow fusion strategy fails to capture cross-scale semantic relationships, 

limiting its multi-scale effectiveness. DCFF addresses this by introducing shallow fea-

tures to guide deep semantics in the bottom-up path, enabling deeper layers to incorpo-

rate edge and texture cues from earlier stages. To achieve robust fusion, DCFF employs 

IFFA and SCAF to enhance intra- and inter-layer interactions, improving the adapta-

bility and continuity of information flow across scales. 

 



Fig. 1. Overall architecture of the proposed DTS-YOLO single-stage detector. 

 

Edge and texture enhancement.  

YOLO11 struggles to capture fine details, particularly edges and textures, in complex 

or highly detailed scenes. To address this, DTS-YOLO incorporates Sobel edge extrac-

tion [6] and Laplacian pyramid decomposition [7] into the early backbone stages, en-

hancing multi-scale detail representation and improving the network’s sensitivity to 

low-level structural cues. 

CCIoU.  

In dense or occluded scenes, CIoU loss often fails to achieve precise alignment between 

predicted and ground-truth boxes. To address this, DTS-YOLO introduces CCIoU 

(Closed CIoU), which incorporates a morphological closure operation to fill small gaps 

and discontinuities. This enhances alignment accuracy, especially when box deviations 

are minor, and mitigates CIoU’s limitations in guiding fine-grained localization. 

3.2 DREAM: Dynamic Routing Enhanced Aggregation Module 

To overcome YOLO11’s limitations in multi-scale semantics and detailed feature mod-

eling, we design DREAM, a lightweight, dynamic, and reparameterizable aggregation 

module that replaces the C3k2 block and forms the core of DTS-YOLO’s semantic 

path. The structure of DREAM is shown in Fig. 2. 

Limitations of C3k2 module in YOLO11.  

YOLO11's C3k2 module employs two 3×3 convolutions with a residual connection [4], 

offering high inference efficiency due to its simplicity and low parameter count. How-

ever, its fixed receptive field, static fusion, and lack of multi-scale modeling hinder 

feature representation in the neck. While recent designs like RepHMS (e.g. MHAF-
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YOLO [13]) adopt heterogeneous dilated branches to improve scale awareness, they 

introduce high complexity. 

 

Fig. 2. Architecture of the DREAM module. Left: overall structure; Middle: GhostBlock (train-

ing); Right: GhostBlock (inference after reparameterization). 

Multi branch structure and GhostDWConv. 

To address fixed receptive fields and limited multi-scale modeling, the DREAM mod-

ule uses a multi-branch architecture with different kernel sizes. To reduce computa-

tional cost, Depthwise Separable Convolutions[14](DWConv) are employed. Despite 

its lightweight nature, DWConv retains strong feature expressiveness. 

To enhance efficiency, we use GhostDWConv, inspired by Ghost-Module, which 

generates ghost features using smaller kernels from the output of primary convolutions. 

This "main + ghost" strategy reduces redundancy and FLOPs while maintaining repre-

sentational capacity. The main branch uses a 1×1 convolution to expand channels, while 

ghost features are generated via lightweight DWConvs to enrich feature diversity. Ex-

periments show that a two-branch DREAM configuration reduces parameters by 

36.49%, 30.33%, and 4.41% at 1024, 512, and 256 channels, respectively, while 

slightly improving detection performance. 

Dynamic feature fusion 

To address the static fusion limitations of C3k2, DREAM incorporates Layer Normal-

ization (LN) [11], Efficient Channel Attention (ECA) [12], and a gated dynamic routing 

mechanism to enable adaptive feature fusion. 

ECA enhances fusion accuracy by emphasizing informative channels. It captures 

global context via Global Average Pooling (GAP), then applies a lightweight 1D con-

volution followed by a Sigmoid function to generate per-channel attention weights. The 

final output is computed as: 

  (1) 

Among them,  represents the Sigmoid function, used to control the weight be-

tween 0 and 1. 



 

Fig. 3. Structural comparison between the Ghost module and standard convolutional layer (re-

produced from [15]) 

Using ECA alone may cause training instability in multi-branch settings due to im-

balanced activation across branches. To mitigate this, we apply Layer Normalization 

(LN) before ECA to stabilize feature distribution. 

LN normalizes each channel to have zero mean and unit variance, ensuring con-

sistent statistics across feature maps and promoting gradient stability. Specifically, LN 

computes the mean and standard deviation of each feature map and normalizes as fol-

lows: 

  (2) 

Among them,  and  are respectively the mean and standard deviation, which  are 

extremely small constants to prevent zero division errors. 

The combination of LN and ECA allows adaptive channel weighting while preserv-

ing stable feature distributions, enhancing fusion robustness. 

To further improve adaptability, we introduce a gate mechanism that dynamically 

fuses residual and backbone branches based on input features: 

  (3) 

The final output  is the residual sum of weighted fused features and input fea-

tures: 

  (4) 

Among them,  denotes the gated feature map,  is the Sigmoid activa-

tion function, and  is the original input. 

Lightweight Swin Tiny branch.  

To enhance contextual modeling, DREAM integrates a lightweight Swin-Tiny branch 

at the end of its second path [16]. While conventional convolutions support multi-scale 

modeling, they are constrained by local receptive fields and struggle to capture global 

context—limiting their effectiveness in complex scenes. 
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Swin-Tiny enhances global context modeling via self-attention over shifted win-

dows. In DREAM, the output of the second branch is passed through GhostDWConv, 

then fed into Swin-Tiny. The input is partitioned into fixed windows, where self-atten-

tion captures local dependencies. A window shift follows to enable cross-window in-

teraction, allowing broader contextual aggregation. The resulting features are concate-

nated with the original input to enrich representation. 

Given its computational cost, Swin-Tiny is applied only at the end of the second 

branch, where large-scale context is most needed and convolution alone is insufficient 

for long-range modeling. Experiments confirm that this design achieves optimal per-

formance with minimal overhead. 

Structural reparameterization.  

During training, DREAM retains its multi-branch structure to enhance feature model-

ing. In inference, these branches are reparameterized into a single convolution via math-

ematically equivalent kernel fusion [16], significantly reducing computational com-

plexity. 

Let the three integral branches of a certain layer be fused by weighted summation: 

  (5) 

Among them,  is the input feature map,  representing the convolution operation. 

In the inference phase, we eliminate the multi-path structure by expanding all kernels 

to the same size via zero-padding and summing them: 

  (6) 

Among them,
 

 denotes zero-padding each kernel  a unified spatial size. 

The final fused kernel  enables a single convolution to perform the equivalent op-

eration of the original multi-branch design during inference. 

 

Fig. 4. Feature map conversion and reparameterization (reproduced from [16]) 

For structures with BatchNorm or LayerNorm, convolution and normalization layers 

can also be combined into an equivalent convolution kernel and bias term: 

  (7) 

Among them , , ,  are the scaling parameters, bias, mean, and variance of the 

normalization layer, respectively, which  are the original convolution kernel weights. 



 

Fig. 5. Architectural schematic of the SCAF and IFFA modules (left: SCAF, right: IFFA) 

3.3 Dynamic Cross Scale Feature Fusion (DCFF) 

In YOLO11, feature fusion typically relies on naive concatenation or summation, which 

suffers from scale inconsistency and semantic misalignment. This can lead to key in-

formation loss and impaired performance on small objects. 

To address these issues, we propose DCFF, which integrates SCAF, IFFA, and new 

top-down/bottom-up connections to enhance cross-scale semantic fusion and improve 

small object detection. To compensate for detail loss in high-level features, DCFF in-

jects low-level cues—especially edges and contours—into deeper layers, improving 

both localization and classification accuracy. 

We further fuse outputs from the backbone (containing rich high-level semantics) 

with refined representations from DREAM, which applies reparameterization to en-

hance feature selectivity. This complementary fusion strengthens the final feature map 

by combining raw contextual richness with dynamically optimized features. 

SCAF（Semantic-aware Cross-scale Attention Fusion） 

To address semantic misalignment in traditional multi-scale fusion, we propose SCAF, 

a refined module designed to align and enhance features across different resolutions. 

Rather than using naive concatenation—which often leads to redundancy and poor 

integration of low-level spatial and high-level semantic features—SCAF employs a 

multi-stage attention-based fusion pipeline: 

1. LN + ECA: Normalize channel distributions with Layer Normalization (LN), then 

apply Efficient Channel Attention (ECA) [12] to highlight informative features. 

2. GAP + FC + SiLU: Extract global semantic cues via Global Average Pooling (GAP), 

followed by a fully connected layer and SiLU activation [18] to enhance feature ex-

pression. 

3. Channel weighting via Gate: Use a learnable scalar α\alphaα and a Gate mechanism 

to adaptively control channel importance. 

4. GhostConv + CA: Employ GhostConv for efficient feature extraction, and Channel 

Attention (CA) [30] to further refine channel-wise focus. ECA is placed at the input 

and CA at the output to balance local detail and global relevance. 

By integrating hierarchical attention and dynamic weighting, SCAF improves fea-

ture expressiveness in cross-scale fusion, reduces redundancy, and outperforms tradi-

tional concatenation in efficiency and detection accuracy. 



 

 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

IFFA（Intra-layer Feature Fusion Attention）.  

To improve feature integration before SCAF, we introduce IFFA, which adaptively 

fuses same-layer outputs from the backbone and DREAM modules. 

These two sources contain distinct information: the backbone provides high-level 

semantics (e.g., object category), while DREAM refines low-level details (e.g., edges, 

small targets) via dynamic reparameterization. Direct fusion can result in redundancy 

or poor information alignment. IFFA applies weighted attention to balance their contri-

butions and improve cross-source consistency. 

Unlike typical pipelines using both BatchNorm (BN) and LayerNorm (LN) sequen-

tially, which may cause over-adjustment and unstable flow, we apply LN+ECA for at-

tention, followed by BN to reduce covariance shift and stabilize training. 

Given that DREAM features are already highly expressive, applying nonlinear acti-

vations like SiLU may hinder rather than help. Thus, we omit SiLU in the final output 

fusion to preserve essential details. 

Experiments show that integrating IFFA before SCAF improves information quality 

and model performance with minimal parameter overhead. 

DCFF (Dynamic Cross Scale Feature Fusion) significantly improves the perfor-

mance of the DTS-YOLO model in complex environments through SCAF, IFFA, and 

innovative new connection methods, especially achieving excellent performance in 

small and multi-scale object detection. Through this new feature fusion strategy, DTS-

YOLO achieves a good balance between detection accuracy and inference speed. 

Table 1. Results of adding SCAF and IFFA on VisDrone2019 test set 

Model Precision Recall mAP@50 mAP@50-95 

YOLO11n 45 33.2 32.3 19.2 

YOLO11n+SCAF 46.1 33.7 33.1 19.5 

YOLO11n+SCAF+IFFA 46.2 33.9 33.3 19.7 

Fig. 6. Comparison of attention heatmaps. From left to right: original image, YOLO11 (base-

line), and YOLO11+SCAF(with cross-scale fusion). 

   

   

   



3.4 Edge and Texture Enhancement 

Traditional YOLO architectures tend to prioritize global semantics, often neglecting 

fine-grained details of small objects—especially in complex scenes with large targets 

and cluttered backgrounds. To address this limitation in YOLO11, we embed the Sobel 

operator [6] and Laplacian pyramid [7] into the backbone to enhance local edge and 

texture features, improving robustness and detection accuracy. 

Sobel operator 

The Sobel operator enhances edge features such as contours and boundaries, thereby 

improving small object recognition. It uses two convolutional kernels to compute hor-

izontal and vertical gradients. 

While C3k2 outputs high-level semantics, it often lacks spatial detail due to repeated 

transformations. Applying Sobel directly on C3k2 is suboptimal. Instead, we apply So-

bel to early convolutional outputs, where spatial details are preserved—especially ben-

eficial for small object boundaries. Experiments confirm that fusing low-level edge 

maps with C3k2 features yields better detection performance. 

 

    

    

    

Fig. 7. Comparison of DTS-YOLO heatmaps with and without edge-texture enhancement. 

From left to right: original image, DTS-YOLO (without enhancement), DTS-YOLO (with en-

hancement), and difference map (highlighting the enhancement effect). 

Laplacian pyramid 

To improve multi-scale perception in DTS-YOLO, we integrate parallel Laplacian pyr-

amids into the backbone. These pyramids decompose images into scale-specific repre-

sentations, particularly enhancing edge and texture cues for small targets. 

Instead of applying it to high-level backbone outputs, where detail may be lost, we 

directly process the original image to preserve spatial details across scales. This strategy 

improves edge precision and small object sensitivity with minimal overhead. 

Combined with Sobel-based gradient enhancement, this non-parametric module ena-

bles fine-grained spatial modeling early in the backbone, complementing other 
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components in DTS-YOLO. Experiments confirm its effectiveness in enhancing ro-

bustness and accuracy in complex scenes. 

Closed Complete IoU(CCIoU).  

Localization loss plays a critical role in bounding box regression. While CIoU [9] in-

corporates center distance and aspect ratio penalties, it lacks explicit edge alignment 

constraints. In dense, occluded, or blurred scenes, CIoU provides weak guidance when 

predicted boxes are close to ground truth. 

To address this, we propose CCIoU, which integrates a morphological closing oper-

ation into the CIoU framework to refine box alignment. Closing, composed of dilation 

followed by erosion, fills small gaps and smooths boundaries, producing more complete 

object coverage. 

The specific calculation steps of CCIoU are as follows: 

1. Inflation operation: Inflate the predicted box ( ) to increase its size by a certain 

proportion. The expansion ratio is controlled by the hyperparameter CCIoU_ratio 

and the width and height of the prediction box: 

  (8) 

Among them, ，  

2. Calculate the intersection area between the expansion box and GT( ): 

  (9) 

Among them, 

The coordinates  of  and  represent the top left and 

bottom right corners of the box 

The coordinates  are  and  

3. Calculate the union area after closure: 

  (10) 

4. By calculating the intersection to union ratio between the expansion box and GT, 

obtain IoU_closing: 

  (11) 



5. Calculate closure loss: 

  (12) 

6. The final CCIoU loss is the weighted sum of CIoU loss and closure loss: 

  (13) 

Among them,  is a hyperparameter used to balance CIoU and closure loss 

By introducing closure operations, CCIoU has improved boundary matching, en-

hanced detection accuracy for small targets, and improved localization accuracy, mak-

ing the contact between boxes closer. 

4 Experiments 

4.1 Datasets 

In this study, we used two publicly available object detection datasets: VisDrone2019 

[20] and DOTAv1.5 [21]. 

1. VisDrone2019 dataset 

A large-scale drone-captured dataset featuring complex aerial scenes and 10 object 

classes, including airplanes, ships, storage tanks, sports fields, and large vehicles. We 

follow the official split: 

o Train: 5462 images, 42,168 annotations 

o Val: 1143 images, 9357 annotations 

o Test: Contains 1091 images, 8883 annotations 

2. DOTAv1.5 dataset (HBB format) 

To assess generalization on remote sensing tasks, we use DOTA-v1.5. Originally la-

beled with oriented bounding boxes (OBB), we convert the data to horizontal bounding 

boxes (HBB) for compatibility with mainstream detectors. It includes 16 object cate-

gories: 

o Train: 5011 images, 22,592 annotations 

o Val: 1449 images, 6244 annotations 

4.2 Evaluation Metrics 

We adopt standard object detection metrics to comprehensively evaluate model perfor-

mance: 

1. Precision 

The proportion of predicted positives that are true positives: 
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  (14) 

Among them, TP is True Positive and FP is False Positive. 

2. Recall rate 

The proportion of actual positives correctly predicted: 

  (15) 

Among them, FN is a false negative example. 

3. mAP@50  (mean Average Precision at IoU=0.5) 

Mean Average Precision at an IoU threshold of 0.5. It reflects detection accuracy per 

class, averaged across all categories. 

4. mAP@50-95  (mean Average Precision at IoU=0.5 to IoU=0.95) 

Mean Average Precision averaged over multiple IoU thresholds (from 0.5 to 0.95 

with step 0.05). It provides a more robust assessment across varying levels of localiza-

tion precision, especially for small objects and complex scenes. 

These metrics jointly quantify model accuracy, localization robustness, and detec-

tion quality under diverse conditions. 

4.3 Implementation Details 

Our experiments are conducted on the Ultralytics framework using an NVIDIA RTX 

3090 GPU and an Intel Xeon Gold 6330 CPU. Training runs for 300 epochs with cosine 

annealing and warmup scheduling. We adopt the Adam optimizer with momentum, use 

L2 regularization, and enable mixed precision training. Gradient accumulation simu-

lates a batch size of 64. 

We use Ultralytics’ default data augmentation settings with 640×640 input resolu-

tion, disabling mosaic augmentation during the final 15 epochs for training stability. 

4.4 Ablation Studies 

We conduct ablation experiments on the VisDrone2019 test set to evaluate the contri-

butions of individual modules. As edge and texture enhancement modules rely on 

SCAF for integration, and shallow-to-deep guidance is embedded in the neck, they are 

not ablated separately. 

To ensure reliability, we report representative results consistent across multiple runs. 

Table 2 shows that each module contributes positively, and the full DTS-YOLO con-

figuration achieves the best performance in all metrics. 



Table 2. Results of ablation experiments on VisDrone2019 test set 

Model Precision Recall mAP@50 mAP@50-95 

YOLO11n 45 33.2 32.3 19.2 

YOLO11n+DCFF 46.2 33.9 33.3 19.7 

YOLO11n+DREAM 45.7 33.7 33.1 19.5 

YOLO11n+CCIoU 45.1 33.8 32.7 19.4 

DTS-YOLO 46.4 34.1 33.7 20.1 

The results validate the effectiveness of each module and demonstrate that our inte-

grated design significantly enhances robustness and detection performance. 

4.5 Comparison with State-of-the-Art 

We compare DTS-YOLOn with several state-of-the-art lightweight detectors on Vis-

Drone2019 and DOTA-v1.5 (HBB format). 

VisDrone2019 Results  

As shown in Table 3, DTS-YOLOn achieves superior performance over YOLOv8n, 

RMVAD-YOLOn, YOLO11n, and other compact detectors. It reaches 33.7% 

mAP@50 and 20.1% mAP@50–95, demonstrating strong robustness in aerial scenes 

with small and multi-scale targets. 

Table 3. Detection results on VisDrone2019 test set 

Model Precision Recall mAP@50 mAP@50-95 

YOLOv8n[22] 37.9 28.8 26.3 14.5 

YOLO-MMS[25] 51 40 27.16 - 

RMVAD-YOLOn[22] 40.8 31 28.8 16.2 

PG-YOLO[25] 38 43 31.6 - 

BGF-YOLOv10[23] - - 32 - 

YOLO11n 45 33.2 32.3 19.6 

YOLO-ERF[24] - - 33.4 17.6 

DTS-YOLOn 46.4 34.1 33.7 20.1 

DOTA-v1.5-HBB comparative experiment 

To assess generalization in remote sensing, we evaluate on DOTA-v1.5 (HBB). Alt-

hough converting from OBB introduces localization simplification, it aligns with stand-

ard horizontal box constraints for real-world deployment. 

Table 4. Detection results on DOTA-v1.5-HBB validation set 

Model Precision Recall mAP@50 mAP@50-95 
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ASF-YOLO[27] - - 61.3 38.9 

TO-YOLOX[29] - - 63.02 - 

YOLOv7-tiny[26] - - 64.9 35.5 

YOLOv8n[26] - - 66.9 39.0 

YOLO11n 76.9 63.2 68.9 45.8 

DCEF2-YOLO[28] - - 69.5 45.8 

DTS-YOLOn 78.1 64.0 70.2 46.1 

As shown in Table 4, DTS-YOLOn achieves 70.2% mAP@50 and 46.1% 

mAP@50–95, outperforming all baselines including YOLO11n, YOLOv8n, and 

DCEF2-YOLO. It also shows superior precision and recall, confirming its robustness 

in complex scenes. 

5 Conclusion 

We propose an efficient single-stage target detector, TDS-YOLO, which improves the 

detection accuracy and robustness while maintaining a lightweight structure, and solves 

the limitations in aspects such as L-feature representation, multi-scale fusion and posi-

tioning accuracy. 

Extensive experiments on VisDrone2019 and DOTA-v1.5-HBB demonstrate DTS-

YOLO’s superior performance in detecting small objects and handling dense or com-

plex textures, consistently outperforming the YOLO11 baseline. 

Despite these achievements, challenges remain. Future work will focus on enhancing 

robustness under extreme conditions and improving the efficiency of multi-scale fu-

sion. We also aim to extend DTS-YOLO to real-world applications such as autonomous 

driving and UAV-based monitoring to further assess its adaptability. 

 

  

   

 
 

 

   

Fig. 8. Comparison of detection results among ground truth, YOLO11, and DTS-YOLO. From 

left to right: ground truth annotations, YOLO11 predictions, and DTS-YOLO predictions. 
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