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Abstract. Current point cloud object detection methods rely on expensive man-

ual annotation. Utilizing contrastive learning for self-supervised pre-training on 

unlabeled large-scale point clouds can reduce annotation costs and improve 

model performance. However, selecting effective features for instance discrimi-

nation is crucial for contrastive learning. Previous methods have constructed in-

stances for pre-training at different levels, such as points, proposals, and scenes, 

but the features of these instances differ from the objects to be detected. Consid-

ering that instance discrimination tasks based on object-level features align with 

downstream object detection tasks, we propose a novel and efficient self-super-

vised point cloud object detection pre-training framework called ObjectContrast. 

To learn more effective point cloud representations, this framework constructs 

two self-supervised pre-training modules: object-level instance discrimination 

contrast (ObCo) and bounding box geometric contrast prediction (BoxCo). ObCo 

drives the model to learn general object representations to locate object fore-

grounds and determine categories. BoxCo enhances the model's geometric per-

ception capabilities regarding the dimension and orientation of 3D bounding 

boxes. Extensive experiments on various detectors and datasets validate the effi-

ciency and transferability of ObjectContrast. Compared with the state-of-the-art 

self-supervised pre-training methods, ObjectContrast demonstrates superior per-

formance. 

Keywords: Self-supervised, Point Cloud, Object Detection. 

1 Introduction 

Please note that the first paragraph of a section or subsection is not indented. The first 

paragraphs that follows a table, figure, equation etc. does not have an indent, either. 

Point cloud object detection is crucial for understanding 3D scenes and has attracted 

much attention in the fields of autonomous driving and robotics [1]. However, existing 

supervised learning-based methods for point cloud object detection rely on expensive 

and time-consuming manually annotated data, which limits their practical applications. 

In contrast, raw point cloud data is readily available, and pre-training object detection 
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models using large-scale unlabeled point clouds have shown great potential and re-

search value. Self-supervised pre-training aims to learn invariant representation from 

large-scale unlabeled data and transfer it to downstream tasks, thereby significantly en-

hancing model performance and reducing data annotation costs. By designing specific 

pretext tasks, self-supervised learning (SSL) could capture general feature representa-

tions from unlabeled data and has achieved great success in fields such as natural lan-

guage processing and computer vision [2,3]. 

 

Fig. 1. Constructing different levels of contrast pairs for instance discrimination. Point-level [4] 

excessively emphasizes fine-grained details and cannot construct comprehensive object features. 

Proposal-level [5] randomly selects contrast regions, similarly failing to cover complete and ac-

curate object features. Object-level directly utilizes object instances for discrimination, achieving 

more efficient learning of object representations. The mAP of the object-level is 3.0% higher 

than the point-level and 1.6% higher than the proposal-level on average. 

Recently, significant progress has been made in SSL for point clouds, particularly 

through contrastive learning for model pre-training. Contrastive learning designs spe-

cific instance discrimination tasks to bring features of the same instance closer and push 

features of different instances apart, thereby learning and distinguishing general repre-

sentation. Therefore, designing appropriate instance discrimination tasks is crucial for 

self-supervised pre-training. Existing SSL methods construct instances for discrimina-

tion at different levels, such as points [4], proposals [5], supervoxels [6], and scenes 

[7]. However, there is a certain gap between these instance features and the real object 

features. Point-level methods focus too much on fine-grained features and lack a holis-

tic object description; scene-level methods are too coarse and fail to accurately locate 

objects; supervoxel-level and proposal-level methods select local regions of the point 

clouds as instances, but the randomly generated regions could not cover complete and 

accurate object instances. As a result, these methods usually need to construct a large 

number of contrast pairs to learn general representations from background features. Due 

to the difference between the pre-training instance discrimination tasks and downstream 

object detection tasks, we rethink the impact of instance features on the data-efficient 
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transfer learning. We pre-train PV-RCNN on Waymo and transfer to KITTI with dif-

ferent label ratios in fine-tuning, as shown in Figure 1, by comparison, directly using 

object instances for discrimination can more effectively learn object-level representa-

tions, facilitating data-efficient transfer learning. 

Contrastive learning first pre-trains the models through instance discrimination and 

then fine-tunes the models at downstream tasks. Given that object-level features differ 

from point-level, region-level, or scene-level features, the feature gap between up-

stream and downstream tasks could impair the data-efficient transfer learning. Based 

on the above analysis, we propose an efficient self-supervised framework called Ob-

jectContrast. The framework uses object-level features for Contrastive learning, bridg-

ing the feature gap between pre-training and fine-tuning tasks. Specifically, ObjectCon-

trast learns object-level point cloud representations through two modules: class-related 

object-level instance discrimination contrast (ObCo) and boundTheing box geometric 

contrast prediction (BoxCo), thereby achieving data-efficient transfer for object detec-

tion task. Firstly, since the number of object classes is very limited and objects often 

belong to the same class, the contrastive loss constructed by InfoNCE [8] can cause 

negative pairs of the same class to be pushed apart, which is detrimental to model con-

vergence. ObCo addresses this by constructing a class-related object instance contras-

tive loss, treating augmented instances of the same object as positive pairs and other 

class objects and backgrounds as negative pairs, aiding the models in distinguishing 

foreground and class representations. Secondly, besides locating objects and determin-

ing classes, the object detection task also requires accurate prediction of 3D bounding 

boxes. BoxCo enhances the point cloud objects through random scaling and rotation, 

and by combining the augmented features with the original features, predicts scaling 

ratios and rotation angles to enhance the model's geometric prediction and perception 

capabilities. We conduct extensive experiments on the public datasets Waymo [9], 

ONCE [10], KITTI [11], as well as an autonomous driving engineering dataset, vali-

dating popular point cloud object detectors such as PV-RCNN [12], CenterPoint [13], 

and SECOND [14]. We compare ObjectContrast with point-level, region-level, and 

scene-level methods, the experimental results demonstrate the efficiency and superior-

ity of the proposed self-supervised pre-training methods. 

The main contributions of this work include the following three aspects: 

• We rethink the impact of instance features on data-efficient transfer learning and 

propose a framework that utilizes object-level features for instance discrimination to 

bridge the feature gap between pre-training and fine-tuning tasks. 

• We design two self-supervised tasks for object detection to enhance the classifica-

tion and bounding box prediction capabilities of pre-trained models, including class-

related object instance discrimination contrast and bounding box geometric contrast 

prediction. 

• Our method achieves state-of-the-art performance compared to other self-supervised 

pre-training methods. Extensive experiments demonstrate the superior data-efficient 

transfer learning capabilities of the proposed method. 



 

Fig. 2. Overview of the proposed ObjectContrast framework. The framework consists of four 

main components: data generation and augmentation, feature extraction and matching, object-

level instance discrimination, and bounding box geometry prediction. Sample several objects O 

and a scene S. O undergoes rotation and scaling augmentation to obtain O', S combine with O to 

form S1, and then combine with O' to form S2. S1 and S2 are processed through a shared backbone 

network to obtain BEV features B1 and B2, ultimately extracting object-level features F1 and F2. 

The models are pre-trained through two self-supervised pretext tasks: ObCo and BoxCo, to learn 

object-level representations, facilitating the transfer of the pre-trained model to object detection. 

2 Related Work 

2.1 3D Object Detection in Point Clouds 

Please note that the first paragraph of a section or subsection is not indented. The first 

paragraphs that follows a table, figure, equation etc. does not have an indent, either. 

With the rapid development of deep learning and the continuous emergence of large-

scale datasets, 3D object detection algorithms based on point clouds have also prolifer-

ated. Inspired by research in the image domain, the point cloud domain has successively 

proposed anchor-based methods [14,15], center-based methods [13], and query-based 

methods [16]. Compared to images, point clouds are characterized by sparsity and dis-

order, necessitating encoding them into a structured form before feature extraction. Ac-

cording to the different coding schemes, the point cloud object detection methods can 

be divided into point-based [17], voxel-based [18], point-voxel hybrid methods [12], 

and graph-based [19]. Although point cloud object detection algorithms have made sig-

nificant progress, the aforementioned methods usually rely on a large amount of labeled 

data for supervised learning. Therefore, it is crucial to reduce the dependency of detec-

tors on labeled data by using self-supervised methods. Following the first principle 

thinking, object detection can be divided into two fundamental sub-tasks: object clas-

sification and bounding box prediction. We construct two self-supervised pretext tasks, 

ObCo and BoxCo, to enhance the pre-trained model's classification and geometric pre-

diction capabilities, respectively. ObCo enhances the model's ability to distinguish 
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between foreground and background representations and learn inter-class representa-

tions through contrastive learning. BoxCo improves the geometric perception of the 

models by predicting rotation and scaling. 

2.2 Contrastive Learning for Self-Supervised Pre-training 

In recent years, SSL has developed rapidly and has become an important research di-

rection, especially with the emergence of many research achievements based on con-

trastive learning discriminative methods [20,21]. In the image domain, [22,23] extract 

the overall features of images as instances for discrimination, demonstrating excellent 

performance in classification tasks. As deep learning tasks become more complex, in-

stances are designed with increasing sophistication. Considering that object detection 

tasks require predicting the position and size of bounding boxes, [24,25] construct ob-

ject-level instance discrimination tasks to learn more precise object representations. In 

the point cloud domain, [7,26] treat the overall features of point clouds as instances for 

discrimination, which is relatively coarse and struggles to learn fine-grained object-

level representations from scene-level features; [4,27] achieve point-level instance dis-

crimination, which focuses too much on fragmented point-level features, ignoring the 

relevance of overall object features; [5,6,28,29,30] achieve contrastive learning by con-

structing super-voxels, proposals, and other region-level instances, which requires con-

structing a large number of contrast pairs to learn general representations from back-

ground features. We observe that existing contrastive learning pre-training methods 

construct instance discrimination tasks using point-level, scene-level, or region-level 

features, but there is a significant feature gap between these instances and the objects 

to be detected in downstream tasks. This prompts us to rethink the impact of instance 

design on transfer learning. Therefore, we propose an object-level point cloud instance 

discrimination method to bridge the feature gap between pre-training and fine-tuning, 

facilitating a smoother transfer of the pre-trained models to object detection task. 

3 Methodology 

SSL improves the performance of detectors and reduces reliance on labeled data 

through pre-training and fine-tuning. However, previous self-supervised contrastive 

learning methods exhibit discrepancies between pre-training and fine-tuning tasks. As 

shown in Figure 2, we propose an efficient self-supervised pre-training framework for 

point cloud object detection to unify the granularity of the instance features between 

pre-training and fine-tuning, bridge the feature gap between upstream and downstream 

tasks, and promote data-efficient transfer learning. 

3.1 Data Generation and Augmentation 

Existing self-supervised pre-training methods for point clouds construct region-level 

instances that lack explicit semantic information, introducing a large number of back-

ground features as contrast pairs. For example, [5] generates proposals through farthest 



point sampling, and [28] obtains regions via over-segmentation of point clouds, requir-

ing the construction of 4096 pairs of positive and negative samples for each frame of 

point clouds. As shown in Figure 3, we obtain pseudo-labels through processes such as 

ground removal, clustering, and fitting 3D boxes to construct a point cloud object da-

tabase, from which object-level instances are sampled during pre-training. The method 

of generating object-level instances described above has the following main ad-

vantages: first, the process is unsupervised and can be automated through rule-based 

methods; second, the generated point cloud objects have explicit semantic information, 

which facilitates the model in learning comprehensive object-level representations. 

To avoid the influence of unknown point cloud objects in the scene, it is necessary 

to collect empty point cloud scenes that do not contain any point cloud objects, thereby 

constructing a point cloud scene database. For public datasets, we remove the point 

clouds within the annotated boxes for our experiments. For the proposed engineering 

dataset, we collected a large number of empty point cloud scenes during periods of low 

traffic flow. During pre-training, scenes S and objects O = {o1, o2, … , on} are sampled 

from the point cloud database. The objects O are augmented through rotation and scal-

ing to obtain O' = {o1', o2', … , on'}, where the rotation angles are Δr = {Δr1, Δr2, …, 

Δrn} and the scaling factors are Δd = {Δd1, Δd2, …, Δdn}. S and O are combined to form 

S1, and S and O' are combined to form S2. To ensure the most realistic point clouds 

possible, the positions P = {p1, p2, … , pn} of the point cloud objects in S1 and S2 are 

kept as they were during collection. 

 

Fig. 3. Generate pseudo-labels of point cloud objects. (a) Original point cloud (b) Ground re-

moval (c) Clustering (d) 3D box fitting. 

3.2 Feature Extraction and Matching 

The point cloud S1 and S2 are fed into the pre-trained model to obtain BEV features B1 

∈ ℝC×H×W and B2 ∈ ℝC×H×W, respectively. After positional matching and filtering, the 

objects features F = {f1, f2, … , fn} and F' = {f1', f2', … , fn'} are obtained: 

 𝐹1 = ϕ(𝑔𝑞(𝑆1), 𝑃),  𝐹2 = ϕ(𝑔𝑘(𝑆2), 𝑃) (1) 
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where gq and gk are backbone networks with shared parameters, and the parameters of 

gk are frozen, not involved in the backpropagation process. ϕ is the object feature selec-

tion function, which extracts features F1 and F2 based on the position P of the point 

cloud objects in the scene. 

In previous methods of contrastive learning for images and point clouds, the dis-

crimination capability of the pre-trained models is improved by creating large-scale 

contrast pairs. However, in this study, the sparsity of point cloud object instances re-

quires the extraction of background features as negative pairs to help the models better 

distinguish between foreground and background. We use similar feature mining to se-

lect hard samples in background features and enhance the efficiency of negative pair 

discrimination [31]. First, following [13], the heatmap ground truth Y ∈ [0, 1]K×H×W is 

constructed, where K is the number of point cloud object categories, and H×W is the 

feature map size. The ground truth of the heatmap for the category k is Yk ∈ [0, 1]H×W. 

The meta-feature Ek ∈ ℝC for each category is obtained by weighted averaging: 

 𝐸𝑘 =
∑ 𝑌𝑘(𝑖,𝑗)𝐻,𝑊

𝑖,𝑗 ⋅𝐵2(𝑖,𝑗)

∑ 𝑌𝑘(𝑖,𝑗)𝐻,𝑊
𝑖,𝑗

 for 𝑌𝑘(𝑖, 𝑗) = 1 (2) 

Background features are selected from B = {B2(i, j) | Yk (i, j) ≠ 1, k = 1, …, K} as 

negative pairs. Since the point cloud scene S is empty, the ground truth category of B 

must be background, denoted as ∅, meaning it doesn't belong to any category. We use 

cosine similarity to select background features U = {u1, u2, …, um}. 

 𝑈 = top(sim(𝐸𝑘 , 𝐵)),  𝑘 = 1, … , 𝐾 (3) 

where sim is the cosine similarity function, and top represents selecting the top M back-

ground features with the highest similarity to the category meta-features. 

3.3 Object Instance Discrimination 

Points and proposals often lack explicit semantic significance, whereas object-level in-

stances exhibit a strong correlation with their corresponding categories. By using 

pseudo-labels, the object category of point clouds can be obtained. Within a batch of 

instances, there are multiple objects of the same category, and treating all other objects 

as negative pairs besides the instance itself would cause the same category objects to 

repel each other. Conversely, treating objects with the same category label as positive 

pairs can introduce noise due to the errors in pseudo-labels. Therefore, due to the lim-

ited number of categories and the presence of label errors, conventional contrastive 

learning loss functions would treat other objects of the same category as negative pairs, 

which hinders model convergence. We aim to cluster object instances of the same cat-

egory together and separate instances of different categories. To achieve this, we pro-

pose ObCo, which effectively utilizes category prior information while mitigating the 

impact of incorrect category pseudo-labels. 

The instances participating in contrastive learning include object features F1 = {f1, 

f2, … , fn}, F2 = {f1', f2', … , fn'}, and background features U = {u1, u2, … , um}, with the 

object category set C = {c1, c2, … , ck, ∅}, where c(fi) denotes the category pseudo-label 



for the object feature fi, and all elements in U belong to the category label ∅. Following 

the idea from [23] of viewing contrastive learning as a dictionary look-up task, we de-

fine the query instance set as Q = F1 and the key instance set as K = F2 ∪ U. For a query 

instance fi in Q, the positive pair is defined as f+ = fi' where fi' ∈ F2, and the negative 

pair set is defined as F- = {fj ∈ F2 | c(fj) ≠ c(fi)} ∪ D. The ObCo loss ℒ𝑜𝑏𝑐𝑜 for all query 

instances is defined as: 

 ℒ𝑜𝑏𝑐𝑜  =  −∑_  
fq∈Q

log (
exp(fq⋅f+/τ)

exp(fq⋅f+/τ)+∑ exp(𝑓𝑞⋅𝑓−/𝜏)f−∈F−

)) (4) 

where τ is the temperature coefficient, used to control the model's ability to distinguish 

hard negative samples [32]. In Figure 4, including {fj ∈ F2 | c(fj) ≠ c(fi)} as negative 

pairs helps the models to differentiate between object categories, while including D as 

negative pairs helps the model to separate foreground from background. {fj ∈ F2 | c(fj) 

= c(fi)} represents the other objects in the same category, which are excluded from in-

stance discrimination to avoid introducing noise that could disrupt model convergence. 

 

Fig. 4. The class-related object-level instance discrimination contrast 

3.4 Bounding Box Geometric Prediction 

In object detection task, it is essential not only to accurately identify and classify fore-

ground objects in a scene but also to predict precise object bounding boxes. This re-

quires the models to have geometric awareness of the object's dimension and orienta-

tion. We propose BoxCo, which directly constructs object-level geometric prediction 

tasks to efficiently learn object-level geometric representations. Compared to [27], 

which uses point-level features to predict scene-level geometric information, BoxCo's 

design of using object-level features to predict object-level geometric information is 

more reasonable and more easily transferable to downstream object detection task. 

We do not treat the augmented object O' as the ground truth for prediction, because 

there exists a distributional difference in the absolute values of the bounding box data 
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between O' and the source object O. Predicting O' directly through supervised learning 

could negatively impact the performance of the models in the actual data distribution 

[33]. BoxCo uses the relative differences in orientation and dimension, Δr and Δd, be-

tween O and O' as the ground truth for self-supervised learning. This approach makes 

the models more sensitive to differences in orientation and dimension without changing 

the distribution of the real point cloud data. 

BoxCo first connects the object features corresponding to F1 and F2 to obtain the 

joint features, and then regresses the predicted values through a fully connected layer. 

Δr and Δd are the rotation angle and scaling factor during data augmentation. Using Δr 

and Δd as ground truths guides the model to learn object-level geometric representa-

tions, the final BoxCo loss ℒ𝑏𝑜𝑥𝑐𝑜 as: 

 ℒ𝑏𝑜𝑥𝑐𝑜 = MSE(MLP([𝐹1, 𝐹2]),Δ𝑟) + MSE(MLP([𝐹1, 𝐹2]),Δ𝑑) (5) 

where MLP denotes the fully connected layer, and MSE represents the mean squared 

error. 

3.5 Self-supervised Pre-training Losses 

We design a specific self-supervised loss function for object detection tasks to enable 

the pre-trained models to be more smoothly transferred to downstream tasks. First, con-

sidering that the ultimate goal of object detection tasks is to locate objects and predict 

categories, our proposed ObCo emphasizes both intra-class differentiation and fore-

ground-background differentiation. Second, object detection tasks require accurate pre-

diction of bounding box parameters, and BoxCo enhances the pre-train model's geo-

metric awareness of bounding box dimension and orientation. The total losses of the 

proposed ObjectContrast self-supervised pre-training framework are: 

 ℒ =  𝛼ℒ𝑜𝑏𝑐𝑜  +  𝛽ℒ𝑏𝑜𝑥𝑐𝑜 (6) 

α and β are weighting parameters used to balance the relative importance of the two 

losses. 

4 Experiment 

4.1 Datasets and Evaluation Metrics 

Waymo Open Dataset. [9] contains a training set with 798 sequences and a valida-

tion set with 202 sequences. We use the entire point clouds from the training set without 

the labels for self-supervised pre-training. 

KITTI Dataset. [11] contains 7,481 annotated point cloud scenes, with 3,712 scenes 

in the training set and 3,769 scenes in the validation set. We use the mean average 

precision (mAP) under forty recall thresholds (R40) as the evaluation metric for the 

detectors. 

ONCE Dataset. [10] is an autonomous driving dataset proposed for semi/self-su-

pervised learning, with the evaluation metric being orientation-aware AP. The labeled 



data are split into a training set of 5k scenes and a validation set of 3k scenes. The 

unlabeled data are divided into 3 subsets: Usmall, Umedium, and Ularge, having 100k, 500k, 

and 1M scenes, respectively. We use the Usmall to pre-train models to ensure consistency 

with previous research. 

Bus Engineering Dataset. To demonstrate the applicability of ObjectContrast, we 

also conduct experiments on a real-world autonomous driving engineering dataset, 

which is available upon request. The dataset is collected by an autonomous driving bus 

equipped with 4 LiDAR sensors. The annotation format and evaluation metrics adhere 

to those of KITTI. The dataset is divided into a training set with 10k scenes, a test set 

with 4k scenes, and an additional 50k unlabeled point cloud scenes for self-supervised 

pre-training. 

4.2 Implementation Details 

To evaluate the proposed ObjectContrast, we follow the previous experimental proto-

col, primarily evaluating the transfer learning ability and the data-efficient learning 

ability. We pre-train PV-RCNN on unlabeled point clouds from the Waymo Open Da-

taset, then fine-tune the detector on the KITTI dataset. We compare the performance 

with scene-level, point-level, and region-level self-supervised pre-training methods to 

evaluate the data-efficient transfer learning ability. Additionally, we pre-train Center-

Point and SECOND on the Usmall unannotated subset from the ONCE dataset and then 

fine-tuned the detectors on the ONCE training set. Similarly, we pre-train CenterPoint 

on unlabeled point clouds from the Bus Engineering Dataset and then fine-tune the 

detector on the training set to evaluate the data-efficient learning ability. 

The hyperparameter settings for ObjectContrast are as follows, the total number of 

positive/negative contrast pairs is 4096, the upper limit for point cloud object instance 

sampling is 100, and the remaining instances are supplemented with background fea-

tures. The weighting parameters are set as α = β = 1, the temperature parameter for  

ℒ𝑜𝑏𝑐𝑜 is set to 0.1, the rotation angle Δr ∈ (-π/2, π/2), and the scaling factor Δd ∈ (0.85, 

1.15). Other experimental hyperparameters follow [5,28,34]. 

4.3 Data-efficient Transfer Learning 

We pre-train the backbone network on Waymo and fine-tune it on KITTI to evaluate 

the data-efficient learning performance of ObjectContrast. Using PV-RCNN as the 

point cloud object detector, we fine-tune it with 20% and 100% of the annotated data. 

As Table 1 shows, the experimental results indicate that ObjectContrast consistently 

outperforms scene-level, point-level, and region-level self-supervised pre-training 

methods. This demonstrates that object-level pre-trained models can more smoothly 

transfer to downstream object detection tasks. We observe that region-level methods 

generally perform better than scene-level and point-level methods. Since point cloud 

objects can be considered as more precise region-level proposals, this highlights that 

constructing instance discrimination tasks closely aligned with object features is bene-

ficial for transferring pre-trained models to object detection tasks. 
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Table 1. Data-efficient 3D Object Detection on KITTI. We pre-train the backbone network of 

PV-RCNN on Waymo and transfer to KITTI with 20% and 100% label ratios in fine-tuning, [35] 

and [29] were pre-trained on NuScenes [36]. ObjectContrast achieves state-of-the-art perfor-

mance in two label ratios, compared to the scene-level method STRL [7], the point-level method 

PointContrast [4], the region-level methods ProposalContrast [5] and FAC [28]. "Scratch" de-

notes the model trained from scratch. 

Label 

Ratios 

Pre-training 

Schedule 

mAP 

(Mod) 

Car Pedestrian Cyclist 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

20% 

Scratch 66.71 91.81 82.52 80.11 58.78 53.33 47.61 86.74 64.28 59.53 

[5] 68.13 91.96 82.65 80.15 62.58 55.05 50.06 88.58 66.68 62.32 

[28] 69.73 92.87 83.68 82.32 64.15 56.78 51.29 89.65 68.65 65.63 

Ours 70.25 93.26 84.36 82.46 64.25 57.21 52.04 90.57 69.19 65.67 

80% 

Scratch 70.57 - 84.50 - - 57.06 - - 70.14 - 

[7] 71.46 - 84.70 - - 57.80 - - 71.88 - 

[4] 71.55 91.40 84.18 82.25 65.73 57.74 52.46 91.47 72.72 67.95 

[5] 72.92 92.45 84.72 82.47 68.43 60.36 55.01 92.77 73.69 69.51 

[28] 73.95 92.98 86.33 83.82 69.39 61.27 56.36 93.75 74.85 71.23 

[35] 72.50 - 84.90 - - 57.80 - - 75.00 - 

[29] 72.10 - 84.80 - - 57.30 - - 74.20 - 

Ours 74.34 93.42 86.45 84.75 70.16 61.48 57.09 93.69 75.11 71.82 

Table 2. 3D Object Detection Performance on ONCE validation set. We pre-train the backbone 

networks of the detectors on the Usmall unannotated set from ONCE and fine-tune the detectors 

on the ONCE training set. ObjectContrast achieves state-of-the-art performance in two detectors, 

compared to other self-supervised methods. 

Detector Methods mAP 
Orientation-aware AP 

Vehicle Pedestrian Cyclist 

CenterPoint 

[13] 

Scratch 64.24 75.26 51.65 65.79 

ProposalContrast [5] 66.24 78.00 52.56 68.17 

Ours 68.08 79.95 54.82 69.48 

SECOND 
[14] 

Scratch 51.89 71.19 26.44 58.04 

BYOL [37] 46.04 68.02 19.50 50.61 

PointContrast [4] 49.98 71.07 22.52 56.36 

SwAV [38] 51.96 72.71 25.13 58.05 

ALSO [35] 52.58 71.73 28.16 58.13 

Ours 53.43 72.41 29.02 58.87 



We also investigate intra-domain transfer and data-efficient learning capabilities. 

For a fair comparison with previous works, we pre-train the backbone network of Cen-

terPoint and SECOND on the Usmall unlabeled point cloud from ONCE and fine-tune 

them on the training set. As shown in Table 2, ObjectContrast consistently outper-

formed existing self-supervised methods. We also conduct experiments on a real-world 

autonomous driving engineering dataset. We pre-train the backbone network of Cen-

terPoint and fine-tune the model using 1%, 10%, and 100% of the training dataset to 

evaluate the model's performance under extremely scarce data conditions. As Table 3 

shows, the experimental results indicate that compared to training from scratch, the 

self-supervised pre-trained CenterPoint shows a significant performance improvement. 

The lower the annotation rate, the more pronounced the improvement, particularly with 

an annotation rate of only 1%, where the mAP increased by 15.14%. 

Table 3. Data-efficient 3D Object Detection on the Bus Engineering Dataset. We pre-train the 

backbone network of CenterPoint on the unannotated set and fine-tune CenterPoint using 1%, 

10%, and 100% of the training set. the CenterPoint pre-trained with ObjectContrast shows sig-

nificant performance improvement compared to training from scratch, and the lower the label 

ratio, the more noticeable the performance gain. 

Label Ratios 
Pre-training 

Schedule 
mAP (Mod) Car Pedestrian Cyclist 

1% 
Scratch 28.23 48.12 10.73 25.85 

Ours 43.37 63.28 26.47 40.36 

10% 
Scratch 45.93 63.20 33.22 41.38 

Ours 56.78 72.93 43.62 53.80 

100% 
Scratch 67.52 84.45 52.89 65.23 

Ours 69.60 85.12 56.76 66.92 

4.4 Ablation Study and Analysis 

Effectiveness of the components. We conduct ablation experiments on ObjectCon-

trast to verify the effectiveness of each component. The baseline is CenterPoint trained 

from scratch on 10% of the training set from the Bus Engineering Dataset. Case 1 and 

Case 2 are pre-trained using only ObCo or BoxCo, respectively. As shown in Table 4, 

both ObCo and BoxCo improve baseline performance to varying degrees, especially 

ObCo. Benefiting from the class-related object-level instance discrimination task, 

ObCo facilitates the pre-trained model to learn comprehensive and accurate object rep-

resentations, thereby achieving smoother transfer to object detection tasks. Further-

more, contrastive learning typically constructs a large number of negative pairs. To 

investigate the impact of negative pairs, we reduce the number of negative pairs by 

removing background features from the set of key instances, resulting in ObCo-. The 

experimental results indicate that even though object-level instances can more accu-

rately reflect target features, it is still necessary to construct large-scale negative pairs. 
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ObCo introduces richer visual representations and enhances the ability to distinguish 

between foreground and background by constructing large-scale negative pairs. 

Table 4. The effectiveness of the different components. 

Case ObCo ObCo- BoxCo MAP 

Baseline - - - 45.93 

Case1 ✓ - - 53.06 

Case2 - - ✓ 48.12 

Case3 - ✓ ✓ 52.48 

ObjectContrast ✓ - ✓ 56.78 

Object-level query instances. ObjectContrast can be considered a specialized re-

gion-level contrastive learning method. Unlike proposals and super-voxels, the in-

stances constructed by ObjectContrast are closer to complete and accurate point cloud 

objects, which can improve contrastive learning efficiency and bridge the gap between 

upstream and downstream tasks. To verify whether object-level instances have more 

efficient representation learning, we adjust the proportion of object features in the ob-

ject instance query set and visualized the features using t-SNE. Specifically, ObCo set 

the number of point cloud object instances sampled to 100, meaning that the object 

instance query set contained 100 object features. By replacing object features with 

background features, the proportion of object instances was reduced. As shown in Fig-

ure 5, the four subplots represent the results of the feature visualization when the pro-

portion of objects in the query set is 0%, 20%, 50%, and 100%, respectively. The ex-

periments demonstrate that increasing the proportion of object instances is beneficial 

for enlarging the inter-class distance. Compared to randomly selected background re-

gions, object instances with clear semantic information are more conducive to the 

model learning discriminative representations. 

 

Fig. 5. The t-SNE visualization of object instance proportion. (a) 0% (b) 20% (c) 50% (d) 100%. 

Red represents car, blue represents cyclist and green represents pedestrian. 



5 Conclusion 

We propose ObjectContrast, a self-supervised pre-training framework designed for 

point cloud object detection. Despite previous research for point-level, region-level, 

and scene-level instance discrimination, the features of these instances differ from the 

real object features. Selecting critical features for instance discrimination is crucial for 

contrastive learning. Considering the upstream and downstream feature gap between 

pre-training and fine-tuning, we rethink the impact of instance design on task transfer 

and specifically construct two self-supervised pretext tasks: ObCo and BoxCo. ObCo 

achieves class-related instance discrimination, enabling the models to learn general ob-

ject representations for locating object foregrounds and determining categories. BoxCo 

predicts the relative differences in 3D bounding boxes, making the model more sensi-

tive to variations in orientation and dimension. Extensive experiments demonstrate that 

ObjectContrast exhibits superior data-efficient transfer learning capabilities compared 

to existing point-level, region-level, and scene-level self-supervised pre-training meth-

ods. 

References 

1. Mao, J., Shi, S., Wang, X., Li, H.: 3d object detection for autonomous driving: A compre-

hensive survey. International Journal of Computer Vision 131(8), 1909–1963 (2023) 

2. Huang, J., Zhao, K., Li, C., Lin, Y., Liu, Z., Wang, K., Lian, S.: Self-supervised visual 

anomaly detection with image patch generation and comparison networks. In: International 

Conference on Intelligent Computing. pp. 96–113. Springer (2024) 

3. Yuan, X., Zhang, H., Li, T., Zhang, S., Zhang, X.: Multilingual knowledge graph completion 

with negative sample balance based adaptive self-supervised graph alignment. In: Interna-

tional Conference on Intelligent Computing. pp. 346–358. Springer (2024) 

4. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: Pointcontrast: Unsupervised pre-

training for 3d point cloud understanding. In: Computer Vision–ECCV 2020: 16th European 

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. pp. 574–591. 

Springer (2020) 

5. Yin, J., Zhou, D., Zhang, L., Fang, J., Xu, C.Z., Shen, J., Wang, W.: Proposalcontrast: Un-

supervised pre-training for lidar-based 3d object detection. In: European conference on com-

puter vision. pp. 17–33. Springer (2022) 

6. Chen, Z., Xu, H., Chen, W., Zhou, Z., Xiao, H., Sun, B., Xie, X., et al.: Pointdc: Unsuper-

vised semantic segmentation of 3d point clouds via cross-modal distillation and super-voxel 

clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 

pp. 14290–14299 (2023) 

7. Huang, S., Xie, Y., Zhu, S.C., Zhu, Y.: Spatio-temporal self-supervised representation learn-

ing for 3d point clouds. In: Proceedings of the IEEE/CVF International Conference on Com-

puter Vision. pp. 6535–6545 (2021) 

8. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. 

arXiv preprint arXiv:1807.03748 (2018) 

9. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, 

Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous driving: Waymo 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition. pp. 2446–2454 (2020) 

10. Mao, J., Niu, M., Jiang, C., Liang, H., Chen, J., Liang, X., Li, Y., Ye, C., Zhang, W., Li, Z., 

et al.: One million scenes for autonomous driving: Once dataset. arXiv preprint arXiv: 

2106.11037 (2021) 

11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision 

benchmark suite. In: 2012 IEEE conference on computer vision and pattern recognition. pp. 

3354–3361. IEEE (2012) 

12. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pv-rcnn: Point-voxel feature 

set abstraction for 3d object detection. In: Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition. pp. 10529–10538 (2020) 

13. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 

11784–11793 (2021) 

14. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sensors 

18(10), 3337 (2018) 

15. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast encoders 

for object detection from point clouds. In: Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition. pp. 12697–12705 (2019) 

16. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object detection. 

In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 2906–

2917 (2021) 

17. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection from point 

cloud. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-

nition. pp. 770–779 (2019) 

18. Li, J., Luo, C., Yang, X.: Pillarnext: Rethinking network designs for 3d object detection in 

lidar point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. pp. 17567–17576 (2023) 

19. Shi, W., Rajkumar, R.: Point-gnn: Graph neural network for 3d object detection in a point 

cloud. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-

nition. pp. 1711–1719 (2020) 

20. Fei, B., Yang, W., Liu, L., Luo, T., Zhang, R., Li, Y., He, Y.: Self-supervised learning for 

pre-training 3d point clouds: A survey. arXiv preprint arXiv:2305.04691 (2023) 

21. Xiao, A., Huang, J., Guan, D., Zhang, X., Lu, S., Shao, L.: Unsupervised point cloud repre-

sentation learning with deep neural networks: A survey. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 45(9), 11321–11339 (2023) 

22. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learn-

ing of visual representations. In: International conference on machine learning. pp. 1597–

1607. PMLR (2020) 

23. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual 

representation learning. In: Proceedings of the IEEE/CVF conference on computer vision 

and pattern recognition. pp. 9729–9738 (2020) 

24. Li, M., Wu, J., Wang, X., Chen, C., Qin, J., Xiao, X., Wang, R., Zheng, M., Pan, X.: 

Aligndet: Aligning pre-training and fine-tuning in object detection. In: Proceedings of the 

IEEE/CVF International Conference on Computer Vision. pp. 6866–6876 (2023) 

25. Yang, C., Wu, Z., Zhou, B., Lin, S.: Instance localization for self-supervised detection pre-

training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition. pp. 3987–3996 (2021) 



26. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on 

any point-cloud. In: Proceedings of the IEEE/CVF International Conference on Computer 

Vision. pp. 10252–10263 (2021) 

27. Shi, W., Rajkumar, R.R.: Self-supervised pretraining for point cloud object detection in au-

tonomous driving. In: 2022 IEEE 25th International Conference on Intelligent Transporta-

tion Systems (ITSC). pp. 4341–4348. IEEE (2022) 

28. Liu, K., Xiao, A., Zhang, X., Lu, S., Shao, L.: Fac: 3d representation learning via foreground 

aware feature contrast. In: Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition. pp. 9476–9485 (2023) 

29. Sautier, C., Puy, G., Boulch, A., Marlet, R., Lepetit, V.: Bevcontrast: Self-supervision in bev 

space for automotive lidar point clouds. In: 2024 International Conference on 3D Vision 

(3DV). pp. 559–568. IEEE (2024) 

30. Shrout, O., Nitzan, O., Ben-Shabat, Y., Tal, A.: Patchcontrast: Self-supervised pre-training 

for 3d object detection. arXiv preprint arXiv:2308.06985 (2023) 

31. Xia, Q., Deng, J., Wen, C., Wu, H., Shi, S., Li, X., Wang, C.: Coin: Contrastive instance 

feature mining for outdoor 3d object detection with very limited annotations. In: Proceedings 

of the IEEE/CVF International Conference on Computer Vision. pp. 6254–6263 (2023) 

32. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition. pp. 2495–2504 (2021) 

33. Reuse, M., Simon, M., Sick, B.: About the ambiguity of data augmentation for 3d object 

detection in autonomous driving. In: Proceedings of the IEEE/CVF International Conference 

on Computer Vision. pp. 979–987 (2021) 

34. Team, O., et al.: Openpcdet: An open-source toolbox for 3d object detection from point 

clouds. https://github.com/open-mmlab/OpenPCDet (2020) 

35. Boulch, A., Sautier, C., Michele, B., Puy, G., Marlet, R.: Also: Automotive lidar self-super-

vision by occupancy estimation. In: Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition. pp. 13455–13465 (2023) 

36. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., 

Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous driving. In: Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 

11621–11631 (2020) 

37. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., 

Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own latent-a new ap-

proach to self-supervised learning. Advances in neural information processing systems 33, 

21271–21284 (2020) 

38. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning 

of visual features by contrasting cluster assignments. Advances in neural information pro-

cessing systems 33, 9912–9924 (2020) 


