
 

 

 
2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 
https://www.ic-icc.cn/2025/index.php 

 

Hybrid Point-Pillar-Transformer Network for 3D Small 

Object Detection in Autonomous Driving 

Rongjie Wang1 and Shuo Yang2 
 

1 College of Computer Science (College of Software), College of Artificial Intelligence,In-

ner Mongolia University,Inner Mongolia,China 

Abstract. With the increasing demand for object detection accuracy in scenarios 

such as intelligent transportation and autonomous driving, methods that utilize 

point cloud and pillar features to achieve deep feature fusion have become in-

creasingly common in 3D object detection. However, existing methods often rely 

on inefficient linear fusion strategies during the process of fusing different fea-

tures, which fails to adequately capture the dependencies between multi-source 

features, leading to insufficient feature integration. Additionally, during feature 

extraction, limitations in network architecture result in a lack of interaction be-

tween shallow and deep features, causing the loss of fine-grained feature infor-

mation, which particularly affects the detection of small objects. To address the 

above issues, we propose the Hybrid Point-Pillar-Transformer Network (HPP-

TNet), a two-stage object detection framework that integrates point and pillar 

features. Specifically, we designed a fine-grained pillar feature extraction module 

(CFPEM) that effectively alleviates the loss of pillar features caused by 

downsampling through shallow and deep feature interactions and a lightweight 

attention design. Next, we developed a transformer-based multi-scale feature fu-

sion module (TMFFM) that dynamically learns the associations between differ-

ent features through a multi-head attention mechanism, enhancing the ability to 

capture context-aware features and fully realizing multi-source feature fusion. 

Experiments on the KITTI dataset demonstrate that our proposed algorithm 

achieves competitive detection performance compared to several state-of-the-art 

methods, particularly in the Cyclist and Pedestrian categories. Our code will be 

open-sourced soon. 
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1 Introduction 

3D object detection refers to the precise identification and localization of objects within 

a three-dimensional scene using point cloud data obtained from LiDAR. As a funda-

mental task in 3D scene understanding, this technology leverages the depth information 

derived from point cloud data, enhancing environmental perception capabilities. It has 

found extensive applications in critical fields such as autonomous driving and robot-

ics.Among the prevailing methodologies, Point-based methods [1] [2] directly extract 

features from the raw point cloud, capturing fine-grained details while preserving its 

geometric integrity.Nonetheless, the unstructured, sparse, and irregular nature of point 

clouds poses significant challenges for effective processing and extension. 



On the contrary, grid-based methods transform unstructured point cloud data into 

structured voxel representations, effectively storing the point cloud in a hash table for-

mat.This approach enables the effective utilization of sparse 3D convolutions for effi-

cient feature extraction, significantly enhancing detection efficiency and performance. 

Specifically, pillar-based methods [3] [4], transform raw point clouds into 2D bird's eye 

view (BEV) feature maps during voxelization, utilizing a pillar-based pipeline for the 

3D object detection task. By projecting the 3D point cloud into a top-down 2D pseudo-

image, this method further optimizes computational efficiency .However, the process 

of quantizing into regular pillars inevitably leads to the loss of fine-grained positional 

and geometric information, which can impact the accuracy of object detection. 

Recently, many 3D detection frameworks adopt a fusion of point and voxel ap-

proache [5] [6] for object detection. This hybrid architecture effectively merges voxel 

methods' efficiency with point methods' precision, demonstrating significant potential 

in enhancing detection accuracy and robustness.Currently, most methods first extract 

voxelized features and then combine these voxelized features with keypoints to achieve 

the fusion of point and voxel features. Compared to single-stage methods, these ap-

proaches have significantly improved accuracy. However, they overlook the fact that 

the sparsity introduced during voxelization and down-sampling convolutions can lead 

to substantial loss of 3D object features, particularly fine-grained details. This results 

in extracted voxelized features missing critical information, especially for small objects. 

Additionally, the fusion of different types of features often involves simple concatena-

tion or weighted summation, without considering the varying importance of different 

modalities. This coarse-grained fusion approach may fail to fully leverage the correla-

tions and complementarities among different feature types. In practical object detection, 

this can lead to poor detection performance for pedestrians and cyclists, who occupy 

only about 0.1% to 0.5% of the entire 3D scene. 

Considering the issues outlined above, we propose a novel hybrid detection archi-

tecture that combines point and pillar features. In this architecture, to combat the spar-

sity of point clouds and address potential feature loss during the downsampling process, 

we innovatively introduce a compact and fine-grained pillar feature extraction mod-

ule.The module facilitates comprehensive interaction between the extracted shallow 

and deep pillar features and incorporates a simple attention mechanism to achieve hi-

erarchical feature fusion. This significantly enhances the model's detail capture and 

overall perceptual capability without substantially increasing computational complex-

ity. Additionally, to fully leverage the extracted multi-class features and learn the de-

pendencies between different modalities for richer information representation, we pro-

pose a novel transformer-based multi-scale feature fusion module. This module utilizes 

different attention heads to capture diverse dependencies among various feature sources 

and employs a self-attention mechanism to efficiently fuse features based on the im-

portance of each source. We evaluate the proposed architecture on the challenging 

KITTI dataset, with extensive experiments demonstrating its superior performance over 

existing methods. 

In summary, the main contributions of this study are summarized as follows: 

(1) We propose a compact fine-grained pillar feature extraction module that imple-

ments novel hierarchical pillar feature interaction. Through shallow-deep feature 

fusion and a lightweight attention design, it significantly alleviates the feature loss 
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issues encountered in traditional voxelization methods during the downsampling 

process. 

(2) We introduce a transformer-based multi-head attention mechanism into the 

pointpillar multi-class features fusion process. By utilizing independent attention 

heads to capture diverse feature dependencies, such as geometric and semantic 

relationships, we effectively integrate multi-class features, enhancing the model’s 

ability to understand and capture complex dependencies. 

(3) Extensive experiments conducted on the KITTI object detection dataset validate 

the effectiveness of the HPP-TNet, demonstrating competitive performance in de-

tecting cars, pedestrians, and cyclists. 

2 Related work 

2.1 Single-Class Feature 3D Object Detection 

Single-category 3D object detection has been thoroughly explored in previous research, 

broadly categorized into point-based methods and voxel-based methods. Point cloud-

based methods process the original input point cloud data directly without transfor-

mation. For instance, PointNet. [1] was the first to introduce a multi-layer perceptron 

(MLP) structure that incorporates permutation invariance to directly extract features 

from point clouds. Building on PointNet, PointNet++ [7] introduced a hierarchical 

structure that better captures both local and global features of point clouds. PointRCNN 

[8], leveraging the feature extraction capabilities of PointNet++, proposed an efficient 

two-stage object detection framework that generates high-quality candidate boxes, re-

fining regression and classification, which effectively improves detection accuracy. 

While these point-based methods can learn rich spatial features from the original point 

clouds, they come with high computational costs. 

In contrast, voxel-based methods convert irregular and sparse point clouds into reg-

ular voxel grids, allowing standard 3D convolution operations to be directly applied to 

the voxelized data, significantly improving feature extraction efficiency and expressive 

capability. VoxelNet [9] employs a voxel grid and a deep neural network with 3D con-

volution for feature extraction but faces high computational costs. SECOND [10] uti-

lizes sparse 3D convolution to avoid redundant calculations on empty voxels, signifi-

cantly reducing the computational complexity of 3D convolution. PointPillar [3] trans-

forms point cloud data into a different regularized pillar structure, enabling the use of 

efficient 2D convolution networks, thus providing a lightweight solution for real-time 

3D perception systems. Voxel R-CNN [11] introduces a voxel-based two-stage detec-

tion framework, achieving refined feature extraction within a voxel-based network. 

2.2 Multi-Class Feature 3D Object Detection 

The hybrid representation-based works leverage the advantages of both points and 

voxels for enhanced perception.PV-RCNN [5] integrates multi-scale 3D voxel and 

BEV features at sampled key points for refinement in the second stage.HVPR [12] en-

hances point cloud features through a memory module in a hybrid single-stage network, 

while introducing a multi-scale feature module to effectively address complex scale 



variations between objects. HPV-RCNN [13] progressively optimizes candidate boxes 

by constructing a cascaded subnetwork and designs a partial feature pyramid network 

to efficiently integrate multi-scale BEV features.APVR [14] proposes an accelerated 

point-voxel representation method that retains more fine-grained feature information 

by adding offsets to query neighboring voxels of key points.VFL3D [15] designed a 

lightweight multi-branch cross-sparse convolution network to improve feature extrac-

tion efficiency while maintaining feature granularity. Additionally, it further optimizes 

BEV features by introducing a compact fine-grained self-attention mechanism, enhanc-

ing detection accuracy. 

2.3 Transformer-based 3D object detection 

The Transformer model was initially used in natural language processing (NLP) and 

has now demonstrated excellent performance in the fields of computer vision and 3D 

point cloud processing. Point-Former [16] designs a local-global Transformer architec-

ture that further captures the dependencies between multi-scale representations.Voxel-

Former [17] efficiently captures the dependencies between global and local features in 

point clouds by dividing the point cloud into voxels and integrating the self-attention 

mechanism of Transformers, enriching the feature representation. PVTransformer [18] 

aggregates point clouds into voxels and replaces the pooling method of PointNet with 

an attention mechanism to address the information bottleneck, thereby enhancing the 

accuracy and scalability of 3D detection. 

3 Method 

In this paper, we propose a novel two-stage 3D object detection network called the 

Hybrid Point-Pillar-Transformer Network, which fuses point and pillar features. The 

overall structure of the Hybrid Point-Pillar-Transformer Network is shown in Fig. 1 . 

Our model can be roughly divided into several parts: Point Features Extraction, Multi-

Scale Pillar Features Extraction, Transformer-based Point-Pillar Feature Fusion Mod-

ule, and Proposal Generation and Refinement Network. The following subsections pro-

vide detailed information about these components. 

3.1 Point Features Extraction 

The advantage of directly extracting features from the original point cloud is that it 

effectively retains the original 3D structural information. However, the sheer number 

of points in the original point cloud means that not all point cloud features are equally 

important for detection. Retaining more foreground points is essential to capture valu-

able spatial and positional information. To address this, we consider first sampling key 

points from the original point cloud P, then using the features of the extracted key points 

for subsequent detection tasks, achieving GPU acceleration without compromising de-

tection performance. We adopt a sectorized proposal-centric strategy [5]. Specifically, 

we first use proposal-centric filtering to retain points close to the proposal boxes, effec-

tively reducing the number of candidate points. Next, we apply sectorized sampling to 

divide the filtered point set into multiple sectors, performing farthest point sampling 
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(FPS) independently within each sector. Finally, we merge the sampling results from 

each sector to form the final set of key points. 
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Fig. 1. Overall architecture of the proposed model HPV-TNet. 

3.2 Multi-Scale Pillar Features Extraction 

After obtaining the features of the point cloud, we construct a pillar structure using a 

new branch to extract pillarized features. Specifically, given the 3D space defined by 

range H,W and D along the X-axis, Y-axis, and Z-axis, we divide the space into grids 

along the X-axis and Y-axis and then stretch each grid along the z-axis to cover the 

entire z-axis space, resulting in a pillar. We define each pillar to be of size 

(𝑣𝐻 , 𝑣𝑊 , 𝐷) .This way, the space is evenly divided into individual pillars, with all 

points in the sample included in their respective pillars,pillars without any points are 

considered empty pillars.After obtaining the point cloud tensor represented by pillars, 

we perform a Max Pooling operation on each non-empty pillar to generate initial fea-

tures, which are then fed into a 3D sparse convolution network for further feature ex-

traction. The original 3D sparse convolution network used a stride of 2 for three down-

sampling operations, directly sending the results to the subsequent network without 

considering the interaction between multi-scale features. This down-sampling leads to 

a reduction in feature map resolution, resulting in the loss of some feature information, 

which is particularly detrimental for detecting small objects. 

To enhance the effectiveness of pillarized feature extraction and mitigate information 

loss, we propose a fine-grained pillar feature extraction module. Specifically, we denote 

the feature results extracted from each convolution layer as 𝐹convi, corresponding to 

the results of sparse convolution feature extraction from each layer. Thus, the features 

extracted from the first and second layers are denoted as 𝐹conv1 and 𝐹conv2. Before 

implementing feature interaction, we first align the features across layers and then use 

feature concatenation for preliminary feature fusion, enabling feature reuse. Finally, we 

incorporate sparse channel and spatial attention mechanisms to enhance the contribu-

tion of task-relevant channels and strengthen the feature response in the target areas 

while weakening background interference, achieving further feature fusion.The fused 

results are then directly fed into the subsequent convolution network. Our execution 

strategy for the second and third layers, 𝐹conv2 and 𝐹conv3 is similar, continuing until 

the final feature extraction is complete. The pillar feature extraction module not only 



effectively enhances the network's ability to express fine-grained local and global fea-

tures but also compensates for the information loss during the down-sampling process, 

thereby improving the accuracy of 3D object detection. It also provides an efficient and 

detailed solution for feature extraction from point cloud data in complex environments. 

 

3.3 Transformer-based Point-Pillar Feature Fusion Module 

Existing methods indicate that incorporating transformers into 3D object detection can 

effectively improve detection accuracy by establishing long-range relationships be-

tween voxels through efficient attention operations. Similarly, to leverage various types 

of information, we propose a transformer-based Point-Pillar Attention Fusion Module, 

which combines three types of 3D features with attention operations to model the de-

pendencies between different source features. 

Specifically, we denote the key point features, pillar features, and BEV (Bird’s Eye 

View)features obtained from the feature extraction phase as 𝐹point,𝐹pillar and 𝐹bev re-

spectively. Since different types of features may have dimension mismatches before 

fusion, we first perform feature alignment, followed by concatenation to combine 

𝐹point 𝐹pillar and 𝐹bev. 

𝐹concat = [𝐹̃point ⊕ 𝐹̃pillar ⊕𝐹bev] (1) 

Next, we apply a multi-head attention mechanism, projecting the feature vectors into 

Q/K/V spaces through linear projections. 

(𝑄, 𝐾, 𝑉) = 𝐹concat(𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣) (2) 

Where 𝑊𝑞 ,𝑊𝑘,𝑊𝑣 ∈ ℝ𝑑×𝑑d×d represents the learnable weights. 

The projected feature vectors are split into multiple orthogonal subspaces based on 

the number of attention heads, allowing each attention head to independently compute 

attention weights using scaled dot-product attention in different semantic subspaces, 

thus achieving multi-scale feature fusion. 

𝐹attn = Softmax (
𝑄𝐾⊤

√𝑑
)𝑉 

(3) 

where 𝑑 is the feature dimension,√𝑑 serves as the scaling factor, 𝑄𝐾⊤ computes the 

pairwise similarity between features, Softmax normalizes the similarity scores to ob-

tain attention weights. 

Finally, we know that the attention mechanism excels at capturing relationships be-

tween features but lacks the ability to perform complex nonlinear transformations on 

individual features. To address this, we use a Feedforward Neural Network (FFN) to 

independently apply nonlinear enhancements to each feature vector generated by the 

attention mechanism. This part consists of two fully connected layers and an activation 

function, allowing for more refined processing of the attention output. 

𝐹out = LayerNorm(𝐹attn + FFN(𝐹attn)) (4) 

As a result, we achieve an overall fusion of point features with pillar and BEV fea-

tures, effectively enriching the contextual information and providing a more informa-

tive feature representation for optimizing target areas in the second stage. 
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3.4 Proposal Generation and Refinement Network 

Since we are using a two-stage network, in the first stage, we have generated a BEV 

map through the pillarized 3D backbone. The Region Proposal Network based on the 

BEV can generate 3D proposals with higher recall rates, resulting in the first stage ob-

ject detection outcomes. The final goal is to optimize the first-stage predicted proposals 

using the fused features from both point and pillar representations. 

For each 3D proposal generated in the first stage, we uniformly sample 216 grid 

points in a 6×6×6 configuration within its bounding box. For each grid point 𝑔𝑖, we 

search for nearby key points within a spherical neighborhood of radius 𝑟(𝑔) and collect 

their features.These key point features are concatenated and then aggregated through a 

shared MLP and max pooling to obtain the feature for the grid point 𝐹𝑔𝑖. Finally,the 

216 RoI-grid feature vectors are flattened and passed through two layers of MLP (256 

dimensions) to generate the global feature representation for the 3D proposal. 

Subsequently, using the global features extracted from RoI-grid pooling for each 3D 

proposal, we construct a confidence prediction branch and a bounding box optimization 

branch to predict the IoU confidence score of the proposals, as well as to predict the 

center position, size, and orientation through bounding box regression. 

4 Experiments 

4.1 Implementation Details 

We evaluate our method on the KITTI [19] object detection benchmark.The KITTI 

benchmark has been widely used for 3-D object detection evaluation. It consists of a 

training set with 7,481 LiDAR samples and a test set with 7,518 LiDAR samples. The 

training set is commonly separated into train split (3712 samples) and val split (3769 

samples) [20].The dataset primarily contains three categories of objects ,Car, Pedestrian, 

and Cyclist. Object instances across different classes are further classified into easy, 

moderate and hard splits.To ensure the fairness of comparative experiments, we strictly 

adhere to the public data partitioning protocol: the model is trained on the training set 

and evaluated against other state-of-the-art methods on both the validation set and the 

online test set. For evaluation metrics, we employ Average Precision (AP), where the 

validation set performance is calculated using the 40 recall positions to maintain con-

sistent evaluation standards with existing best-performing methods. 

For the KITTI dataset, we set the detection range of the point cloud to [0, 70.4] along 

the X-axis, [-40, 40] along the Y-axis, and [-3, 1] along the Z-axis. The original point 

cloud input contains approximately 20,000 points per frame, and after sampling, 2048 

points are used for input. Data augmentation is performed using random flipping, rota-

tion, and scaling. A voxel size of (0.05m, 0.05m, 0.1m) is used as the pillar input to 

voxelize each scene. 

Our model is trained on a GeForce RTX 4090D GPU. The training process employs 

the Adam optimizer with a one-cycle learning rate schedule, using 0.01 as the initial 

learning rate.A total of 80 epochs were trained with a batch size of 2. we set the IOU 

(Intersection over Union) threshold value of Car to 0.7, and that of Pedestrians and 

Cyclists to 0.5. 



4.2 Comparative Experiment on the KITTI Dataset 

The results on the KITTI test set are summarized in Table 1. The table is vertically 

divided into two sections, corresponding to one-stage methods and two-stage methods. 

Our model is compared with the current best models in three categories: car, pedestrian, 

and cyclist. The results demonstrate that our model has competitive accuracy. Specifi-

cally, in the Car category, our model outperforms baseline PV-RCNN by an average of 

2.89% across three difficulty levels. In the Pedestrian category, our model outperforms 

PV-RCNN by an average of 31.87% across all three difficulty levels. In the Cyclist 

category, our model outperforms PV-RCNN by an average of 14.36% across three dif-

ficulty levels. Notably, the improvement in Pedestrian detection is relatively large, in-

dicating that our method significantly enhances small object detection performance. 

Table. 2. Comparative Evaluation with State-of-the-Art Methods on KITTI test Split. 

Method Types 
Car 3D AP Pedestrian 3D AP Cyclist 3D AP 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

PointPillars One 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92 

SECOND One 83.34 72.55 65.82 43.03 35.92 33.56 71.33 52.08 45.83 

IA-SSD One 88.87 80.32 75.10 47.90 41.03 37.98 82.36 66.25 59.70 

SVGA-Net One 87.33 80.47 75.91 48.48 40.39 37.92 78.58 62.28 54.88 

PV-RCNN Two 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65 

Part A2 Two 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93 

P2V-RCNN Two 86.96 81.45 77.20 50.91 43.19 40.81 78.62 63.13 56.81 

STD Two 87.95 79.71 75.09 53.29 42.27 38.35 78.69 61.59 61.42 

HPV-RCNN Two 89.33 80.61 75.53 52.54 43.86 41.56 84.24 69.56 61.42 

HybridPillars Two 90.06 81.48 76.94 - - - 81.42 66.05 59.59 

Ours Two 90.93 83.16 81.28 65.25 59.06 54.03 89.66 71.41 67.41 

Table. 2.Comparative Evaluation with State-of-the-Art Methods on KITTI val Split. 

Method Types 
Car 3D AP Pedestrian 3D AP  Cyclist 3D AP 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

PointPillars One 84.01 76.11 72.19 59.45 50.81 44.98 85.10 65.65 60.32 

SECOND One 87.12 79.30 75.91 50.66 47.82 40.54 80.31 64.98 61.01 

PVB-SSD One 90.98 82.06 79.34 61.76 56.55 51.59 82.46 68.67 63.55 

PV-SSD One 88.53 77.80 75.82 - - - 84.73 70.17 66.33 

IA-SSD One 90.47 81.72 78.20 55.90 50.53 44.00 90.23 73.25 68.41 

SVGA-Net One 88.93 81.87 79.13 56.06 50.44 43.93 86.16 69.08 62.96 

PV-RCNN Two 91.86 82.85 80.31 59.97 52.37 46.59 86.89 70.64 66.36 

Part A2 Two 90.23 80.45 77.65 58.77 51.89 46.25 85.40 68.82 64.55 

M3DETR Two 90.28 81.73 76.96 45.70 39.94 37.66 83.83 66.74 59.03 

PG-RCNN Two 89.38 82.13 77.33 47.99 41.04 38.71 82.77 67.82 61.25 

SCNet3D Two 89.16 82.35 77.72 51.69 44.64 41.44 82.11 67.55 62.12 

Ours Two 91.02 82.98 81.20 64.77 57.97 53.06 87.70 70.06 65.61 
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As shown in Tab. 2, we further compare our model with the latest 3D object detection 

methods on the KITTI validation set across all categories. Compared to baseline PV-

RCNN, our method performs better in the Car category at the medium and hard diffi-

culty levels, with a slight decrease in the Easy difficulty level. For the Pedestrian cate-

gory, our model shows a large improvement across all three difficulty levels. For Cy-

clist detection, the detection accuracy decreases slightly by 0.35%. This indicates that 

our method is effective in capturing fine-grained features, which is consistent with the 

results shown on the test set. Finally, Figure 2 displays the qualitative results of our 

model HPP-TNet on the KITTI test set. 

 

 

Fig. 2. Qualitative results achieved on the KITTI test set. The first row shows real driving 

scenes from the KITTI dataset, while the second row exhibits the 3D detection results of HPP-

TNet. 

4.3 Ablation Experiment on KITTI Dataset 

To validate the effectiveness of our proposed CFPEM and TMFFM, we conducted sev-

eral experiments on the KITTI dataset to evaluate the roles of the Compact Fine-grained 

Pillar Feature Extraction Module (CFPEM) and the Transformer-based Multi-scale 

Feature Fusion Module (TMFFM). For a fair and comprehensive evaluation, we calcu-

lated the average precision at 40 recall positions and verified the performance improve-

ments of each module under different detection difficulties through controlled variable 

experiments. 

As shown in Table 3, combining the CFPEM and TMFFM modules achieves an ef-

fective improvement of 0.5% to 2.7% across difficulty levels. The experiments demon-

strate that an optimized feature extraction network, along with enhanced feature fusion, 

is beneficial for improving the overall detection accuracy in 3D object detection tasks. 

Table. 3. Ablation Study of Different Components 

CFPEM      TMFFM 
3D mAP (%) 

Easy Moderate Hard 

√  79.18 70.08 66.77 

 √ 80.80 70.99 66.89 

√ √ 81.30 71.47 67.08 

5 Conclusion 

In this paper, we propose a two-stage 3D object detection framework HPP-TNet that 

integrates point and pillar features. This method extracts point, multi-scale pillar, and 



BEV features within a unified backbone for feature fusion, thereby enhancing the de-

tection accuracy of small targets. We designed the Compact Fine-grained Pillar Feature 

Extraction Module (CFPEM), which effectively retains fine-grained local features and 

global context information from the voxel backbone network through a feature reuse 

strategy, significantly alleviating the feature loss problem during the traditional pillar 

downsampling process. Furthermore, to fully associate different multi-source features 

of a point, we applied the multi-head attention mechanism from transformers to the 

feature fusion module, replacing traditional feature concatenation methods. The fused 

features are then sent to the candidate generation layer for more accurate 3D result 

prediction. Experiments on the KITTI dataset show that our proposed algorithm 

achieves state-of-the-art performance compared to several existing excellent algo-

rithms, with particularly significant improvements in the detection of small targets, 

such as pedestrians.  

However, as a two-stage detection framework, the current model incurs relatively 

high computational overhead. Future research will focus on developing lightweight fea-

ture fusion strategies to reduce computational complexity while maintaining accuracy. 
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