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Abstract. In recent years, the application of unmanned aerial vehicles (UAVs) 

has grown exponentially in various fields due to their convenience. These vehi-

cles have become ubiquitous in numerous fields, including environmental moni-

toring, agricultural management, urban planning, traffic monitoring, and emer-

gency rescue, playing an instrumental role in these domains. However, target de-

tection from the perspective of a drone is fraught with challenges. These chal-

lenges include the difficulty of detecting small targets, interference from lighting 

and background in complex scenes, and limited hardware resources. To address 

these challenges, we have enhanced the YOLOv8 model and introduced a light-

weight and efficient target detection model specifically designed for the perspec-

tive of a drone, named LightDrone-YOLO. Firstly, a specialised layer is incor-

porated into the model for the purpose of enhancing detection of small targets. 

Secondly, a lightweight multi-scale feature fusion neck (LMFF-Neck) is de-

signed to reduce the number of parameters and computational complexity of the 

model and improve the fusion of multi-scale features. Thirdly, we improved the 

C2f module and renamed it C2f-MFEM, which is designed to enhance feature 

extraction. Finally, the spatial feature weighting fusion (SFWF) module was de-

signed to accurately select the most valuable spatial information during the multi-

scale feature fusion process. Experimental results on the Visdrone 2021 dataset 

demonstrate the effectiveness of the proposed method, and the mean accuracy 

(mAP) is substantially improved. In the validation and test datasets, the proposed 

method demonstrated superiority over other prevalent lightweight models, with 

mAP50 reaching 40.8% and 32.5%. 

Keywords: YOLOv8, Feature fusion, Aerial Images, Object detection. 

1 INTRODUCTION 

Object detection has become a fundamental component of computer vision, playing a 

crucial role in a multitude of applications [2] , including autonomous driving, surveil-

lance systems, and aerial photography with drones [3] . 

mailto:shigang@xju.edu.cn


Convolutional neural networks (CNNs) have driven a paradigm shift in the field of 

computer vision, with deep learning leading advancements in object detection. These 

models autonomously learn multi-level features, enabling intricate visual feature ex-

traction without the need for manual algorithms. Two-stage networks, such as RCNNs 

[4] , generate candidate regions first, then classify and regress them. Single stage net-

works, including YOLO [5] and SSD [6] , perform end-to-end classification and re-

gression directly, achieving faster detection. Selecting the most appropriate method for 

a given application requires a careful balancing of accuracy and real-time performance. 

 

 

 

Fig. 1. Sample images taken from Visdrone2021 [1]. These images describes the main prob-

lems of object detection in UAV images. 

In recent years, the use of drones (UAVs) has experienced significant growth in var-

ious fields due to their convenience, particularly in the domain of computer vision, 

where they offer distinct advantages in capturing large-scale high-resolution image and 

video data [7] . 

However, target detection based on the perspective of UAVs still faces several chal-

lenges: (1) UAV-captured images inevitably contain a large number of small targets 

[8] , which are difficult to detect due to their limited area and susceptibility to noise 

interference; (2) the motion of UAVs causes image shaking, resulting in blurred targets 

and unclear textures [9] ; (3) the dynamic range of scenes captured by UAVs is suscep-

tible to factors such as inadequate lighting and background interference, which exacer-

bates the difficulty of detection. (4) the limited hardware resources of UAVs pose a 

challenge in supporting target detection models with high computational and storage 

demands [10] . 

To address these issues, we propose a lightweight multi-feature fusion network, 

LightDrone-YOLO. This network achieves a balance between speed and accuracy in 
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object detection through cross-scale feature fusion and an attention mechanism. It is 

designed to improve the object detection results of drone images. The contributions of 

this study are as follows: 

1. We have proposed a lightweight multi-feature fusion network for drone images, 

LightDrone-YOLO, which is based on YOLOv8. The network embeds two newly 

designed modules based on the baseline model to improve the object detection per-

formance. 

2. We have designed a lightweight multi-scale feature fusion neck structure, which in-

corporates DySample [11] to enhance the connection between the object and the 

context. This part is specially optimized for unmanned aerial scenes, and a small 

target detection layer is introduced to improve the detection accuracy of small targets 

and reduce the number of parameters in the model. 

3. The C2f-MFEM module is designed to enhance the backbone feature extraction ef-

fect by integrating the proposed Multifaceted Fusion Excitation Module with the C2f 

module. 

4. In addressing the challenge of feature loss that may arise in cross-scale fusion, the 

Spatial Feature Weighted Fusion Detection Head has been developed. This innova-

tion enhances detection accuracy by weighting and fusing the spatial features of 

neighboring layers to select the most effective spatial information. 

2 RELATED WORK 

2.1 High performance UAV image detection model 

In recent years, the field of drone image target detection has witnessed significant ad-

vancements, largely driven by the rapid development of deep learning technology. In 

pursuit of optimal detection performance, numerous scholars have conducted extensive 

research to promote technological innovation. 

One notable approach is the incorporation of the BiFPN [12] (Bi-directional Feature 

Pyramid Network) structure into a model combined with a small target detection layer, 

as seen in DMA-YOLO [13] . This refinement enhances the detection performance of 

small targets in drone images. However, it introduces a substantial increase in the com-

plexity of the feature fusion component of the model neck, leading to a significant com-

putational burden. 

In addressing the challenge of target detection in blurred images, Li et al. [14] pro-

posed the DREB-Net, a novel approach designed to mitigate motion blur in drone im-

ages. The network introduces a specialized component, the Blur Restoration Auxiliary 

Branch (BRAB), which enhances the detection of targets in blurry conditions by restor-

ing critical image details. This design is specifically tailored to address the unique chal-

lenges posed by motion blur, offering an effective solution for enhancing detection per-

formance in such images. 

The CEASC model [15] introduces a context-enhanced sparse convolutional layer 

(CESC), a pioneering innovation that addresses the challenge of inadequate integration 

of contextual information in scenarios where sparse convolution is employed for the 



processing of small objects. This model enhances the accuracy of detection through the 

utilization of global contextual features. However, it is important to note that global 

contextual information may not always be reliable or readily available. Additionally, 

while the CEASC model effectively reduces computational costs during inference 

through sparse convolutions, its complex network structure and large data volume still 

pose a significant challenge to computational resources during the training phase. In 

summary, while these methods have enhanced detection accuracy and processing effi-

ciency, there are still issues such as over-weighting of the model and weak adaptability. 

2.2 Development of lightweight UAV image detection model 

Due to the limitations of the computing speed and memory capacity of unmanned aerial 

vehicle (UAV) processors, the deployment of most high-performance UAV image tar-

get detection on edge devices such as UAVs is not currently feasible. Many scholars 

have also studied this basis and designed lightweight UAV image detection algorithms. 

LUD-YOLO [16] has designed a lightweight ASFF [17] module and greatly reduced 

the number of model parameters and computational complexity through pruning. While 

the model’s speed is ensured, significant room for enhancement remains in terms of 

accuracy. Additionally, the pruning method employed by this model exhibits limited 

generalization capabilities, resulting in substantial variations in performance across dif-

ferent datasets. This challenge hinders the attainment of consistent and dependable re-

sults in practical applications. 

The Drone-TOOD [18] model enhances the decomposition capability of the task by 

introducing ETDA, using the Classification Module for category prediction and the 

Location Module for location prediction. However, this improvement also introduces 

the complexity of parameter tuning, because the introduction of different network 

branches and loss functions makes the model tuning process more cumbersome. 

The Drone-YOLO [19] model has been shown to achieve multi-scale information 

fusion through the design of a multilayer PAFPN structure and a sandwich module, 

leading to significant improvements in the spatial and semantic information of the tar-

get. This enhancement has notably improved the model’s accuracy. However, due to 

the multiple feature fusions and up-and-down transmissions, it has increased the com-

putational complexity of the model and may introduce redundant or irrelevant infor-

mation. Consequently, while Drone-YOLO demonstrates efficacy in terms of accuracy, 

it incurs a substantial cost in terms of inference time and real-time performance. 

The LODNU [20] model enhances the accuracy of multiscale object detection by 

incorporating an adaptive scale weighted feature fusion module (ASWFF). However, 

when the number of layers in the feature pyramid is excessive or when there is a con-

siderable disparity between the layers, ASWFF may encounter challenges in effectively 

fusing all pertinent features. This vulnerability to disruption by outliers or noise is a 

salient limitation of the model. 

The SCA-YOLO [21] model introduces the SCA module, a core module that em-

ploys a fusion of spatial and coordinate attention mechanisms, along with a small object 

detection layer. These enhancements have led to the remarkable performance of SCA-

YOLO. However, the increased computational demands of the SCA module and the 
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small target detection layer have also led to a significant reduction in its detection speed, 

resulting in its inability to meet real-time requirements on certain devices with limited 

computing capabilities. In summary, while these methods have achieved substantial 

progress in enhancing detection performance, the majority of them continue to grapple 

with the trade-off between computational efficiency and real-time performance. 

3 METHOD 

In this section, we will provide a comprehensive description of the proposed method-

ology. The objective of our research is to explore the design of a lightweight and effi-

cient UAV target detection network model. This model is primarily employed for UAV 

target detection, and thus, it is predominantly based on the characteristics of UAV im-

ages to enhance its performance. The primary aspects of the model are as follows:1) In 

order to enhance the detection performance of small targets, we incorporated shallow 

features, thereby enabling the optimization of small targets by shallow detection 

heads.2) Based on the characteristics of UAV images and our analysis, we designed a 

lightweight multi-scale feature fusion neck structure. This structure not only reduces 

the number of model parameters and computational complexity, but also improves the 

fusion effect of features at different scales. 3) The C2f module in the backbone was 

improved, and the feature extraction effect was enhanced by adding the MFEM module. 

4) A spatial feature weighting fusion module was proposed to improve the ability of the 

detection head to screen important spatial information. As illustrated in Fig. 2, the mod-

ified model structure is depicted. 

3.1 Small Object Detection Layer 

Shallow feature maps have small receptive fields, limiting overlap and capturing fine-

grained details, effective for small object detection. They also compensate for infor-

mation loss during downsampling, preserving contextual information. Deep features, 

closer to the output layer, are rich in semantic information reflecting overall image 

characteristics but weak in capturing small object details due to low resolution. 

To enhance object detection, optimizing convolutional network structures and fea-

ture map utilization across dimensions is crucial. This leverages shallow details and 

integrates deep semantic information for accurate detection. 

The YOLOv8 model utilises its P3 layer for the detection of small objects measuring 

80 ×  80 pixels, with effective identification of objects exceeding 8 ×  8 pixels. How-

ever, the model encounters challenges in accurately identifying objects smaller than 8 

pixels. 

To address this limitation, the proposed model is augmented by adding a P2 layer of 

160 ×  160 pixels, with the aim of enhancing the capture of complex details and opti-

mising small object detection to be larger than 4 ×  4 pixels. 



3.2 Lightweight Multi-Scale Feature Fusion Neck 

In the YOLOv8 model, the Neck layer, which is conventionally configured as a PAFPN 

structure, incorporates three detection layers and is predominantly employed for feature 

fusion and detection. Nevertheless, to enhance the detection of small objects in the da-

taset, we have incorporated the feature maps of the shallow network and refined the 

model structure. 

As demonstrated in Fig. 2, the YOLOv8 backbone network undergoes four 

downsampling operations during feature extraction, with the number of channels dou-

bling after each downsampling, resulting in four times as many channels for the deepest 

features as for the shallow ones. These feature layers are directly passed into the FPN 

structure, complicating the subsequent multi-scale feature fusion process and increas-

ing the number of network parameters and computational overhead.  

 

Fig. 2. Overall model structure 

To balance the relationship between model performance and accuracy, we have 

made the following improvements: 

First, an analysis of the characteristics of shallow and deep features was conducted. 

Shallow features have a small receptive field and high spatial resolution, which is suit-

able for capturing the details of small objects. In contrast, deep features have a large 

receptive field and rich semantic information, but the corresponding feature map reso-

lution is low, which is more suitable for capturing the information of medium and large 

objects. However, in practical application scenarios, such as UAV images, small-sized 
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objects account for a very large proportion. As a result, the role of deep features in 

capturing objects is greatly reduced, but their computational cost is very high, which 

affects the performance of the model. 

To address this challenge, we propose a modification to the standard convolutional 

layer, introducing a 1 ×  1 convolutional layer to the output position of the backbone 

feature map. This adjustment is accompanied by a uniform adjustment of the number 

of channels to 256 [22]. This modification serves to expand the number of channels in 

the P2 layer to 256, while concurrently reducing the number of channels in the P5 and 

P4 layers to 256. This adjustment is made with the intention of maintaining a reasonable 

number of channels for the feature pyramid [22] input. This refinement enhances the 

significance of shallow features, facilitating the recognition of small targets, while con-

currently reducing the number of deep features and the computational demands. Con-

currently, we employ the DySample technique to resize the feature maps. Subsequently, 

we concatenate the feature maps of disparate layers through the concat operation, en-

suring the utilization of the high resolution of shallow features and the extensive se-

mantic information of deep features. 

Experimental statistics demonstrate that the number of parameters in the enhanced 

four-layer feature PAFPN is approximately half that of the three-layer PAFPN. This 

design facilitates the extraction of more detection details from shallow features, en-

hancing the model’s detection performance. Additionally, it retains sufficient deep se-

mantic features to ensure the model’s detection capability for objects of varied sizes. 

Consequently, this optimization enhances the performance of the YOLOv8 model in 

practical application scenarios. 

3.3 C2f-MFEM 

In the context of image detection tasks, the primary challenge in achieving accurate 

object detection is often the obscurity of features due to noise interference. 

To address this issue, we have ingeniously integrated the C2f-MFEM module into 

the YOLOv8 backbone network. Specifically, we have innovatively incorporated a 

multi-fusion excitation module (MFEM) into the residual block of C2f, which first per-

forms global average and global maximum pooling operations on the input feature map. 

The average pooling strategy has been demonstrated to effectively capture the overall 

average information of the feature map, while the maximum pooling method has been 

shown to focus sharply on the most prominent feature extremes. This two-pronged 

pooling method has been shown to comprehensively capture feature representations at 

different levels and significantly enhance the model’s sensitivity to diverse information. 

As illustrated in Fig. 3, the modified C2f structure is depicted. 

Subsequently, a shared multi-branch fully connected layer is employed to compress 

the pooling results and aggregate the outputs of these branches. This step ensures a 

comprehensive integration of information from different pooling strategies, thereby en-

abling the model to comprehend diverse data characteristics in greater detail. Subse-

quently, the results of the multiple branches are concatenated and excited through a 

fully connected layer (FC) to obtain channel weight information [23] . Finally, these 

weights are used to weight the original features, effectively suppressing the interference 



of background noise and further improving the accuracy and robustness of object de-

tection. The configuration of the MFEM module is illustrated in Fig. 4. 

 

 

Fig. 3. C2f-MFEM block 

 

Fig. 4. MFEM 

3.4 Spatial Feature Weighted Fusion Detection Head 

In the FPN architecture, although multi-scale feature fusion endows the network with 

the ability to capture rich information, it inevitably introduces redundant contextual 

information. This redundant information often covers many areas that are not directly 

related to the detection target, thus introducing too much noise and weakening the 

model’s performance in object recognition tasks. To address this challenge, we propose 

the Spatial Feature Weighted Fusion (SFWF) module. The SFWF module aims to pre-

cisely filter out the most valuable spatial information during the multi-scale feature fu-

sion process. 

As demonstrated in Fig. 5, the SFWF module accepts features at the target layer 

scale and features at the neighboring layer scales. Through a series of downsampling 

and upsampling operations, shallow detailed features and deep semantic features are 

integrated into the target layer scale. This process ensures the comprehensiveness of 
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the information and realizes feature fusion across scales. The integration of features 

from different layers is achieved through a process known as feature stitching, which 

effectively fuses low-level fine spatial information with high-level abstract semantic 

information. This fusion enhances the diversity and richness of features, with low-level 

features providing detailed spatial details and high-level features containing deep se-

mantic connotations. The combination of these features enables the model to effectively 

handle object detection challenges of various scales and types. 

 

Fig. 5. SFWF-Head 

Subsequently, a 1 ×  1 convolution kernel is employed to extract 𝐻 ×  𝑊 feature 

maps corresponding to each scale of features. The spatial weights of each feature map 

are then calculated using the softmax function. These weights are precisely assigned to 

the corresponding scale feature maps to achieve weighted processing of the feature 

maps. Finally, the weighted feature maps are summed to obtain the fused feature map. 

This process enhances not only the utilization efficiency of the features but also the 

model’s object recognition ability in complex scenes. 

 

Fig. 6. SFWF block 

As demonstrated in Fig. 6, assuming that the input of the feature is [𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤 ∈
𝑅𝐶×2𝐻×2𝑊 , 𝑓𝑑𝑒𝑒𝑝 ∈ 𝑅𝐶×0.5𝐻×0.5𝑊, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑅𝐶×𝐻×𝑊 ] and the intermediate feature is 

[𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤
′ ∈ 𝑅𝐶×𝐻×𝑊 , 𝑓𝑑𝑒𝑒𝑝

′ ∈ 𝑅𝐶×𝐻×𝑊, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′ ∈ 𝑅3𝐶×𝐻×𝑊], the neighboring layer fea-

tures are adjusted by up-sampling and down-sampling, and the formula is expressed as: 

 𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤
′ = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤) (1) 



 𝑓𝑑𝑒𝑒𝑝
′ = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑓𝑑𝑒𝑒𝑝) (2) 

 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤

′ , 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
 , 𝑓𝑑𝑒𝑒𝑝

′ ) (3) 

Subsequently, the spatial weight information corresponding to the feature layer is 

obtained by employing a 1 × 1 convolution and softmax operation on 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′ ∈

𝑅3𝐶×𝐻×𝑊 . The result is then split and multiplied to obtain the weighted feature 

[𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤
′′ ∈ 𝑅𝐶×𝐻×𝑊 , 𝑓𝑑𝑒𝑒𝑝

′′ ∈ 𝑅𝐶×𝐻×𝑊, 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′′ ∈ 𝑅3𝐶×𝐻×𝑊], which is expressed by the 

formula: 

 𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤
′′ = 𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤

′ × 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (Conv(𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′ )) [0] (4) 

 𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′′ = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡

′ × 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (Conv(𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′ )) [1] (5) 

 𝑓𝑑𝑒𝑒𝑝
′′ = 𝑓𝑑𝑒𝑒𝑝

′ × 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (Conv(𝑓𝑡𝑎𝑟𝑔𝑒𝑡
′ )) [2] (6) 

Finally, the desired output feature is obtained by means of an addition operation, 

which is expressed by the following formula: 

 𝑓𝑜𝑢𝑡 = 𝑓𝑠ℎ𝑎𝑙𝑙𝑜𝑤
′′ + 𝑓𝑡𝑎𝑟𝑔𝑒𝑡

′′ + 𝑓𝑑𝑒𝑒𝑝
′′  (7) 

4 EXPERIMENTS 

4.1 Experimental environment 

The experimental platform utilized in this study is Ubuntu 22.04, an operating system 

that incorporates a NVIDIA A40 graphics card, with a total graphics memory capacity 

of 48 GB per card. The deep learning framework employed is PyTorch 2.0.0, and the 

Python version is 3.8, along with CUDA version 11.7. 

4.2 Datasets and experimental details 

The Visdrone2021 dataset, developed by Tianjin University’s Machine Learning and 

Data Mining Laboratory, is used in this experiment. It is one of China’s most extensive 

and complex aerial drone photography datasets, capturing various daily life scenes with 

10 categories from 14 cities. It covers diverse altitudes, weather, lighting conditions, 

and objects with varying occlusion and deformation. The dataset includes 6,471 train-

ing, 548 validation, and 3,190 test images (with a challenging subset of 1,580). Image 

categories encompass cars, pedestrians, buses, bicycles, tricycles, boxcars, trucks, vans, 

and people, totaling 2.6 million labels. Reflecting real-world drone scenarios, it aligns 

with this study’s background and objectives. 

The experimental setup involved 200 epochs of training per model, with a batch size 

of 16 and 640 𝑥 640 images. The optimization algorithm utilizes AdamW without the 

use of a pre-trained model. The learning rate was 0.01, and mosaic data augmentation 

was employed. 
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4.3 Assessment of indicator 

The evaluation metrics employed in this study encompass mean accuracy (mAP), av-

erage precision (AP), precision (P), recall (R), giga floating-point calculations metrics 

(GFLOPs), and model parameters (Params). The following formulas are employed to 

calculate precision (P) and recall (R): 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

Table 1. The ablation study results of the algorithm on VisDrone2021 dataset. 

Datasets Model P R mAP50 mAP95 GFLOPs Params 

Test YOLOv8-n 38.5 28.7 26.6 14.8 8.2 3.0 

 YOLOv8-n+P2 39.5 30.8 28.9 16.4 40.8 3.8 

 YOLOv8-n+P2+LMFF-Neck 42.2 32.5 30.7 17.4 17.1 2.2 

 
YOLOv8-n+P2+LMFF-

Neck+C2f-MFEM 

42.5 33.2 31.1 17.7 17.3 2.2 

 
YOLOv8-n+P2+LMFF-

Neck+C2f-MFEM+SFWF 

43.6 33.6 32.5 18.3 18.0 2.4 

Val YOLOv8-n 43.7 33.8 33.3 19.2 8.2 3.0 

 YOLOv8-n+P2 46.9 36.0 36.6 21.9 40.8 3.8 

 YOLOv8-n+P2+LMFF-Neck 49.7 37.9 39.3 23.3 17.1 2.2 

 
YOLOv8-n+P2+LMFF-

Neck+C2f-MFEM 

50.0 39.2 40.2 24.1 17.3 2.2 

 
YOLOv8-n+P2+LMFF-

Neck+C2f-MFEM+SFWF 

50.3 39.7 40.8 24.3 18.0 2.4 

In these equations, TP is equivalent to the number of samples that were correctly 

predicted to be positive, FP is equivalent to the number of samples that were incorrectly 

predicted to be positive, and FN is equivalent to the number of samples that were in-

correctly predicted to be negative. 

The formulas for calculating the average precision (AP) and mean average precision 

(mAP) are as follows: 

 𝐴𝑃 =  ∫ 𝑝(𝑥)𝑑𝑥
1

0
 (10) 

 𝑚𝐴𝑃 =  
1

𝐾 ∑ 𝐴𝑃𝑖
𝐾
𝑖=1

 (11) 

The parameter K indicates the number of categories, and AP is the average precision 

of each category.  

GFLOPs are utilized to quantify the computational complexity inherent to the train-

ing of a model.  

Params is used to measure the consumption of computational memory resources. 



4.4 Ablation experiment 

We conducted an experimental study on the VisDrone2021 dataset to evaluate the im-

pact of the enhanced modules in the LightDrone-YOLO model on the detection of ob-

jects from the perspective of a drone. A summary of the experimental data is presented 

in Table 1, illustrating the changes in results with the addition of P2, LMFF-Neck, C2f-

MFEM and SFWF. 

The preliminary findings suggest that incorporating P2 leads to a substantial en-

hancement in the model’s detection performance, as demonstrated by an increase in the 

accuracy of the most stringent metric, mAP95, to 16.4%, thereby substantiating the 

importance of employing spatially rich feature maps for effective small object detection 

in this specific task. 

Secondly, the efficacy of the LMFF-Neck module was demonstrated by its enhance-

ment of the mAP50 by 1.8% and the mAP95 by 1% in comparison to the baseline 

model. This enhancement was achieved while maintaining the capacity of feature rep-

resentation by decreasing the number of channels. The GFLOPs were reduced from 

40.8 to 17.1, representing a decrease of more than 50%, thereby achieving an effective 

balance of performance and efficiency. 

Furthermore, the implementation of the C2f-MFEM module has been demonstrated 

to enhance the mAP50 and mAP95 by 0.4% and 0.3%, respectively, suggesting that the 

module is efficacious in optimising the feature extraction of the backbone network. 

Finally, the SFWF module, which was integrated into the detection head, enhanced 

the mAP50 metric by 1.4%. This module enhances the model’s capacity to integrate 

contextual information and multi-level features, thereby further enhancing the model’s 

detection performance. Concurrently, the computational demands of this module are 

minimal, with an increase of less than 1 GFLOPs and a 0.2M increase in the number of 

parameters. 

4.5 Comparative experiments 

In order to evaluate the efficacy of the proposed methodology, comparative experi-

ments were conducted on the Vis-drone2021 test dataset. The performance of the pro-

posed method was then compared with state-of-the-art algorithms, including Fast R-

CNN, Faster R-CNN, Cascade R-CNN, RetinaNet, CenterNet, DMNet, HRDet+, 

MSC-CenterNet, YOLOv3-LITE and LightUAV-YOLO. 

As shown in Table 2, the outcomes demonstrated the efficacy of the proposed 

method, with significant advancements observed. For pedestrian detection, the method 

attained 30.1% mAP50, comparable to LightUAV-YOLO and superior to Fast R-CNN 

and Faster R-CNN. In the domain of person detection, the proposed method surpassed 

all competitors except DMNet and YOLOv3-LITE. The vehicle detection performance 

exhibited a remarkable distinction. For Car, the method attained 73.9% mAP50, mar-

ginally higher than LightUAV-YOLO and notably higher than other methods. Notably, 

our method outperforms other algorithms in detecting buses with an mAP50 of 55.0%. 
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Table 2. Comparison of different algorithms on the Visdrone2021 test dataset. 

Method PED PER BC Car Van Truck TRI ATRI Bus MO mAP50 

Fast R-CNN 

[24] 

21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7 21.7 

FasterR-CNN 

[24] 

20.9 14.8 7.3 51.0 29.7 19.5 14.0 8.8 30.5 21.2 21.8 

Cascade R-CNN 

[24] 

22.2 14.8 7.6 54.6 31.5 21.6 14.8 8.6 34.9 21.4 23.2 

RetinaNet [24] 13.0 7.9 1.4 45.5 19.9 11.5 6.3 4.2 17.8 11.8 13.9 

CenterNet [25] 22.6 20.6 14.6 59.7 24.0 21.3 20.1 17.4 37.9 23.7 26.2 

DMNet [1] 28.5 20.4 15.9 56.8 37.9 30.1 22.6 14.0 47.1 29.2 30.3 

HRDet+ [26] 28.6 14.5 11.7 49.4 37.1 35.2 28.8 21.9 43.3 23.5 28.0 

MSC-CenterNet 

[1] 

33.7 15.2 12.1 55.2 40.5 34.1 29.2 21.6 42.2 27.5 31.1 

YOLOv3-LITE 

[27] 

34.5 23.4 7.9 70.8 31.3 21.9 15.3 6.2 40.9 32.7 28.5 

LightUAV-

YOLO [28] 

30.5 18.9 9.9 73.5 37.9 33.9 16.6 16.6 52.7 30.3 32.1 

Ours 30.1 19.1 19.1 73.9 36.7 33.3 17.8 18.9 55.0 30.1 32.5 

 

As demonstrated in Table 3, our proposed method demonstrates superior perfor-

mance in comparison to several contemporary lightweight models in the Visdrone2021 

validation dataset, attaining a mAP50 of 40.8%. Specifically, it surpassed Drone-

YOLO(nano) by 2.7%, LightUAV-YOLO by 1.0%, LE-YOLO by 1.5%, YOLOv5-n 

by 7.9%, YOLOv5-s by 0.2%, YOLOv8-n by 7.5%, YOLOv8-s by 0.3%, and 

YOLOv11-n by 11.3%. With 24.3% mAP50:95, it was competitive, especially consid-

ering its lightweight nature (2.4M parameters). 

Table 3. Experimental results on VisDrone2021 val datasets. 

Method mAP50 mAP95 Params 

Drone-YOLO(nano) [19] 38.1 22.7 3.05 

LightUAV-YOLO [28] 39.8 24.1 2.2 

LE-YOLO [29] 39.3 22.7 2.1 

LUDY-N [16] 35.2 - 2.8 

LUDY-S [16] 41.7 - 10.3 

YOLOv5-n [30] 32.9 18.6 2.5 

YOLOv5-s [30] 39.3 23.4 9.1 

YOLOv8-n 33.3 19.2 3.0 

YOLOv8-s 39.5 23.5 11.1 

YOLOv11-n 29.5 17.4 2.58 

Ours 40.8 24.3 2.4 

 



5 CONCLUSIONS 

In the task of object detection in UAV aerial images, we face a series of challenges, 

mainly including small targets, complex backgrounds, light interference, and limited 

hardware resources. These issues affect the detection accuracy of the detection model, 

while making it particularly difficult to find a balance between efficiency and perfor-

mance. To address these challenges, this study proposes a model called LightDrone-

YOLO by improving it based on the YOLOv8 architecture. 

Specifically, we significantly enhance the model’s ability to detect small targets by 

introducing a specialized small target detection layer P2. In addition, the design of the 

LMFF-Neck structure effectively reduces the number of parameters and operations of 

the model and improves the computational efficiency. Meanwhile, the combination of 

the MFEM module and the C2f module further strengthens the feature extraction effect 

of the backbone network, enabling the model to capture target features more accurately. 

Finally, we designed the SFWF module and combined it with the detection head to 

effectively mitigate the feature loss problem that may occur during the cross-scale fu-

sion process. 

Although the LightDrone-YOLO model has made significant progress in target de-

tection for UAV aerial scenes, it still has some limitations. Especially when multiple 

small targets overlap, the detection accuracy of the model may be affected. Therefore, 

in our future research work, we will continue to improve and optimize the LightDrone-

YOLO model with the aim of achieving higher detection accuracy and stronger gener-

alization ability. 
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