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Abstract. Image blind watermarking serves as a critical tool for copyright pro-

tection of digital images. Existing watermarking schemes usually perform well 

under a single noise condition. However, in practical applications, watermarked 

images are often exposed to many different types of noise. This combined noise 

condition significantly degrades the image visual quality and watermark extrac-

tion accuracy of existing watermarking schemes. To address these challenges, we 

propose a novel two-stage training strategy that enhances watermarking robust-

ness by training the model with various noise intensities, improving performance 

under combined noise conditions. To further improve the imperceptibility of the 

watermarked image while ensuring high accuracy of watermark extraction, we 

propose a strength balanced watermarking optimization algorithm in the model 

testing phase. Furthermore, since JPEG compression has a non-differentiable op-

eration, existing schemes can not effectively obtain satisfactory watermarking 

performance for JPEG compression. We introduce a differentiable fine-grained 

JPEG compression module to improve the robustness of existing schemes for 

JPEG compression. The results of the experiment indicate our proposed scheme 

outperforms state-of-the-art schemes under multiple noise conditions. Under 

noise-free condition, it achieves a 0% bit error rate and 53.55 dB PSNR, and 

under combined noise conditions, it still achieves an average of 2.40% bit error 

rate and 42.70 dB PSNR. 

Keywords: Image blind watermarking, Staged training strategy, JPEG com-

pression. 

1 Introduction 

With the explosive growth of digital content, protecting intellectual property rights and 

ensuring the integrity of information have become particularly important [1], [2]. Image 

blind watermarking technique serves as a key tool, offering robust copyright protection 

and verification for digital images with high imperceptibility [3], [4]. However, with 

the diversification of multimedia applications and technological advances, traditional 



watermarking schemes gradually show their limitations, especially in dealing with 

combined noise conditions and maintaining the balance between robustness and imper-

ceptibility [5]. 

Traditional image watermarking schemes are usually divided into pixel and fre-

quency domain schemes. The pixel domain-based schemes perform the watermark em-

bedding process by adjusting the pixel data of the image, such as pixel value adjust-

ment, pixel block shifting, pixel feature encoding [6-9]. These schemes are favored for 

their good imperceptibility, but exhibit low robustness against various attacks.In con-

trast, frequency domain-based scheme perform the watermarked embedding process by 

adjusting the coefficients in the transform domain of the image, such as DCT coefficient 

adjustment[10], [11], DWT coefficient modification [12], [13]. These schemes improve 

attack resistance at the expense of imperceptibility. 

Rapid advances in deep learning have prompted researchers to apply it to digital 

watermarking, resulting in numerous innovative schemes. [14-18] These schemes 

mainly focus on improving models [19], training strategies [20] and noise layer design 

[21] to enhance model performance. However, these models tend to perform poorly 

under combined noise conditions. This is because various types of noise require more 

additional watermark residual information to maintain a high decoding rate, thereby 

reducing the imperceptibility of the watermark image. 

In deep learning models, the noise layer is essential for enabling the model to effec-

tively learn various noise features and withstand different types of distortions. Conse-

quently, it is important to identify functions that accurately model real-world noise. For 

most of the differentiable digital distortions, researchers have proposed relevant math-

ematical functions to improve the robustness under such distortions, while JPEG com-

pression presents a challenge because it involves non-differentiable operations such as 

quantization and cropping [22]. As a result, existing models exhibit a low watermark 

decoding rate under JPEG compression distortion, failing to meet the practical applica-

tion standards for watermark decoding. 

Following the research and analysis presented above, we can summarize the limita-

tions and challenges faced by current image watermarking schemes: existing schemes 

fail to effectively balance watermark imperceptibility and robustness under combined 

noise conditions. Moreover, since JPEG compression involves non-differentiable oper-

ations, it restricts the model's ability to learn the noise distribution [23]. Consequently, 

most models exhibit poor robustness against JPEG compression, limiting their practical 

application. To solve the limitations discussed above, we design a novel two-stage 

training scheme for model training. In the testing phase, we introduce a strength bal-

anced watermarking optimization algorithm, enabling the model to achieve an optimal 

trade-off between watermarking imperceptibility and robustness under combined noise 

conditions. To enhance the model's robustness against JPEG compression, we introduce 

a differentiable fine-grained JPEG compression module, closely mimicking real JPEG 

compression. Experimental results demonstrate superior outcomes compared to previ-

ous schemes. 

In summary, the main contributions of this paper include the following three aspects: 

⚫ A novel two-stage watermarking model training strategy is proposed, which effec-

tively ensure the robustness of watermarking under combined noise conditions. 
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⚫ The strength balanced watermarking optimization algorithm is proposed to optimize 

the imperceptibility and robustness of watermarks in the testing phase. 

⚫ A differentiable JPEG compression module is introduced to enhance the model's ro-

bustness against JPEG compression distortions. 

The rest of this paper is structured as follows: Section 2 reviews related work in the 

field. Section 3 presents a detailed description of the proposed method. Section 4 de-

scribes the experimental setup and evaluation criteria. Finally, Section 5 concludes the 

paper and discusses potential future work. 

2 Related Work 

2.1 Image Blind Watermarking Based on Deep Learning 

The deep-learning based image blind watermarking model was first proposed by Ha-

midi et al. [24] in 2017. By employing autoencoder convolutional neural networks 

(CNNs), it brings better imperceptibility and robustness than traditional schemes. HiD-

DeN [14] was the first paper introducing adversarial networks to image blind water-

marking. It was the first end-to-end scheme using neural networks. The end-to-end 

scheme enables joint learning of the encoder model and decoder model, but training 

both modules makes it challenging to optimize the trade-off between watermark robust-

ness and imperceptibility. Liu et al. [20] proposed the TSDL training strategy. The 

scheme consists of two phases:  noise-free, end-to-end adversarial training phase, and 

noise-aware, decoder-focused training stage. This scheme effectively counters black-

box noise. However, further improvements are required in terms of watermark robust-

ness and imperceptibility under combined noise conditions. Motivated by these ad-

vancements, we design a novel two-stage training strategy. By using different noise 

strengths with loss functions for training in different stages, the robustness and imper-

ceptibility of digital watermarked images can be significantly improved. 

 

2.2 Strength Factor 

Strength factor was explored by several scholars within the realm of deep-learning 

based watermarking schemes. Redmark [18] and TSDL [20] employed the strength fac-

tor to control the robustness and imperceptibility of watermarking, yet the overall en-

hancement was limited without significant improvements. MBRS [21] used the strength 

factor during testing to adjust the PSNR values for different models, enabling a clearer 

comparison of watermark decoding rates. However, the in-depth exploration of the 

strength factor remains insufficient. Later, the Adaptor scheme [25] proposed an adap-

tive strength factor training strategy that introduces a novel loss function during the 

training phase, aiming to ensure high watermark decoding rates while maximizing 

PSNR and SSIM values for each image. Nevertheless, this scheme necessitates retrain-

ing the model for different datasets, thereby lacking generalizability. To solve this lim-

itation, we design a strength balanced watermarking optimization algorithm to generate 



watermarked images with high imperceptibility against various types and intensities of 

distortions. 

 

2.3 JPEG Simulations 

Among the various types of distortions faced by watermarking, existing deep learning 

schemes can not effectively measure watermarking performance under JPEG compres-

sion [23]. This limitation arises because the rounding and truncation operations inherent 

in JPEG compression are non-differentiable. Consequently, scholars have proposed 

several schemes. HiDDeN [14] introduced JPEG-Mask and JPEG-Drop schemes as al-

ternatives to actual JPEG compression. The two-stage training scheme proposed by 

TSDL [20] represents an improvement over simulation schemes. However, since only 

the decoder is trained in the second stage, information loss after compression occurs, 

affecting final performance. MBRS [21] proposes a training strategy that combines the 

real and the simulated JPEG compression and has achieved significant results. How-

ever, when trained jointly with other noises, the robustness of MBRS [21] against JPEG 

compression decreases because adding other noises distorts the original combined train-

ing mechanism. To address these challenges, this paper introduce a refined JPEG com-

pression function module, which is integrated into the noise layer for direct application 

during training, similar to other differentiable noise types. 

 

 
 

Fig. 1. Overall framework of the model.The framework has four modules: (1) Encoder, 

(2) Decoder, (3) Noise Layer, and (4) Adversary 

 

3 Proposed Method 

3.1 Model Architecture 

 Fig. 1 provides an overview of our model's comprehensive architecture. It has four 

parts: (1) Encoder: The encoder contains parameters 𝜃en, the inputs are the original 
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image 𝐼𝑜𝑟𝑖 ∈ 𝑅𝐶×𝐻×𝑊 and original watermark 𝑊𝑜𝑟𝑖 ∈ {0,1}𝐿, and output is the residual 

image 𝐼𝑟𝑒𝑠, thus the watermarked image 𝐼𝑒𝑛𝑐  is obtained as follow, 

 Ienc = Iori +Ires   (1) 

(2) Noise layer: a joint noise layer is constructed by fitting a mathematical function to 

various noises. The input to noise layer is the watermarked image  𝐼𝑒𝑛𝑐   and the output 

is the noise image 𝐼𝑛𝑜𝑖 . (3) Decoder: The decoder, also with parameters 𝜃de,  takes the 

noisy image 𝐼𝑛𝑜𝑖  as input and outputs the decoded wateramrk 𝑊𝑟𝑒𝑐 . (4) Adversary: The 

adversary has parameters 𝜃di to distinguish original image 𝐼𝑜𝑟𝑖   and  watermarked im-

age 𝐼𝑒𝑛𝑐. The main function of the adversary is to distinguish the difference between 

the watermarked image 𝐼𝑒𝑛𝑐  and the original image 𝐼𝑜𝑟𝑖 , so as to further   

 
Fig. 2. Detailed structure diagram of encoder and decoder 

 

Encoder. The encoder architecture of our model is shown in the let figure of Fig 2. 

The encoder E is a network trained with parameters 𝜃en to embed the watermark into 

the original image. The watermark 𝑊𝑜𝑟𝑖  is expanded redundantly into a form of 

3 × 𝐻 ×𝑊, matching the dimensions of the original image. Then, this extended water-

mark is concatenated with the input image to produce a residual image 𝐼𝑟𝑒𝑠. Then this 

residual image is added to original image to produce the watermarked image. The en-

coder consists of seven convolutional layer. To capture features from both the water-

mark and cover image at multiple levels, the outputs from layers 2, 4, 5, and 7 are 

concatenated with the watermarked image, respectively, while the outputs from convo-

lutional layers 3 and 6 are spliced with the original encoded image. Utilizing these 

multi-level convolutional mappings allows for more efficient learning of the watermark 

pattern. An MSE loss function is applied during the training of encoder, aimed at min-

imizing the difference between original image the watermarked image. 
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 𝐿𝐸1 = 𝑀𝑆𝐸(𝐼𝑜𝑟𝑖 , 𝐼𝑒𝑛𝑐) = 𝑀𝑆𝐸(𝐼𝑜𝑟𝑖 , 𝐸(𝜃𝑒𝑛 , 𝐼𝑜𝑟𝑖 ,𝑊𝑜𝑟𝑖))  (2) 

 

Decoder. The decoder D, equipped with parameters θde, is trained to extract the wa-

termark from a noisy image Inoi. As shown in the right figure of Fig. 2, the main struc-

ture of the decoder is similar to the encoder, using seven convolutional layers and one 

fully connected layer. To ensure the final output has the same structure as the original 

watermark 𝑊𝑜𝑟𝑖, Conv1 and Conv3 employ a stride size of 1, following the default 

configuration, whereas the stride sizes of the remaining layers are set to 2 for reducing 

the feature tensor size. Following Conv7, the feature maps are flattened into a vector, 

which is passed through a fully connected layer to generate a one-dimensional output 

tensor of the same dimensionality as the watermark 𝑊𝑜𝑟𝑖. We also applies MSE loss 

function to train the decoder, which to minimize the difference between the recovered 

watermark information 𝑊𝑟𝑒𝑐and the original watermark information 𝑊𝑜𝑟𝑖 , aiming to 

make each bit the same. 

 

 𝐿𝐷𝑒 = 𝑀𝑆𝐸(𝑊𝑜𝑟𝑖 ,𝑊𝑟𝑒𝑐) = 𝑀𝑆𝐸(𝑊𝑜𝑟𝑖 , 𝐸(𝜃𝑒𝑛 , 𝐼𝑛𝑜𝑖))  (3) 

 

Adversary. In our scheme,  the adversary consists of three layers of 3×3 convolu-

tional layers followed by a common pooling layer for classification. The adversary is 

utilized to predict whether an image contains watermark information. It is trained by 

minimizing the following loss function. 

Update parameters 𝜃di to minimize 

 

 𝐿𝐴 = 𝑙𝑜𝑔(1 − 𝐴(𝜃𝑑𝑖 , 𝐸(𝜃𝐸𝑛 , 𝐼𝑜𝑟𝑖 ,𝑊𝑜𝑟𝑖))) + 𝑙𝑜𝑔(𝐴(𝜃𝑑𝑖 , 𝐼𝑜𝑟𝑖)) (4) 

 

Then update parameters 𝜃En to minimize 

 LE2 = log(A(θdi, Ienc)) = log(A(θdi, E(θEn, Iori,Wori))) (5) 

 

Noise layer. The noise layer is a crucial component of the model for achieving ro-

bustness. Common differentiable noises, such as crop, gaussian filtering (GF), gaussian 

noise (GN), resize, and salt&pepper(S&P) noise, can be directly modeled using existing 

mathematical functions. However, for non-differentiable noise types like JPEG com-

pression, existing fitting functions are not particularly effective. To address this issue, 

we introduce a refined JPEG compression function module designed in Reich et al. 

[26]. According to our research, this represents the first instance of applying this par-

ticular scheme in the field of digital watermarking. This JPEG compression module 

performs differentiable processing on quantization, rounding down, truncation, and 

other operations, making it directly applicable for training deep learning models when 

highly fitting real JPEG compression. Specifically, for differentiable quantization, the 

JPEG compression module uses the polynomial approximation proposed by Shin et al. 

[27] to approximate the quantization operation using the rounding function. 

 

 x = ⌊x⌋ + (x − ⌊x⌋)3 (6) 
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In the quantization step, a given JPEG quality Q is mapped to a scale factor s. The 

scaling factor s is calculated as follows, 

 

 s(Q) = {

5000

Q
                 Q < 50

200 − 2 ∗ Q     Q ≥ 50
  (7) 

 

Since the scaling factor s and the corresponding quantization table need to be stored 

as integers, a differentiable scale floor function is necessary. The JPEG compression 

module utilizes polynomial rounding to approximate the downward rounding function, 

offering advantages over alternative schemes. 

 

 s = ⌊s − 0.5⌋ + (s − 0.5 − ⌊s − 0.5⌋)3 (8) 

 

For differentiable quantization table (QT) clipping, the JPEG compression module 

employs a differentiable clipping technique to constrain the values within an appropri-

ate range. 

 

 clip(x) = {

0 + 0.001 ∗ (x − 0)                    if  x < 0

x                                          if  x ∈ [0, 255]

255 + 0.001 ∗ (x − 255)       if x > 255
 (9) 

 

3.2 Model Training and Testing Strategy  

The method employed in our scheme comprises three steps: two training stages and a 

testing stage for the adaptive control of watermarking performance through strength 

factor adjustment. This process primarily uses the principle of generating residual im-

ages robust against various types of high-intensity noises during the training phase. 

Subsequently, a strength balanced watermarking optimization algorithm is applied in 

the testing phase to produce high-quality watermark images suitable for different noise 

intensities. The entire process of model training and testing strategy is shown in the Fig. 

3. 

In the first training stage, the model is trained under various strong noise distortion 

conditions. To enhance stability and accelerate training speed, only the loss function of 

the decoder is utilized in this phase, as represented by the following equation. 

 L1 = λDLDe (10) 

 



 
Fig. 3. The overall pipeline of model training and testing strategy. 

 

At the same time, to improve the robustness of the model under combined noise con-

ditions, we choose to train a single model that can withstand a variety of noises, rather 

than training separate models for each type of noise.  The noise layer Npool we used is 

shown as follows. When training the model, the watermarked image is randomly dis-

torted by one of the noises in the noise pool Npool before decoding, which ensures that 

the model has good robustness to various types of noises.    

 

Npool = {Identity(),Crop(pc), S&P(pp),Cropout(po),GN(δ), 

GF(σ),Resize(pr), ,Dropout(pd), JPEG(Q)} 
 

As shown in the corresponding variables in Table 1, during the training process, the 

model randomly selects different types of noises with varying intensities each time. 

Consequently, the model learns generalized features under diverse noise conditions. 

The first stage of training is designed to enable the decoder to efficiently learn robust 

features for various types of noise. 

In the second stage, building upon the robust decoder obtained from the first stage 

of training, the model is further trained using all the loss functions. This ensures that 

the model benefits from both the initial robustness and the optimization across all pa-

rameters. 

 L2 = λELE1 + λDLDe + λALE2 (11) 

And the training is continued using a fixed medium intensity noise as shown in Table 

1. This training strategy improves the imperceptibility of watermark while maintaining 

the robustness of the watermark.  

In the testing phase, to further improve the quality of the watermarked image, we 

designed a strength balanced watermarking optimization algorithm to measure the qual-

ity of the watermarked image and the decoding accuracy, the algorithm process is 

shown in Algorithm 1. The core principle behind our algorithm is that since the  
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Table 1. The parameter settings of noise pool in different training stage. 

Parameter pc pp po δ 

First stage value (0,50%] (0,10%] (0,50%] (0,10%] 

Second stage value 3.5% 10% 10% 10% 

Parameter σ pr pd Q 

First stage value [2,25] (0,1] (0,50%] [10,50] 

Second stage value 2 50% 30% 10 

 

watermarked image Ienc is derived from the direct addition of the original image Iori 
and the residual image Ires, the robustness and imperceptibility of the watermark are 

mainly influenced by the residual image. Therefore, we use the strength factor S to 

adjust the weight of the residual image during the testing phase. The relationship can 

be represented as follows: 

 Ienc = Iori + Ires ∗ S (12) 

By adjusting S, we aim to identify an optimal value in different noise conditions that 

ensures watermark imperceptibility while maintaining an acceptable decoding loss rate.  

4 Experiments 

To validate the effectiveness of our scheme, this section presents a =introduction to the 

experimental details and results. The content encompasses five main parts: First, we 

describe the datasets and explain how we chose the evaluation metrics. Second, we 

detail the experimental steps, including model training and testing setups. Third, we 

analyze the scheme's performance about watermark imperceptibility and robustness. 

Fourth, we compare our scheme with state-of-the-art schemes to show its advantages. 

Finally, ablation experiments verify the effectiveness of our refined JPEG compression 

module and explain why our model is simple yet effective. 

 

4.1 Datasets and Evaluation Metrics 

Datasets. Similar to other schemes, we randomly selected 10,000 natural images from 

the COCO dataset as the training set and an additional 1,000 images as the validation 

set. We used 5000 COCO datasets different from the training and validation sets as the 

test set. To better demonstrate the scheme's generalization ability, we randomly selected 

1000 images from the Mini-ImageNet dataset of different categories as the test set. The 

evaluation will be based on the average performance metrics reported on test set. 

Metrics. To evaluate the performance of our scheme, we use a series of quantitative 

metrics. The robustness of watermarks measured by  Bit Error ratio (BER), which refers 

to the error between original watermark Mori and extracted watermark Mrec. The im-

perceptibility of Watermarked images Ienc measured by Signal-to-Noise Ratio (PSNR) 

and Structural Similarity (SSIM). The formula for metric is shown below. 

 



 BER(%) = (
1

L
× ∑ |Mori −Mrec|

L
k=1 ) × 100% (13) 

 

 PSNR(Iori, Ienc) = 20 × log10
MAX(Iori,Ienc)−1

MSE(Iori,Ienc)
 (14) 

 

 SSIM(Iori, Ienc) =
(2μxμy+C1)(2σxy+C2)

(μx
2+μy

2+C1)(σx
2+σy

2+C2)
 (15) 

 

Algorithm 1 Method of the Strength Balanced Watermarking Optimization 

Input: Original images Iori, watermarks Wori, error_rate  

Output: BER, PSNR, SSIM, optimal strength factor S  

1:  Initialize parameters:  

2:       S ← 0.01  

3:       step_size ← 0.02  

4:       max_attempts ← 50  

5:       optimal_S ← S  

6:       attempt ← 0  

7:  while attempt < max_attempts do  

8:       Encode  Wori into  Iori  with strength S → Generate Ienc and  Wrec 

9:       Compute PSNR and SSIM  between  Iori  and  Ienc  

10:     Compute BER between  Wori  and  Wrec 

11:     if  BER < error_rate then  

12:     optimal_S ← S  

13:     S ← S + step_size  

14:     attempt ← attempt + 1  

15:     else  

16:        Break loop  

17:     end if  

18:  end while  

19:  Output optimal_S, corresponding BER, P SNR, SSIM 

 

Baseline. Our baselines for comparison are HiDDeN [14], MBRS [21], Adaptor[25]  

and MCFN [28]. Their works all use convolutional neural networks as the model frame-

work and use strength factors to control the experimental results. HiDDeN [14] and 

MBRS [21] opened the source code of their model. We are unable to achieve the best 

performance they reported. Adaptor [25]  and MCFN [28] are not yet open-source. To 

ensure fair comparison with their reported results, we directly adopt the results pub-

lished in MCFN [28]. 

 

4.2 Implementation Details  

The model training in this scheme is divided into two stages. During training and testing 

stage, all images are uniformly resized to 128 × 128. To maintain consistency with 

other schemes, we randomly embed L=64 bits of information into each image. The 

entire training process is conducted on NVIDIA GeForce RTX 3090. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 In the first stage, the initial learning rate is set to 1e-3, with a batch size 32, weight 

factor 𝜆𝐷 is 10. Additionally, the learning rate is automatically halved every 20 epochs 

to ensure rapid convergence in the early training stages and more precise learning of 

watermark robustness features. In the second stage, the initial learning rate is set to 1e-

4 and a reduced batch size 8, weight factor 𝜆𝐸 is 6.18, 𝜆𝐷 is 10 and  𝜆𝐴 is 0.001. 

Both stages involve training for 100 epochs and employ the Adam optimizer with 

default hyperparameters. For the noise layer, we use a randomly mixed high-intensity 

noise layer, as described earlier. This scheme aims to enhance the model’s resistance 

to various distortions by exposing it to different noises, thereby improving the robust-

ness in practical applications. 

 

 
Fig. 4. Qualitative results of our scheme under different noises. A separate type of noise 

is represented by each column. Top: original image Iori; Middle: encoded image  Ienc ; 
Bottom: noisy image  Inoi. 

 

4.3 Imperceptibility and Robustness Tests 

We evaluate the results of our scheme using a model trained under combined noise 

conditions. Extensive tests were conducted with varying noise intensities, and Fig. 4 

shows the visual quality results of each noise. Each column shows the test results for 

each specific noise, and the name of the noise and the noise intensity are shown in the 

first row. The next two rows are the original image Iori, and the watermarked image 

Ienc. We can find that the images Iori and Ienc are almost visually indistinguishable, 

which shows that our scheme has good invisibility. The bottom row shows the noise 

images Inoi under different noises.  

Table 2 lists the detailed quantitative experimental results corresponding to Fig. 4. 

The SSIM and PSNR values of the watermarked images under each type of noise are 

not the same because different types and intensities of noise affect the watermarked 

images differently. In the Identity case, our scheme achieves a PSNR value of 53.55 

and a BER of less than 0.01%, which demonstrates the high imperceptibility and ro-

bustness of the scheme. Table 3 lists the detailed quantitative experimental results under 

two types of distortions.The PSNR values of the watermarked images obtained under 

other noises also reach above 30 when high decoding rates are guaranteed. It shows that 

there is basically no gap visually with the original image. 
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Table 3. The parameter settings of noise pool in different training stage. 

Noise Factor 
combined 

BEE(%) PSNR(dB) SSIM S 

Identity - 0.0 53.55 0.995 0.064 

Dropout p = 30% 0.0 44.14 0.968 0.192 

GF δ = 0.01 0.0 43.72 0.966 0.186 

Resize p = 50% 0.0 48.15 0.985 0.121 

S&P p = 10% 0.0 39.13 0.921 0.317 

GN σ = 25 4.16 41.49 0.947 0.247 

Cropout p = 50% 7.80 45.50 0.973 0.169 

Crop p = 50% 7.26 45.90 0.975 0.154 

RealJPEG Q = 50 0.01 36.61 0.888 0.434 

Average - 2.40 42.70 0.953 0.227 

 

Table 3. The robustness and imperceptibility results of two types of combined noise across 1000 

images in the Mini ImageNet dataset. The meaning of ‘SP (0.1)+Crop (0.5)’ is that the water-

marked image is first processed by SP(0.1) and then processed by Crop(0.5) to obtain a noisy 

image containing two types of distortions. 

Noise（Factor） 
combined 

BEE(%) PSNR(dB) SSIM S 

SP(0.1)+Crop(0.5) 3.92 33.14 0.808 0.638 

SP(0.1)+RealJpeg(50) 4.11 32.62 0.80 0.68 

RealJpeg(50)+GF(2) 5.00 31.69 0.78 0.758 

RealJpeg(50)+Crop(0.5) 4.45 32.82 0.805 0.667 

RealJpeg(50)+Resize(0.5) 4.29 35.33 0.87 0.508 

GN(0.01)+Crop(0.5) 3.56 39.89 0.931 0.291 

 

4.4 Comparison with the State-of-the-arts 

 To fairly evaluate the performance of our scheme compared with other schemes, we 

use the same Dataset as MCFN [28] and randomly selected 5000 images as the test set 

for the experiment. Table 4 shows the values of each metric for each scheme under 

different noises, and our scheme not only  achieves a higher PSNR than other schemes 

but also excels in robustness tests.HiDDeN [14], MBRS [21], Adaptor[25]  and MCFN 

[28] 

To further illustrate the performance of our scheme, a comprehensive analysis is 

conducted which is shown in Table 4. Under Dropout (p=70%), our scheme achieves a 

PSNR of 50.80 dB, which is  higher than HiDDeN[14] (35.04 dB), MBRS[21] (41.6 

dB),  Adaptor[25] (44.53 dB) and MCFN [28] (49.75dB). Similarly, under Crop (p 

=70%), our scheme maintains a high PSNR of 48.46 dB, outperforming all other 

schemes. In terms of JPEG compression (Q = 50), our scheme achieves a PSNR of 

36.31 dB, which is significantly higher than other schemes. Notably, our scheme also 

achieves the lowest Bit Error Rate (BER) across all noise types. This comprehensive 

evaluation confirms that our scheme enhances the imperceptibility and robust of water-

mark under various types of noise conditions. 
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Table 4. Results of robustness and imperceptibility compared with different models under 5000 

images in COCO dataset. 

Models Metrics 

Noise 

GN GF S&P Dropout Crop JPEG 

δ=0.05 σ=2 pp=1% pd=70% pc=70% Q=50 

HiDDeN 

PSNR(dB) 29.92 33.49 34.90 35.04 38.68 30.99 

SSIM 0.902 0.919 0.943 0.930 0.965 0.858 

BER(%) 22.0 12.0 28.0 22.0 21.0 35.2 

MBRS 

PSNR(dB) 33.19 42.78 42.73 41.6 39.59 31.08 

SSIM 0.832 0.973 0.973 0.975 0.956 0.832 

BER(%) 0.063 0.0035 0.0016 0.013 0.98 0.0022 

Adaptor 

PSNR(dB) 34.8 45.37 44.15 44.53 41.92 31.15 

SSIM 0.873 0.984 0.981 0.982 0.972 0.841 

BER(%) 0.0034 0.0030 0.0016 0.011 0.86 0.0024 

MCFN 

PSNR(dB) 35.15 47.67 48.27 49.75 47.79 31.56 

SSIM 0.919 0.991 0.986 0.990 0.993 0.848 

BER(%) 0.0022 0.0024 0.00014 0.00062 0.047 0.001 

Ours 

PSNR(dB) 37.55 45.14 46.78 50.80 48.46 36.31 

SSIM 0.902 0.974 0.982 0.992 0.987 0.884 

BER(%) 0.0 0.0 0.0 0.0 0.0 0.00006 

 

 

4.5 Ablation Experiments 

To verify the advantage of the two-stage training strategy proposed in our scheme, the 

model is trained with  L2 total loss in only one stage under strong mix noise. The ex-

perimental results show that the decoding rate of watermarks in the training stage is 

around 50%. This is because the model can not learn to be robust to each strong noise 

under the action of multiple loss functions, which leads to poor robustness. We also 

verify the advantage of the model we used. We replace our model with the model used 

by MBRS [21]. During the training stage, MBRS [21] model performs well on the 

training set with a BER of 0, while the BER on the validation set is as high as 20%, 

indicating that the model is not able to effectively learn the mixed noise features, lead-

ing to overfitting of the model. Excessive model complexity may be the cause of the 

problem. MBRS [21] contains a large number of attention modules which tend to focus 

more on feature extraction from the original image. In contrast, our scheme use only a 

combination of convolutional and watermarked embeddings, allowing the model to fo-

cus more on the learning of the residual image, which can help the model converge and 

achieve better results. 

In addition, to verify the advantage of the JPEG differentiable compression layer 

used in our scheme, we replace its original mixed training scheme with our noise layer 

based on MBRS [21] scheme. We also compare with the scheme JPEG-SS used in 

model HiDDeN [14], and the experimental results obtained are shown in Table 5. The 



experimental results show that our scheme can be closer to the real JPEG compression 

and get better results in the robustness test. 

 

Table 5. Comparison among MBRS, JPEG-SS, and our method. The result shows that our 

method is more robust. 

Methods 
Q=90 Q=50 Q=30 

BER(%) SSIM BER(%) SSIM BER(%) SSIM 

Ours 0.00 31.71 0.00 31.93 2.48 31.92 

MBRS 0.01 33.28 2.75 36.89 12.46 36.90 

JPEG-SS 2.11 31.98 0.55 31.96 7.32 31.97 

 

5 Conclusion 

In this paper, in order to further improve the robustness and imperceptibility of water-

marking in combined noise conditions, we propose a two-phase training strategy aimed 

at obtaining a model with high robustness to multiple types of noise. In the testing 

phase, we employ a strength balanced watermarking optimization algorithm to further 

improve the imperceptibility of the watermarking while ensuring high robustness. 

Moreover, to enhance the robustness of the existing scheme to JPEG compression, we 

introduce a fine-grained JPEG compression module. Experimental results show that our 

scheme outperforms other existing schemes and demonstrates significant practical 

value.  Specifically, the scheme allows the selection of optimal strength factors based 

on the application scenarios to achieve the best performance. In future studies, we will 

continue to optimize the algorithm to improve its efficiency and extend the application 

scenarios of this scheme so that it can work effectively in more complex distortion 

conditions, such as print-and-scan or print-and-shoot scenarios. 
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