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Abstract. In the pursuit of advanced artificial intelligence capabilities, the chal-

lenges posed by Large Language Models (LLMs) cannot be overlooked. LLMs, 

despite their capacity for multi-step logical reasoning through CoT prompting, 

often encounter issues such as hallucinations that undermine the accuracy of re-

sults and inefficiency in processing. Recognizing the complementary strengths 

of small Language models, we introduce the MS-HM Synergy (Multi-Stage Hal-

lucination Mitigation Synergy) framework. This novel framework, centered 

around guided inference and model synergy, comprises three essential stages. 

Firstly, Guided Inference utilizes LLMs for initial reasoning, tapping into their 

language understanding. Secondly, Hallucination Detection acts as a safeguard, 

meticulously identifying and eliminating unreliable outputs. Lastly, Result 

Standardization ensures the generation of coherent and structured outputs. Meth-

odologically, LLMs are tasked with complex reasoning, while small Language 

models play a crucial verification role. Empirical results on benchmarks like 

MMLU, MATH, and LogiQA exhibit substantial performance improvements. 

The MS-HM Synergy not only effectively mitigates hallucinations for enhanced 

reliability but also boosts efficiency and flexibility, heralding a new era of lever-

aging combined model strengths to overcome LLM limitations. 

Keywords: Large Language Models (LLMs), Multi-step logical reasoning, 

Hallucinations, Small Language models, Model synergy. 

1 Introduction 

In recent years, the development of artificial intelligence (AI) has seen significant ad-

vancements, particularly in the realm of complex reasoning tasks. Reliable AI systems 

capable of multi-step logical reasoning are increasingly important across various do-

mains, including medical diagnosis, education, and decision-making processes in high-

stakes environments [4,6,15,32]. Large Language Models (LLMs) have emerged as 

powerful tools in this context, demonstrating impressive capabilities in generating co-

herent and contextually relevant responses. Their ability to perform multi-step reason-

ing through techniques such as Chain-of-Thought (CoT) prompting has been widely 



recognized [32]. However, LLMs also face notable limitations, such as the tendency to 

produce hallucinations—outputs that are plausible but factually incorrect—and their 

resource-intensive nature, which can hinder scalability and efficiency [13,27,35]. 

 

Fig. 1. Detailed overview of our proposed MS-HM Synergy (Multi-Stage Hallucination Mit-

igation Synergy) method. 

On the other hand, smaller models, such as those based on BERT and its variants, 

offer complementary strengths. These models are often more efficient in terms of com-

putational resources and can provide precise outputs for specific tasks. However, they 

typically have a narrower reasoning scope and may struggle with complex, multi-step 

problems that require deeper contextual understanding [26]. This dichotomy between 

LLMs and smaller models highlights the need for a framework that can effectively 

combine their respective strengths while mitigating their weaknesses. 

Existing solutions to address the limitations of LLMs, such as self-correction mech-

anisms and ensemble methods, have shown promise but often lack structured collabo-

ration between different model types. These approaches typically rely on a single mod-

el's capabilities or simple aggregations of multiple models' outputs, without fully lev-

eraging the unique strengths of each model type in a coordinated manner [17,23,33]. 

As a result, there remains a significant gap in effectively integrating the creativity and 

reasoning depth of LLMs with the precision and efficiency of smaller models. 

To bridge this gap, we propose the MS-HM Synergy (Multi-Stage Hallucination 

Mitigation Synergy) framework, a novel approach designed to enhance reasoning per-

formance through phased collaboration between LLMs and small models. This frame-

work consists of three essential stages: 
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⚫ Guided Inference: In this stage, the LLM takes the lead in decomposing complex 

tasks through heuristic questioning, deliberation, and reflection. By breaking down 

the problem into manageable components, the LLM generates initial reasoning steps 

and potential solutions, leveraging its advanced language understanding and reason-

ing capabilities. 

⚫ Hallucination Detection: Following the initial reasoning, small models, such as 

BERT-NLI, are employed to meticulously identify and flag contradictions or incon-

sistencies in the LLM's outputs. This stage acts as a safeguard, ensuring that unreli-

able or hallucinated outputs are detected and addressed before finalizing the solution. 

⚫ Result Standardization: The final stage involves the hybrid use of rule-based and 

model-driven methods to format and standardize the output. This ensures that the 

generated results are coherent, structured, and aligned with predefined criteria, en-

hancing the overall reliability and usability of the framework. 

By integrating these three stages, the MS-HM Synergy framework aims to effec-

tively mitigate hallucinations, enhance reliability, and improve efficiency in complex 

reasoning tasks. Our methodology leverages the strengths of both LLMs and small 

models, creating a Synergistic environment where each model type contributes to the 

overall reasoning process. Empirical evaluations on established benchmarks, including 

MMLU [9], MATH [10], and LogiQA [20], demonstrate substantial performance im-

provements compared to existing state-of-the-art methods, such as traditional CoT and 

Socratic questioning [24]. The results highlight the framework's ability to enhance ac-

curacy, manage complex problem decomposition, and provide a more robust and flex-

ible solution for AI-driven reasoning tasks. 

The main contributions of our paper are as follows: 

1. A novel phased collaboration paradigm between LLMs and small models: We 

introduce the MS-HM Synergy framework, a pioneering approach that enables struc-

tured collaboration between Large Language Models (LLMs) and small models 

through a multi-stage process. This framework leverages the strengths of both model 

types, combining the reasoning depth and creativity of LLMs with the precision and 

efficiency of small models to enhance overall performance. 

2.  NLI-based hallucination detection using task-specific small models: Our frame-

work incorporates Natural Language Inference (NLI)-based hallucination detection, 

utilizing task-specific small models such as BERT-NLI. This stage meticulously 

identifies and flags contradictions or inconsistencies in the LLM's outputs, effec-

tively mitigating hallucinations and ensuring the reliability of the generated results. 

3.  Hybrid standardization combining rules and model verification: We propose a 

hybrid approach for result standardization, integrating rule-based formatting with 

model-driven verification. This ensures that the final outputs are coherent, struc-

tured, and aligned with predefined criteria, enhancing the usability and consistency 

of the framework across diverse applications. 

4.  Empirical validation across reasoning, math, and coding tasks: Our method 

demonstrates significant performance improvements across a wide range of tasks, 

including reasoning tasks (MMLU, LogiQA), mathematical problem-solving 

(MATH), and coding tasks. These empirical results validate the effectiveness of the 



MS-HM Synergy framework in enhancing accuracy, efficiency, and flexibility com-

pared to traditional methods. 

2 Related Work 

Synergistic Model Systems: 

Model collaboration has been an area of active research in the field of artificial in-

telligence, with several prior works attempting to combine the strengths of different 

models. For instance, LLM cascades [36] have been proposed, where multiple LLMs 

are chained together in a sequential manner. The idea is to pass the output of one LLM 

as the input to the next, hoping to achieve more refined results. Knowledge distillation 

[8,11,29] is another approach, which aims to transfer the knowledge from a larger, more 

complex model (usually an LLM) to a smaller, more efficient one. This can potentially 

reduce the computational cost while maintaining a certain level of performance. 

However, a critical drawback of these existing methods is the lack of phased inter-

action. Most of them treat the models as parallel agents rather than sequential collabo-

rators. In LLM cascades, the communication between each stage is often simplistic and 

lacks the fine-grained coordination required for complex tasks. In knowledge distilla-

tion, the focus is mainly on knowledge transfer rather than on how the models can work 

together in a structured, phased manner to solve problems. This lack of phased collab-

oration limits the effectiveness of these methods in handling complex reasoning sce-

narios. 

Hallucination Mitigation: 

Several techniques have been proposed to mitigate hallucinations in LLMs. Self-

consistency checks [30], as explored by some researchers, involve having the LLM 

generate multiple outputs and then checking for consistency among them. If there are 

discrepancies, the model attempts to reconcile them. Retrieval-augmented generation 

[16,28] is another approach, where the LLM retrieves relevant information from an 

external database or knowledge source and incorporates it into its generation process. 

This is supposed to ground the output in factual knowledge and reduce the likelihood 

of hallucinations. Confidence calibration [18,19] also plays a role, where the LLM es-

timates the confidence of its own outputs and adjusts its generation based on that con-

fidence. 

Nevertheless, these methods have their own limitations. They rely heavily on LLM 

introspection, which inherits the bias of the model itself. Since the LLM is evaluating 

its own work, it may not be objective enough to detect and correct all hallucinations. In 

contrast, our proposed approach uses external Natural Language Inference (NLI) mod-

els. These NLI models are trained to identify contradictions and inaccuracies, adding 

an extra layer of objectivity to the hallucination detection process. They can analyze 

the LLM output from an independent perspective, providing a more reliable means of 

mitigating hallucinations. 

Output Standardization: 

Regarding output standardization, both rule-based systems and model-based ap-

proaches have been explored. Rule-based systems, such as regex templates [14,21], 
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offer a deterministic way to format the output. They define a set of patterns and rules 

that the generated text must conform to. For example, in generating reports, regex tem-

plates can ensure that the date, time, and other relevant information are presented in a 

specific format. However, the major drawback of rule-based systems is their lack of 

adaptability. They are rigid and cannot easily handle variations in the input or changes 

in the required output format. 

Model-based approaches, like using T5 for text simplification [25], rely on the power 

of language models to transform the output. T5 can take a complex text and simplify it 

according to certain criteria. But these pure model methods are computationally heavy. 

They require significant computational resources to train and operate. Our proposed 

hybrid approach combines the advantages of both. It uses a combination of rule-based 

formatting and model verification. The rules provide the basic structure and con-

sistency, while the model verification ensures that the output meets the specific require-

ments of the application. This hybrid approach balances the need for adaptability and 

computational efficiency. 

Positioning: 

Our proposed MS-HM Synergy (Multi-Stage Hallucination Mitigation Synergy) 

framework uniquely integrates NLI validation, structured reasoning chains, and hybrid 

standardization into a unified pipeline. Unlike other methods that focus on only one 

aspect, such as just hallucination mitigation or just output formatting, our framework 

combines all these elements to address multiple challenges simultaneously. It provides 

a comprehensive solution for complex reasoning tasks, ensuring reliable and structured 

outputs. This integration is what sets our framework apart from the existing literature 

and positions it as a significant contribution to the field of artificial intelligence. 

3 Method 

3.1 Guided Inference (LLM-Dominated) 

Heuristic Questioning:Let the input question be 𝑄. The generation of multiple-round 

results 𝐴1, 𝐴2, … , 𝐴𝑘of heuristic questioning is modeled as: 

𝑃( 𝐴1, 𝐴2, … , 𝐴𝑘 ∣∣ 𝑄 ) = ∏ 𝑃( 𝐴𝑖 ∣∣ 𝐴1, … , 𝐴𝑖−1, 𝑄 ) 

𝑘

𝑖=1

(1) 

  

Stimulate Thinking: The generation of multiple-round results 𝐵1, 𝐵2, … , 𝐵𝑘  of 

stimulate thinking, conditional on the results 𝐴1, 𝐴2, … , 𝐴𝑘 of heuristic questioning and 

the input question Q, is modeled as: 
𝑃( 𝐵1, 𝐵2, … , 𝐵𝑘 ∣∣ 𝐴1, 𝐴2, … , 𝐴𝑘, 𝑄 )

= ∏ 𝑃( 𝐵𝑖 ∣∣ 𝐵1, … , 𝐵𝑖−1, 𝐴1, … , 𝐴𝑘, 𝑄 )𝑘
𝑖=1

(2) 

Self-Reflection: The generation of multiple-round results 𝐶1, 𝐶2, … , 𝐶𝑘  of self-re-

flection, conditional on the results 𝐵1 , 𝐵2, … , 𝐵𝑘  of stimulate thinking, 𝐴1, 𝐴2, … , 𝐴𝑘of 

heuristic questioning, and the input question 𝑄, is modeled as: 



𝑃( 𝐶1, 𝐶2, … , 𝐶𝑘 ∣∣ 𝐵1, 𝐵2, … , 𝐵𝑘 , 𝐴1, 𝐴2, … , 𝐴𝑘, 𝑄 )

= ∏ 𝑃( 𝐶𝑖 ∣∣ 𝐶1, … , 𝐶𝑖−1, 𝐵1, … , 𝐵𝑘 , 𝐴1, … , 𝐴𝑘 , 𝑄 )𝑘
𝑖=1

(3) 

3.2 Hallucination Mitigation 

NLI - Based Natural Language Inference: In the Hallucination Detection phase, 

which is dominated by small language models, we employ Natural Language Inference 

(NLI) to filter out erroneous or contradictory information in the content generated by 

the Large Language Model (LLM). Specifically, we use a small Language model such 

as BERT for NLI tasks [3]. 

The input to the NLI process is structured as follows: we consider the content gen-

erated by the LLM as the ``hypothesis,'' and either the original query Q or a relevant 

snippet from a trusted knowledge base as the ``premise.'' The small model then deter-

mines the semantic relationship between the hypothesis and the premise, which can be 

classified as entailment, contradiction, or neutrality. 

For example, in the context of our guided inference process, we have multiple - 

round generation results 𝐴1, 𝐴2, … , 𝐴𝑘  from heuristic questioning, 𝐵1, 𝐵2 , … , 𝐵𝑘  from 

stimulate thinking, and 𝐶1, 𝐶2, … , 𝐶𝑘 from self - reflection. These are spliced into Rea-

soning - Chains, where each chain is of the form (𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖) for i  =  1,   … ,  k. 

We use NLI to check the consistency between different stages of the reasoning chain. 

The NLI process validates the relationships as follows: Query 𝑄 serves as the premise 

for 𝐴𝑖 (where 𝐴𝑖 is the hypothesis of 𝑄), 𝐴𝑖serves as the premise for 𝐵𝑖(where 𝐵𝑖  is the 

hypothesis of 𝐴𝑖), and 𝐵𝑖  serves as the premise for 𝐶𝑖 (where 𝐶𝑖 is the hypothesis of 𝐵𝑖). 

We define a scoring function for each reasoning chain (𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖) as follows: 

Score(𝐴𝑖, 𝐵𝑖 , 𝐶𝑖) = {
1

0

if NLI(Premise: 𝑄,Hypothesis: 𝐴𝑖)=Entailment

and NLI(Premise: 𝐴𝑖,Hypothesis: 𝐵𝑖)=Entailment

and NLI(Premise: 𝐵𝑖,Hypothesis: 𝐶𝑖)=Entailment

otherwise
(4) 

Correction Strategy: Once the scores for each reasoning chain are calculated, we 

apply a filtering mechanism. We retain only those reasoning chains for which the prod-

uct of the scores across all chains is equal to 1, 𝑖. 𝑒. , ∏ Score(𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖)
𝑘
𝑖=1 = 1. This 

ensures that only the reasoning chains that exhibit consistent entailment relationships 

from the query through all stages of the reasoning process are kept. 

For reasoning chains that do not meet this criterion, if there is a contradiction de-

tected (i.e., when NLI indicates a contradiction between the premise and hypothesis at 

any stage), we remove the entire reasoning chain. In cases where the relationship is 

marked as neutral, we also remove the corresponding part of the reasoning chain, as it 

does not provide a clear and consistent logical progression. This way, we effectively 

mitigate hallucinations in the LLM - generated content by leveraging the NLI capabil-

ities of the small language model. 

3.3 Result Standardization (Rule-Based + Small Language Model Synergistic 

In the Result Standardization phase, our goal is to transform the corrected reasoning 

results from the previous stages into a target format that meets the requirements of 

downstream tasks. This is achieved through a synergy of rule - based methods and small 

language models. 

Regular Extraction: 
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⚫ Structured Extraction: We begin by using regular expressions and keyword match-

ing techniques to extract the target information from the reasoning chains that have 

passed the hallucination detection phase.  

⚫ Format Constraints: In addition to information extraction, we enforce output tem-

plates to ensure that the results are presented in a consistent and usable format. This 

could involve adhering to JSON fields for structured data representation or using 

fixed option lists in classification tasks.  

Small Language Model Summarized Answer: 

⚫ Classification Verification: After the rule - based extraction, we employ task - fine 

- tuned small models, such as BERT classifiers [7], to re - verify the extracted results. 

This step is crucial to confirm that the extracted classification labels or other key 

information is consistent with the overall text content. 

⚫ Exception Handling: In cases where the rule - based extraction fails to find an an-

swer, we leverage the small language model to generate a simplified answer. For 

instance, if the input text is a long and complex description, and the regular extrac-

tion methods cannot identify a clear classification, the small model can summarize 

the text into a single classification label. If the small model also fails to find an an-

swer, we mark the result as such, indicating that further investigation or human in-

tervention might be required. Of course, the marked answers are considered wrong 

answers in the experiment. 

Once the above steps are completed, we use a Consistency mechanism to set a 

threshold (denoted as τ). This threshold is used to evaluate the reliability of the gener-

ated answers. If the consistency score S of the answers meets or exceeds the threshold 

(𝑆 ≥ τ), the answers are accepted; otherwise, they are rejected. This final check helps 

to ensure that only high - quality and reliable results are delivered for downstream use. 

4 Experiment Setups 

We utilized GPT-3.5 Turbo [22] and Qwen-14B-chat [1] as the large language models. 

We evaluated the Reflection and Heuristic Questioning method across various complex 

reasoning tasks, including physics and chemistry tasks from the Massive Multitask Lan-

guage Understanding (MMLU) dataset [9], mathematical tasks from the MATH dataset 

[10], logical reasoning tasks based on LogiQA [20], and classroom dialogue coding 

tasks (The classroom dialogue dataset consists of 175 teacher-student interactions, cat-

egorized into five distinct dialogue types.). Several state-of-the-art prompting methods 

were adopted as baselines, including the Standard Prompting, where the LLM directly 

answers questions, and the Chain-of-Thought (CoT) [32], which guides the LLM to 

first generate reasoning steps before providing the final answer. The Self-Consistency 

Chain-of-Thought (SC-CoT) method [31] further enhanced the reasoning process by 

running CoT multiple times and selecting the most consistent answers through margin-

alization.In addition, there are the Tree-of-Thoughts (ToT) [34], the Graph-of-

Thoughts (GoT) [2] and the SOCRATIC QUESTIONING [24] method. 

To ensure a fair comparison, we use Exact Match (EM) to evaluate the accuracy of 

all language tasks, following previous studies [5,12]. All questions in MMLU Physics, 



MMLU Chemistry, and LogiQA are multiple-choice, with answers always represented 

by a single letter (e.g., “A”, “B”, or “C”). For the convenience of parsing the model's 

final outputs, we use “The answer is:” as a prefix for answers (e.g., A, B, C, or D) in 

the context examples for all methods. When parsing the outputs, we first extract the 

answer following “The answer is:” using a template-based approach. 

5 Results 

5.1 Quantitative Results 

Table 1 resents the quantitative results of accuracy in language reasoning tasks using 

the Qwen-14BChat model. Our method demonstrates a significant improvement over 

previous state-of-the-art methods, with absolute advantages of 0.63%, 8.08%, 6.89%, 

12.59%, and 2.29% in the Logic benchmarks, Physics, Chemistry, MATH, and Class-

room dialogue encoding classifications, respectively. The Tree-of-Thoughts (ToT) and 

Socratic Questioning methodologies require the preconstruction of specific data struc-

tures, which inherently influence their outcomes based on the nature of the structures 

utilized. Consequently, these approaches are not directly compared with the MS-HM 

Synergy method when evaluated under the Qwen-14BChat model. 

Table 1. Accuracy (%) using Exact Match with the Qwen-14BChat model. The best per-

formance is highlighted in bold, and the second-best performance is underlined. 

Qwen-14BChat LogiQA  MMLU-physics  MMLU-chemistry  MATH(DA)  Classroom dialogue  Avg 

Standard-Prompting 58.39 63.83 54.19 38.15 24.00 47.71 

CoT 58.52 62.13 54.68 39.63 26.85 48.36 
SC-CoT 58.78 62.55 56.16 41.48 25.14 48.82 

MS-HM Synergy 59.41 71.91 63.05 54.07 29.14 55.52 

Table 2. Accuracy (%) using Exact Match with the GPT-3.5-turbo model. The best per-

formance is highlighted in bold, and the second-best performance is underscored. 

GPT-3.5-turbo LogiQA  MMLU-physics  MMLU-chemistry  MATH(DA)  Classroom dialogue  Avg 

Standard-Prompting 54.67 65.11 53.20 7.00 17.14 39.42 

CoT 48.33 67.66 57.14 7.33 20.00 40.09 

SC-CoT 49.00 68.51 59.33 7.00 21.71 41.11 

ToT 22.22 40.00 26.60 0.00 \ 41.11 

SOCRATIC QUESTIONING (2-Turns) 59.33 71.49 63.55 7.67 \ 22.21 

SOCRATIC QUESTIONING (3-Turns) 58.00 69.39 63.55 11.67 \ 50.65 

MS-HM Synergy 53.24 72.77 64.03 53.33 24.57 53.59 

Table 2 presents the quantitative results of accuracy in language reasoning tasks us-

ing the GPT-3.5-turbo model. Among them, the comparative experimental data of MS-

HM Synergy in Table 2 comes from the article [24]. Our method demonstrates superior 

performance over previous state-of-the-art approaches, with improvements of 1.28%, 

0.48%, 41.66%, and 2.86% in the categories of Physics, Chemistry, MATH, and Class-

room Dialogue Encoding, respectively. This effectively highlights the advantages of 

our approach. 

It is important to note that the Classroom Dialogue dataset is in Chinese, whereas 

the Socratic Questioning method primarily targets English-language datasets. There-

fore, implementing the Socratic Questioning method across different languages pre-

sents significant challenges and may not fully align with the original spirit of the 
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method. As a result, the experimental results for the Socratic Questioning method on 

the Classroom Dialogue dataset are not available in Table 2. 

We conducted a detailed analysis of the performance of the MS-HM Synergy 

method across different rounds of dialogue. By comparing the accuracy of two-round 

and three-round dialogues, we found that increasing the number of rounds generally 

enhances the model's performance. For instance, in the Qwen-14BChat model, the av-

erage accuracy increased from 53.84% to 55.40% when the dialogue rounds were in-

creased from two to three. Similarly, in the GPT-3.5-turbo model, the average accuracy 

improved from 50.20% to 53.30%. These results indicate that multi-turn dialogues help 

models better understand contextual information, thereby improving the accuracy of 

their responses. 

However, for certain complex tasks, such as Classroom dialogue, increasing the 

number of rounds did not lead to significant performance improvements and even re-

sulted in slight decreases in some cases. This may be attributed to the more intricate 

nature of the dialogue content in these tasks, which poses higher demands on the mod-

el's contextual understanding and reasoning capabilities. Therefore, our experimental 

results suggest that while increasing the number of dialogue rounds generally boosts 

model performance, further optimization of dialogue strategies and model design is still 

required for specific tasks to better adapt to complex dialogue scenarios. 

 

Fig. 2. Comparison of MS-HM Synergy Accuracy Across Different Turns on Qwen14BChat and 

GPT-3.5-turbo 



5.2 Qualitative Result 

 

Fig. 3. Qualitative results of Standard-Prompting, CoT, ToT, and GoT on the Physics task. The 

correct answer of this example is B. 

The qualitative results of the MS - HM Synergy method compared to baseline meth-

ods in the physics task are presented here. It can be observed that the MS - HM Synergy 

method effectively generates prompts containing the necessary information to solve the 

original problem. In the Guided Inference stage, the Large Language Model (LLM) 

taps into its language understanding to break down the problem and generate relevant 

prompts. Then, through the Hallucination Detection stage, unreliable information in 

these prompts is identified and eliminated, ensuring the accuracy of the information 

used for reasoning. Finally, the Result Standardization stage structures the output, mak-

ing it coherent and easy to understand. By selectively utilizing these refined prompts, 

the MS - HM Synergy method provides a reasonable explanation and arrives at the 

correct final answer through reflective reasoning. 

In contrast, Standard - Prompting, Chain - of - Thought (CoT), Tree - of - Thoughts 

(ToT), and Graph - of - Thoughts (GoT) methods yielded incorrect answers due to 

suboptimal reasoning paths, as shown in Fig. 3. 

The Tree - of - Thoughts (ToT) method breaks problem - solving into linear, struc-

tured steps. It attempts to ensure thoroughness in reasoning, but it comes across as 

overly rigid and inefficient for simple tasks like the capacitor problem. Its repetitive, 

step - by - step nature lacks the flexibility needed for straightforward problems. In the 

context of our overall goal of leveraging the combined strengths of models, ToT fails 
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to adapt well to different problem complexities and doesn't scale well for problems 

where direct solutions are faster. Moreover, it does not have an effective mechanism to 

detect and correct potential hallucinations in the reasoning process. 

Table 3. Qualitative results of MS-HM Synergy on the Physics task. The correct answer of this 

example is B. 

 Reasoning-Chain 

1  

Reasoning-Chain 

2  

Reasoning-Chain 

3 

Guided Reasoning Step 1: Recall  𝑄
 =  𝐶 × 𝑉.  Given

𝐶 = 2 mF ,   𝑉  =
 5 V . Convert  2

 mF  to  0.002 F . 

T h e n   𝑄 = 0.
002 F × 5 V = 0.
01 C. 
Step 2: By  𝑄 =  
𝐶 × 𝑉, with  𝐶 =
0.002 F,  𝑉 = 5 V,

 w e  g e t   𝑄 = 0.
01 C , so answer is

 𝐵.  

Step 3: Used corre

ct formula, conver

ted units right, got 

 𝑄 = 0.01 C . Ans

wer B is correct. 

Step 1: Need to fi

nd charge, formula

 is  𝑄 =  𝐶 × 𝑉 . 
Given  𝐶 = 2 mF, 

 𝑉 = 5 V , convert 

 𝐶  to  0.002 F.  

 Step 2: Substitute

 into  𝑄 =  𝐶 × 𝑉
 ,  𝐶 = 0.002 F ,  

𝑉 = 5 V , get  𝑄 =
0.01 C , correct op

tion is B.  

Step 3: Recognize

d formula, did unit

 conversion right, f

ound  𝑄 = 0.01 C 

. B is the answer. 

Step 1: Recall  𝑄
 =  𝐶 × 𝑉 . Given 

 𝐶 = 2 mF(= 0.
002 F),  𝑉 = 5 V. 
But wrongly calcu

late  𝑄 = 0.002 F
× 10 V = 0.02 C. 
Step 2: Should be 

 𝑄 =  𝐶 × 𝑉 , wit

h correct  𝑉 = 5 V 

gives  𝑄 = 0.01 C 

, but wrong calc le

d to think C: 0.02 

C is right.  

Step 3: Made erro

r  in  us ing   𝑉 =
10 V instead of  

5 V, correct is C: 0

.02 C. 

Hallucination Mit-

igation 

Accept Accept Reject 

Result 

Normalization 

B: 0.01 C B: 0.01 C C: 0.02 C 

The Graph - of - Thoughts (GoT) method organizes problem - solving non - linearly, 

enabling flexible exploration of interconnected steps. While it can be effective for com-

plex problems, it overcomplicates simple tasks by introducing unnecessary nodes, 

backtracking, and cognitive load. This makes it visually and procedurally inefficient 

for direct, formula - based solutions. Similar to ToT, GoT also lacks a comprehensive 

approach to handling hallucinations and standardizing the output in a way that meets 

the requirements of downstream tasks. 

The MS - HM Synergy method offers a significant advantage in multi - step logical 

reasoning by overcoming key limitations of traditional Chain - of - Thought (CoT) 

techniques. Unlike sequential or predefined structured approaches that are prone to er-

ror propagation and challenges in decomposing complex problems, MS - HM Synergy 

combines the power of LLMs for complex reasoning with the precision of small lan-

guage models for verification. Through the three - stage process of Guided Inference, 



Hallucination Detection, and Result Standardization, it achieves more accurate and 

flexible problem - solving, as shown in Table 3. 

6 Conclusion 

The MS-HM Synergy framework addresses the challenges of hallucinations and inef-

ficiencies in Large Language Models (LLMs) by integrating guided inference, halluci-

nation detection, and result standardization. This approach leverages the strengths of 

both large and small language models, with LLMs handling complex reasoning and 

small models verifying reliability. Empirical results on benchmarks like MMLU, 

MATH, and LogiQA demonstrate significant improvements in accuracy, efficiency, 

and flexibility. The MS-HM Synergy effectively mitigates hallucinations and enhances 

overall performance, showcasing the potential of model synergy to overcome LLM 

limitations and drive advancements in AI. 
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