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Abstract. Deep neural network models have achieved unprecedented success in 

modeling unstructured data across tasks such as computer vision, speech recog-

nition, and natural language processing. However, their inherent limitations in 

model transparency and interpretability hinder the analysis of underlying mech-

anisms, prediction processes, and decision rationales, restricting their application 

in critical domains such as healthcare, finance, and judiciary. Traditional rule-

based models exhibit strong transparency and interpretability. However, they are 

overly dependent on feature engineering, which significantly increases the cost 

of human intervention. Furthermore, their limited capability to represent data re-

stricts the efficient and comprehensive utilization of large-scale datasets. While 

ensemble learning methods can enhance predictive performance, they often do 

so at the expense of model interpretability. To address the challenge of balancing 

predictive performance and interpretability in structured data classification tasks, 

we proposes an interpretable classification method that integrates neural rule 

learning with network architecture search in this paper. On the one hand, this 

method automatically learns interpretable logical rules to represent and classify 

the data. On the other hand, by incorporating network architecture search tech-

niques, the model adapts to the characteristics of the dataset and determines the 

optimal network structure to achieve superior predictive performance. Through 

comparative experiments with different types of classification models across 

multiple datasets, we find that the proposed method demonstrates strong compet-

itiveness in both predictive accuracy and interpretability. It is capable of gener-

ating highly interpretable logical rules while maintaining excellent predictive 

performance. 

Keywords: Neural Rule Learning, Network Architecture Search, Interpretable 

Classifier, Tabular Data, Deep Neural Network. 



1 Introduction 

Deep learning technologies, represented by deep neural networks, have dominated the 

field of machine learning due to their powerful representation learning capabilities and 

have driven technological innovations in numerous complex tasks [11]. However, in 

some fields where model decision results require high levels of trust and transparency, 

the "black box" nature of deep neural networks has become a major obstacle to their 

large-scale application [9]. In the healthcare field, doctors require models to provide 

accurate diagnostic results. They also need to understand how the model derives con-

clusions based on the patient's specific physiological characteristics. This transparency 

is crucial for enhancing the reliability of the diagnostic results and supporting better 

medical decision-making [23]. Similarly, in the financial field, interpretability is crucial 

for the model's compliance and credibility because financial decisions are subject to 

strict audits and regulations. Only transparent and easily understandable model deci-

sions can gain trust and meet policy and regulatory requirements[3]. In the judicial 

field, decisions often involve complex legal provisions and case backgrounds. Judg-

ments not only need to be accurate and fair but also require a transparent reasoning 

process, so that they can be reviewed and questioned when necessary [6]. Therefore, 

striking a balance between model performance and decision-making transparency, 

while ensuring interpretability and auditability of model outputs, has emerged as a piv-

otal challenge in these high-stakes domains. 

Research on interpretable learning predominantly focuses on post-hoc interpretabil-

ity methods and the enhancement of inherently transparent models. Post-hoc interpret-

ability methods aim to elucidate the relationship between input features and prediction 

outcomes by analyzing the behavior of complex models. Prominent approaches include 

LIME [19], which provides instance-specific explanations by constructing local linear 

approximations; Grad-CAM [21], which visualizes the regions of deep learning models 

that contribute to predictions through heatmaps; and rule extraction techniques that 

translate predictive logic into symbolic representations, such as decision trees [32] or 

logical expressions. A significant advantage of post-hoc methods is their broad applica-

bility to nearly all model types, allowing for rapid deployment without modifying the 

model architecture or training process. However, as these methods lack direct access to 

the internal mechanisms of the models, the explanations they generate may not fully 

capture the true decision-making logic. Moreover, most post-hoc methods are limited 

to local analysis, which lacks global interpretability and comprehensive transparency 

[20]. 

Meanwhile, improving the predictive performance of transparent models represents 

another significant approach in interpretable modeling. In recent years, many research-

ers have applied the stacked generalization principle in ensemble learning to enhance 

traditional transparent models, such as decision trees and rule-based systems. This strat-

egy enables these models to process data layer by layer, perform built-in feature trans-

formations, and achieve sufficient model complexity. Representative methods include 

deep forest [35] and multi-layer gradient boosting decision trees [7] based on decision 

tree, and deep fuzzy system based on Takagi-Sugeno-Kang [33,34] and Wang-Mendel 
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fuzzy models [25,26]. Although these methods have significantly improved the predic-

tive performance of transparent models, the original interpretability of the base models 

tends to diminish as the deep models become more complex through multi-layer stack-

ing. Consequently, such methods are often unsuitable for applications that demand high 

levels of transparency and interpretability. 

Neuro-symbolic learning has recently been viewed as a promising approach to bridg-

ing the gap between model predictive performance and interpretability. In particular, 

neural rule learning integrates the powerful representational capacity of neural net-

works with the transparency of rule-based models. By introducing the representation 

and learning of logical rules, these methods enable models to automatically generate 

formalized rule sets. Representative approaches include DRNet [15], RRL [27], and 

ENRL [22], which transform rule generation into a differentiable optimization problem 

by simulating the behavior of logical operators, thereby efficiently generating rule sets 

using gradient-based mechanisms. However, these methods still face challenges such 

as high rule complexity, limited capability in modeling feature interactions, and reli-

ance on manually designed model structures. Therefore, developing more effective 

strategies for model structure determination to achieve a balance between predictive 

performance and interpretability has become a key focus of current research. 

Neural architecture search has emerged as a innovative method that leverages strat-

egies such as reinforcement learning, evolutionary algorithms, or gradient-based opti-

mization to automatically explore network hyperparameters and structural configura-

tions, thereby identifying optimal architectures for specific tasks [18]. Compared to 

traditional manual model design, it significantly reduces human intervention and dy-

namically adjusts network depth and width according to task requirements, which en-

hances both model adaptability and generalization capabilities. On the basis of the 

aforementioned research trends and developments, We propose an interpretable classi-

fication method that integrates neural rule learning with neural architecture search in 

this paper. The main contributions of this study are summarized as follows. 

─ We propose an innovative classification method that integrates neural rule learning 

with neural architecture search. The method effectively balances predictive perfor-

mance and interpretability by automatically generating logical rule sets to represent 

structured data while optimizing the network structure to adapt to different datasets. 

─ The proposed method enables the automatic extraction of interpretable logical rules 

from data, which provides human-understandable explanations for the model's pre-

dictions. Unlike traditional rule-based models, this method achieves both high trans-

parency and low human intervention cost, and it is more suitable for large-scale 

structured data applications. 

─ Through extensive comparative experiments on multiple structured datasets, the pro-

posed method demonstrates superior performance in both predictive accuracy and 

interpretability compared to traditional rule-based models, ensemble methods, and 

other kinds of classification approaches. The results highlight the model's capability 

to generate highly interpretable logical rules without compromising predictive per-

formance. 



The remainder of this paper is organized as follows. Section 2 reviews related works 

on neural rule learning and neural architecture search. Section 3 introduces the pro-

posed method including overall structure and implementation details. Section 4 pre-

sents the experimental setup and result analysis. Finally, Section 5 concludes the paper 

and outlines future research directions. 

2 Related Works 

2.1 Neural Rule Learning 

In recent years, significant progress has been made in neural rule learning. For instance, 

Qiao 𝑒𝑡 𝑎𝑙. propose a two-layer neural network-based learning model that automati-

cally generates disjunctive normal form rule sets, which can achieve a balance between 

predictive accuracy and rule simplicity in classification tasks [15]. Wang 𝑒𝑡 𝑎𝑙. propose 

a rule-based representation learner for classification tasks, which leverages an innova-

tive gradient grafting training method to enable the automatic learning of non-fuzzy 

rules, thereby improving model performance while balancing interpretability and scala-

bility [27]. Shi 𝑒𝑡 𝑎𝑙. propose an explainable neural rule learning method, which inte-

grates the expressive power of neural networks with the interpretability of rule-based 

systems. By employing a rule voting mechanism, it enhances model transparency and 

robustness, while significantly mitigating performance degradation on out-of-distribu-

tion data [22]. Yu 𝑒𝑡 𝑎𝑙. propose a feature interactive neural rule learning method, 

which formulates rule learning as a differentiable discrete combination encoded by a 

feedforward neural network and incorporates contextual embeddings to represent both 

rules and conditions [31]. Despite the significant potential of these methods in improv-

ing both model performance and interpretability, neural rule learning still faces several 

challenges. On one hand, the generated rule sets may become overly complex in certain 

cases, which increases the difficulty of interpretation. On the other hand, most existing 

approaches have limited capability in capturing deep feature relationships. Moreover, 

the rule generation process heavily relies on the model architecture design, which con-

strains its adaptability across multi-task and multi-domain scenarios. Future research 

could focus on simplifying and optimizing rule sets, exploring automated rule genera-

tion systems, and enhancing the model's generalization and robustness in complex tasks 

to achieve a better balance between performance and interpretability 

2.2 Neural Architecture Search 

Neural architecture search is an automated method for generating neural network ar-

chitectures by optimizing a predefined search space. This approach significantly re-

duces the reliance on manual expertise while improving design efficiency and model 

performance. Consequently, many researchers have conducted in-depth studies on key 

aspects of neural architecture search, including search space design, optimization of 

search strategies, and performance prediction methods. Real 𝑒𝑡 𝑎𝑙. employ a controller 

network to generate candidate architectures and dynamically adjust the policy to opti-

mize network performance [17]. Pham 𝑒𝑡 𝑎𝑙. efficiently select optimal architectures 

from a large pool of candidate networks by introducing genetic mutation and selection 
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mechanisms from evolutionary algorithms [14]. Liu 𝑒𝑡 𝑎𝑙 adopt a differentiable search 

framework, which significantly improves search efficiency by formulating the archi-

tecture search process as a differentiable optimization problem [12]. Neural architecture 

search has achieved significant success in unstructured data modelling tasks and has 

been extensively applied in fields such as computer vision and natural language pro-

cessing. Therefore, leveraging neural architecture search within neural rule learning 

models to address structured data classification problems presents substantial potential 

for further advancement. This integration not only facilitates the automated generation 

of highly interpretable rule sets but also enhances the model's adaptability across vari-

ous tasks and data distributions. 

 

Fig. 1. The model structure of our proposed method 

3 Methodology 

This paper proposes an interpretable classification method based on neural rule learning 

with neural architecture search(NRL-NAS), which aims to address the trade-off be-

tween performance and interpretability in traditional classification methods. By inte-

grating the transparency of rule generation with the flexibility of network architecture 

optimization, this method is capable of delivering efficient and interpretable classifica-

tion results in complex tasks. As shown in Fig. 1. The model structure of our proposed 

                  

     
    

         

        

    
                 

       
        

      
        

                    

 
    

 
 
   

 
  
 
 
 
 

 
 
 
  
 
 
   

 
  
 
 
 
 

                 

   

 
 
 
  
 
 
   

 
  
 
 
 
 

 
    

 
 
   

 
  
 
 
 
 

 
 
 
  
 
 
   

 
  
 
 
 
 

 
    

 
 
   

 
  
 
 
 
 

       

   

                          

 
 
 
   

   
 

 
 
 

 
 
 
 
  
  

 
  
 
   

 
  

  

 
 
   

  
 
  

 
  

 
 
 
    

 
   

 

 
  
  
  
 

 
  
  
  
 
  

 
  
  

 

 
 
 
  
 
  
  
 

 
 
   

 
   

 
  
 
 

 
 
 
 
 
  

 
 
 
 
  

 
 
   

 
  

  
 
  
 
 

 
 
 
 
  

 
  
  
  
 
  
 
 

   
  
   

 

 
 
  
   

   
 
   

 

               

                              

                                   
                                         
                              
               
                                
                         
                      
         

      



method, the proposed method is consisted of feature preprocessing, neural rule learn-

ing, neural architecture search, and rule generation. 

3.1 Feature Processing 

Suppose 𝑋 = {(𝑥1, 𝑦1), … , (𝑥𝑁𝑠
, 𝑦𝑁𝑠

)} represents the training dataset, where 𝑁𝑠 is the 

number of samples. Here, 𝑥𝑖 denotes the feature vector of the 𝑖-th sample, 𝑥𝑖,𝑗 denotes 

the 𝑗-th feature value of the 𝑖-th sample, and 𝑦𝑖  denotes the class label of the training 

sample 𝑥𝑖. All features in the training dataset 𝑋 can be either continuous or discrete 

values, while all class variables are discrete. Because continuous features cannot be 

directly used in logic-based rules, we must perform a discretization process on the con-

tinuous feature values in the training dataset 𝑋. To improve the model’s predictive per-

formance, we use a continuous feature discretization method based on the class-attrib-

ute contingency coefficient [24], which is more suitable for classification tasks. 

 For a continuous attribute 𝑎 to be discretized, we first determine its minimum value 

𝑎𝑚𝑖𝑛  and maximum value 𝑎𝑚𝑎𝑥 . We then collect all distinct values of 𝑎 and sort them 

in ascending order to form the set Ω𝑎. For every pair of adjacent data points in Ω𝑎, we 

compute their midpoint to form the candidate boundary set 𝐵, and we also include 𝑎𝑚𝑖𝑛  

and 𝑎𝑚𝑎𝑥 in 𝐵. We initialize the discretization scheme 𝐷 = {[𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥]} and set the 

evaluation metric 𝐺𝑐𝑎𝑐𝑐 = 0, which measures the quality of the current scheme. Subse-

quently, the algorithm enters an iterative process. In each iteration, it sequentially at-

tempts to insert any boundary 𝑏 ∈ 𝐵 that has not been included in the current discreti-

zation scheme 𝐷, thereby forming a new partition D′. The corresponding CACC value 

of this new scheme is then computed according to equation (1) and (2). 

 

 𝐶𝐴𝐶𝐶 = √
𝛼

𝛼+𝑁𝑠
 (1) 

 𝛼 =
𝑁𝑠[(∑  

𝑁𝑐
𝑝=1 ∑  

𝑁𝑖
𝑞=1

ℎ𝑝,𝑞
2

𝑁𝑝,+𝑁+,𝑞
)−1]

log(𝑁𝑖)
 (2) 

Here, 𝑁𝑐 is the number of classes, 𝑁𝑖 is the number of intervals, ℎ𝑝,𝑞 is the number of 

samples of the 𝑝-th class in the 𝑞-th interval, 𝑁𝑝,+ is the number of samples that belong 

to 𝑝-th class, 𝑁+,𝑞 is the number of samples whose values of attribute 𝐴 fall in 𝑞-th in-

terval. After all candidate boundaries are attempted, the solution D′ maximizing the 

CACC value is selected and compared with the current optimal solution. The current 

solution 𝐷 = 𝐷′ and global optimum 𝐺𝑐𝑎𝑐𝑐 = 𝐶𝐴𝐶𝐶𝐷′ are updated, with the interval 

count 𝑁𝑖 incremented by 1, if 𝐶𝐴𝐶𝐶𝐷′ > 𝐺𝑐𝑎𝑐𝑐  or the interval limit is not yet reached. 

Otherwise, the iteration is terminated. The process continues iteratively until no further 

improvement in 𝐺𝐶𝐴𝐶𝐶  is observed or the interval limit is met, finally outputting the 

discretization scheme D′. 

After the continuous attributes in dataset 𝑋 have been discretized using the afore-

mentioned method, we employ one-hot encoding to transform them into binary fea-

tures. The discrete attributes and the class labels in 𝑋 are similarly processed by means 
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of one-hot encoding. Consequently, we convert 𝑋 into 𝑋′ = {(𝑥1
′ , 𝑦1

′ ), … , (𝑥𝑁𝑠
′ , 𝑦𝑁𝑠

′ )}, 

where 𝑥𝑖
′ ∈ {0,1}𝑁𝑏 is a binary feature vector of length 𝑁𝑏, and 𝑦𝑖

′ ∈ {0,1}𝑁𝑐 is a binary 

vector whose dimension equals the number of classes 𝑁𝑐. 

3.2 Rule Learning and Generation 

To achieve semantic rules that simultaneously possess interpretability and classification 

capability, we propose and construct a neural rule learning model inspired by the Con-

cept Rule Sets (CRS) and the Multi-layer Logical Perceptron (MLLP). The CRS archi-

tecture consists of 𝑁𝑙 hierarchical levels, each comprising a conjunction layer followed 

immediately by a disjunction layer, resulting in a total of 2𝑁𝑙 layers in the model. For-

mally, for any 𝑙 ∈ {1,2𝑁𝑙}, if 𝑙 is odd, then 𝒵𝑙 denotes the conjunction layer, whereas 

if 𝑙 is even, then 𝒯𝑙 denotes the disjunction layer. 

Except for the input layer, each of the remaining layers contains a predetermined 

number of nodes, as well as edges that connect these nodes to the nodes in the previous 

layer. Let 𝑁𝑛
𝑙  denote the number of nodes in the 𝑙-th layer of the CRS, and let 𝑊𝑙 rep-

resent the adjacency matrix between the 𝑙-th and (𝑙 − 1)-th layers, with a shape of 

𝑁𝑛
𝑙 × 𝑁𝑛

𝑙−1, where 𝑊𝑖,𝑗
𝑙 ∈ {0,1}. If there exists an edge connecting the 𝑖-th node in the 

𝑙-th layer and the 𝑗-th node in the (𝑙 − 1)-th layer, then 𝑊𝑖,𝑗
𝑙 = 1; otherwise, 𝑊𝑖,𝑗

𝑙 = 0. 

Assume that 𝑧𝑖
𝑙 denotes the 𝑖-th node in layer 𝒵𝑙, which represents a conjunction op-

eration over all the nodes in layer 𝒯𝑙−1 that are connected to 𝑧𝑖
𝑙. Similarly, 𝑡𝑖

𝑙 denotes 

the 𝑖-th node in layer 𝒯𝑙, which represents a conjunction operation over all the nodes 

in layer 𝒵𝑙−1 that are connected to 𝑡𝑖
𝑙. The definitions of these two types of nodes are 

shown in equation (3). 

 {
𝑧𝑖

𝑙 = ⋀  𝑊𝑖,𝑗
𝑙 =1 𝑡𝑗

𝑙−1

𝑡𝑖
𝑙+1 = ⋁  𝑊𝑖,𝑗

𝑙+1=1 𝑧𝑗
𝑙             

 (3) 

If the number of nodes in the final layer of the CRS is set to the number of categories 

𝑁𝑐, then the model can be regarded as a classifier 𝒞: {0,1}𝑁𝑏 → {0,1}𝑁𝑐. Although the 

CRS has good characteristics in terms of model expressiveness and transparency, its 

weights are discrete, making it impossible to train the model using gradient descent. 

Therefore, we adopt MLLP as a surrogate model to mimic the behavior of CRS. The 

number of layers and the nodes in each layer of MLLP correspond one-to-one with 

those in CRS. The difference lies in that MLLP is a fully connected neural network 

model. 

Let 𝑧̂𝑖
𝑙 and 𝑡̂𝑖

𝑙 denote the neurons in MLLP corresponding to the CRS nodes 𝑧𝑖
𝑙 and 

𝑡𝑖
𝑙 , respectively. 𝑊̂ 𝑙  represents the weight matrix of the 𝑙-th layer in MLLP, where 

𝑊̂𝑖,𝑗
𝑙 ∈ [0,1]. To enable MLLP to mimic the logical disjunction and conjunction opera-

tions in CRS, we adopt the continuous logic activation function proposed in [13], which 

is defined as shown in equation (4). 



 {
𝑧̂𝑖

𝑙 = 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑡̂𝑖
𝑙−1, 𝑊̂𝑖

𝑙) = ∏  
𝑁𝑛

𝑙−1

𝑗=1 1 − 𝑊̂𝑖,𝑗
𝑙 (1 − 𝑡̂𝑖,𝑗

𝑙−1)

𝑡̂𝑖
𝑙 = 𝐷𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑧̂𝑖

𝑙−1, 𝑊̂𝑖
𝑙) = 1 − ∏  

𝑁𝑛
𝑙−1

𝑗=1 (1 − 𝑧̂𝑖,𝑗
𝑙−1 ⋅ 𝑊̂𝑖,𝑗

𝑙 )    
 (4) 

When simulating disjunction and conjunction operations, it is necessary to constrain 

the output within the range [0,1]. Therefore, we apply the 𝐶𝑙𝑖𝑝(𝑊̂𝑖,𝑗
𝑙 ) =

𝑚𝑎𝑥(0, 𝑚𝑖𝑛(1, 𝑊̂𝑖,𝑗
𝑙 )) function to clip the weights. MLLP can exactly replicate the be-

havior of CRS when its weights are identical to those of the corresponding CRS. Let 𝒞̂ 

denote the MLLP model and 𝒲̂ represent all weights of the model 𝒞̂. The loss function 

for training the MLLP is defined as shown in equation (5). 

 𝐿𝑜𝑠𝑠 =
1

𝑁𝑠
∑  

𝑁𝑠
𝑖=1 𝑀𝑆𝐸(𝑌𝑖

′, 𝒞̂(𝑋𝑖
′, 𝒲̂)) + 𝜆ℰ(𝒲̂) (5) 

where 𝑀𝑆𝐸(⋅) is the mean squared error, and ℰ(𝑊̂))  denotes the 𝐿2  regularization 

term. 

3.3 Neural Architecture Search 

Both the discrete CRS and its continuous version, MLLP, feature a fixed model archi-

tecture with alternating layers of conjunction and disjunction operations. The number 

of layers and the nodes in each layer are manually preset, lacking the capability for 

automatic optimization or architecture search. As demonstrated in literature [28], dif-

ferent model architecture designs significantly impact predictive performance. Specif-

ically, the configuration of hidden layer nodes and the depth of layers directly affect 

classification accuracy. To enable automatic discovery of high-performing and inter-

pretable neural rule structures, we incorporate a neural architecture search framework 

based on reinforcement learning [36]. The goal is to find the optimal configuration in-

cluding the number of layers and the number of nodes in each layer, so that the resulting 

MLLP achieves the best classification performance while maintaining interpretability. 

Moreover, the random binarization proposed in [28] is used to train a differentiable 

MLLP, which can then be transformed into a discrete CRS. Neural architecture search 

and random binarization are not mutually exclusive. Instead, their combination involves 

first identifying the optimal structure and then training the parameters based on that 

structure. This joint optimization mechanism of structure and parameters can effec-

tively advance the automated design of interpretable models. 

We employ a recurrent neural network as a controller, which sequentially generates 

architectural descriptions of candidate MLLP models. At each step, the controller pre-

dicts architectural hyperparameters. Each sampled architecture is then instantiated into 

a MLLP model, trained using the surrogate loss function defined in equation (5). After 

training, the validation accuracy of the instantiated model is used as the reward signal 

to update the controller parameters. Specifically, we optimize the expected reward us-

ing the REINFORCE proposed in [29]. To preserve the interpretability of the rule-based 

structure, we constrain the search space to ensure that all generated architectures strictly 

adhere to the alternating pattern of conjunction and disjunction layers. Additionally, to 

maintain the logical consistency of the model, we enforce the use of binary or clipped 
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continuous weights, thereby enabling a faithful approximation of logical operations 

within a differentiable framework. Furthermore, we impose upper bounds on the depth 

and width of the network to prevent the construction of overly complex rule structure, 

which could undermine the model's transparency and comprehensibility. To address the 

high computational cost of evaluating each candidate architecture, we adopt a distrib-

uted training scheme where multiple candidate MLLP models are trained in parallel. 

Additionally, early stopping and parameter sharing strategies are incorporated to accel-

erate convergence during the search phase. After the search process converges, the top-

𝑘 architectures with the highest validation performance are selected for further fine-

tuning. The best-performing architecture is then extracted and interpreted as an opti-

mized rule-based classifier, with logical expressions derived from its learned structure. 

4 Experimental Study 

4.1 Datasets 

As shown in Table 1, we select 12 benchmark datasets with domain representativeness 

from the UCI Machine Learning Repository, which have formed a broad research con-

sensus in terms of classification performance evaluation and model interpretability ver-

ification. To comprehensively test the generalization ability of the method, the selected 

datasets exhibit significant differences in three dimensions including sample size, class 

distribution, and feature space. The sample sizes range from 100 to 67,557, covering 

scenarios from small-sample learning to large-scale data analysis. The number of clas-

ses varies between 2 and 26, encompassing binary classification, multi-class classifica-

tion, and high-dimensional classification tasks. The feature dimensions are distributed 

between 4 and 42, including numerical, categorical, and mixed-type features. This 

multi-dimensional data construction strategy effectively avoids potential biases in ex-

perimental evaluation. 

Table 1. The datasets used in experimental study. 

Dataset Instances Classes Features 

adult 32,561 2 14 

bank-marketing 45,211 2 16 

banknote 1,372 2 4 

blogger 100 2 5 

chess 28,056 18 6 

connect-4 67,557 3 42 

letRecog 20,000 26 16 

magic04 19,020 2 10 

mushroom 8,124 2 22 

nursery 12,960 5 8 

tic-tac-toe 958 2 9 

wine 178 3 13 

 



 

To address the issue of missing data, this study design a feature-type-sensitive dif-

ferential processing pipeline. For continuous variables, a Gaussian assumption-based 

mean imputation method is employed, using the average value of observed samples for 

unbiased estimation. When significant skewness is detected, the system automatically 

switches to a median imputation mechanism to maintain the authenticity of the data 

distribution. For categorical variables, a maximum likelihood estimation-based mode 

imputation method is used. When multiple modes exist, a random sampling strategy is 

employed to select the imputation value to maintain the entropy of the original distri-

bution. All imputation operations is completed independently on the training set, and a 

data isolation mechanism is strictly followed to prevent information leakage to the val-

idation set. 

4.2 Evaluation Metrics 

To objectively evaluate model performance in class-imbalanced scenarios, this study 

constructed a multi-dimensional evaluation system. The macro F1-score served as the 

evaluation metric, calculated as the unweighted average of F1-scores across all classes 

to eliminate the impact of sample size differences. The experiment adopts a stratified 

5-fold cross-validation method, ensuring that the class distribution in each fold strictly 

matched that of the original dataset. In each validation round, 80% of the data was used 

for model training, and 20% served as an independent validation set for hyperparameter 

tuning. The final experimental results were reported as the mean and standard deviation 

of the five-fold test set metrics, with statistical significance tests ensuring the reliability 

of conclusions. 

4.3 Compared Methods 

In this study, we select nine categories of benchmark models encompassing diverse 

modeling paradigms for systematic comparison, aiming to comprehensively validate 

the proposed method's capability to balance classification performance and model in-

terpretability. The baseline models includes CRS [28], Decision tree (C4.5) [16], clas-

sification and regression trees (CART) [2], scalable bayesian rule lists (SBRL) [30], 

logistic regression (LR) [10], piecewise linear neural network (PLNN) [4], support vec-

tor machine (SVM) [5], gradient boosted decision trees (GBDT) [8], and two variants 

of random forest (RFe=10 and RFe=100) [1]. These baseline models exhibit gradient char-

acteristics along the interpretability spectrum, establishing a multidimensional refer-

ence framework for evaluation. 

Regarding interpretability dimensions, C4.5, CART, and SBRL serve as rule-based 

models that provide intrinsic interpretability through explicit decision paths or proba-

bilistic rule sets. As representative generalized linear models, LR offers intuitive statis-

tical interpretations through parameter weights. Such models are frequently adopted as 

benchmarks in interpretable machine learning research due to their transparent decision 

mechanisms. In contrast, PLNN employs piecewise linear activation functions to con-
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struct multilayer perceptrons. While demonstrating superior nonlinear modeling capa-

bilities, its implicit distributed representations render decision logic inherently opaque. 

Ensemble methods including GBDT and RF achieve exceptional classification accu-

racy, yet their inherent model complexity and black-box nature significantly limit trust-

worthiness in high-stakes decision-making scenarios such as medical diagnosis and fi-

nancial risk assessment. 

The experimental design specifically examines models' differential performance in 

the accuracy-interpretability trade-off. By controlling the number of estimators in ran-

dom forests (10 vs. 100), this study further elucidates the impact mechanism of model 

complexity on interpretability. Systematic comparisons not only validate the proposed 

method's capability to maintain classification performance comparable to black-box 

models while achieving decision process transparency, but also demonstrate its gener-

alization potential across diverse task scenarios through cross-dataset robustness anal-

ysis. 

4.4 Experimental Results 

As shown in Table 2, the proposed NRL-NAS model demonstrates competitive classi-

fication performance across 12 benchmark datasets, achieving a mean macro F1-score 

of 87.23%. This represents a 0.25 percentage point improvement over the CRS base-

line (86.98%) and significantly outperforms traditional decision tree models (C4.5: 

84.48% , CART: 84.44% ) and shallow learning methods (SVM: 75.56% , LR: 

74.27%) with statistical significance (𝑝 < 0.05, Wilcoxon signed-rank test). Notably, 

NRL-NAS exhibits systematic advantages on datasets containing high-dimensional 

heterogeneous features, including adult ( 81.65%  vs. 80.95% ), bank-marketing 

(74.76% vs. 73.34%), and wine (98.87% vs. 98.10%). The perfect classification ac-

curacy (100%) achieved on the mushroom dataset by both NRL-NAS and six baseline 

models confirms the theoretical soundness of our method in linearly separable scenar-

ios. Compared to complex ensemble models, NRL-NAS achieves superior performance 

while maintaining interpretability. For instance, the random forest ensemble requires 

100 base estimators (RFe=100) to reach 86.82% mean performance, whereas NRL-NAS 

attains 87.23%  F1-score through dynamic rule generation via neural architecture 

search. This efficiency makes NRL-NAS particularly suitable for domains requiring 

model transparency, such as medical diagnosis and financial risk assessment. Despite 

overall strong performance, statistically significant gaps exist on the nursery (97.17% 

vs. CRS 99.69%, (𝑝 = 0.032)) and chess (78.63% vs. CRS 80.21%, (𝑝 = 0.041)) da-

tasets. We attribute these limitations to the multi-objective optimization trade-offs in 

dynamic rule generation: when handling strongly coupled features (e.g., chess move 

patterns), the neural architecture search may overfit local feature interactions, thereby 

reducing global rule generalizability. Furthermore, the inferior performance on 

letRecog (83.86% vs. C4.5 88.20% and RFe=100 90.31%) suggests potential quantiza-

tion error accumulation in the CACC discretization algorithm when processing contin-

uous handwritten features. 



Table 2. Comparative results of classification performance between NRL-NAS and other meth-

ods. 

Dataset NRL-NAS CRS C4.5 CART SBRL LR SVM PLNN GBDT RFe=10 RFe=100 

adult 81.65 80.95 75.40 74.77 79.88 78.43 63.63 73.55 80.36 77.48 78.83 

bank-marketing 74.76 73.34 71.24 70.21 72.67 69.81 66.78 72.40 75.28 69.89 72.01 

banknote 96.27 94.93 98.45 97.85 94.44 98.82 100.00 100.00 99.48 99.11 99.19 

blogger 83.61 85.33 75.90 78.27 67.64 55.55 62.11 56.24 67.58 77.33 85.17 

chess 78.63 80.21 79.90 79.15 26.44 33.06 36.83 77.85 71.41 66.38 74.25 

connect-4 69.45 65.88 61.66 61.24 48.54 49.87 50.17 64.55 71.41 66.38 75.35 

letRecog 83.86 84.96 88.20 86.90 64.32 72.05 74.90 80.92 87.32 88.43 90.31 

magic04 83.53 80.87 80.31 80.05 82.52 75.72 75.64 83.07 96.51 93.61 96.15 

mushroom 100.00 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

nursery 97.17 99.69 95.55 95.47 71.32 64.64 82.48 79.71 87.32 88.43 90.31 

tic-tac-toe 99.79 99.77 91.70 94.21 98.39 98.12 98.07 98.26 99.19 94.85 98.37 

wine 98.87 98.10 95.48 94.39 95.84 95.16 96.05 76.07 98.44 96.90 98.31 

Average 87.23 86.98 84.48 84.44 75.17 74.27 75.56 81.17 85.56 84.24 86.82 

 

In this study, interpretable rule sets were extracted from datasets in the form of log-

ical expressions. Table 3 presents the concise and complete rule sets generated for three 

representative classification tasks: adult (mixed-type data), blogger (categorical data), 

and wine (numerical data). Taking the adult income prediction task as an example, the 

objective is to determine whether an individual’s annual income exceeds USD 50K. 

Rule 1, "capital-gain > 7070.357," indicates that individuals with capital gains exceed-

ing approximately USD 7070 are highly likely to have an income above USD 50K. 

This single-condition rule highlights a strong positive correlation between high capital 

gains and high income levels. Rule 2 characterizes the typical attributes of high-income 

individuals, suggesting that young, well-educated employees occupying managerial po-

sitions within the private sector and working extended hours are more likely to belong 

to the high-income group. Rule 3 predicts high income based solely on the marital status 

of being married to a U.S. citizen, potentially reflecting the real-world observation that 

married individuals tend to exhibit greater economic stability. Collectively, these rule 

sets integrate key features such as occupation type, educational attainment, and eco-

nomic status, thereby providing verifiable and interpretable reasoning pathways to sup-

port decision-making processes.  

The performance of the model under varying data complexities was further validated 

through a systematic analysis of rule lengths extracted from 12 benchmark datasets. As 

summarized in Table 4, the model demonstrates the ability to generate highly concise 

rule sets for low-dimensional datasets, with the average rule lengths for magic04 and 

tic-tac-toe being 2.11 and 2.43, respectively. Conversely, for high-dimensional and 

complex datasets, rule complexity exhibits a positive correlation with data dimension-

ality; for example, the average rule length for connect-4 reaches 10.87. Similar trends 

are observed in real-world datasets such as bank-marketing and banknote, underscoring 

the model’s capacity to preserve rule simplicity while maintaining robust classification 
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Table 3. Explainable rules generated by NRL-NAS with different datasets. 

Dataset Class Rules 

adult <=50K (relationship:Not-in-family ∧ capital-gain <= 5161.948) ∨ 

(relationship:Unmarried ∧ capital-loss <= 1820.5) ∨ (occu-

pation:Other-service ∧ capital-gain <= 5161.948) ∨ (work-

class:Self-emp-not-inc ∧ occupation:Farming-fishing ∧ capi-

tal-loss <= 1820.5) ∨ (marital-status:Never-married ∧ capi-

tal-gain <= 5161.948 ∧ capital-loss <= 1820.5) ∨ (education-

num <= 12.5 ∧ capital-gain <= 5161.948 ∧ capital-loss > 

1978.5) ∨ (age <= 29.5 ∧ capital-gain <= 5161.948) ∨ (capi-

tal-gain <= 5161.948 ∧ capital-loss <= 1820.5 ∧ hours-per-

week <= 34.5) ∨ (workclass:Self-emp-not-inc ∧ capital-gain 

<= 5161.948 ∧ capital-loss <= 1820.5) 

 >50K (capital-gain > 7070.357) ∨ (marital-status:Married-civ-

spouse) ∨ (workclass:Private ∧ education:Bachelors ∧ occu-

pation:Exec-managerial ∧ age:(29.5,35.5] ∧ 

fnlwgt:(91042.551,208055.795) ∧ education-num:(12.5,13.5] 

∧ hours-per-week > 41.5) 

blogger pb_no (Degree:medium ∧ caprice:right ∧ lpss:yes) ∨ (caprice:mid-

dle ∧ topic:impression ∧ lmt:no lpss:yes) ∨ (Degree:low ∧ 

topic:impression ∧ lmt:yes) ∨ (Degree:medium ∧ topic:sci-

entific ∧ lpss:yes) ∨ (Degree:low ∧ caprice:right ∧ lmt:no ∧ 

lpss:yes) 

 pb_yes (Degree_medium ∧ caprice:middle ∧ lmt:yes) ∨ (ca-

price:right ∧ topic:political ∧ lpss:yes) ∨ (Degree_medium ∧ 

topic:political ∧ lpss:yes) ∨ (Degree:medium ∧ caprice:left ∧ 

topic:impression) ∨ (Degree:medium ∧ lpss:no) ∨ (lmt:no ∧ 

lpss:no) ∨ (caprice:left ∧ topic:news) 

wine Class_1 (Alcalinity_of_ash <= 17.9 ∧ Magnesium:(99.5, 133.0] ∧ 

Total_phenols > 2.335 ∧ Flavanoids > 2.276) ∨ (Alco-

hol:(12.919, 13.535] ∧ Magnesium:(99.5, 133.0] ∧ To-

tal_phenols > 2.335 ∧ Flavanoids > 2.2762 ∧ Color_inten-

sity:(3.491, 4.968]) ∨ (Proline > 905.163) 

 Class_2 (Color_intensity <= 3.491) ∨ (Malic_acid <= 1.546 ∧ 

Color_intensity:(3.491, 4.968] ∧ Hue:(1.005, 1.295]) ∨ (Al-

cohol <= 12.729 ∧ Total_phenols > 2.335 ∧ Proanthocya-

nins > 1.651 ∧ Proline <= 511.479) ∨ (Malic_acid <= 1.546 

∧ Magnesium <= 88.5 ∧ Proline <= 511.479) 

 Class_3 (Hue <= 0.785 ∧ OD280/OD315_of_diluted_wines <= 2.155 

∧ Proline:(511.479, 768.010]) ∨ (Malic_acid > 2.224 ∧ Al-

calinity_of_ash > 19.45 ∧ OD280/OD315_of_diluted_wines 

<= 2.155) ∨ (Flavanoids <= 0.913 ∧ Hue <= 0.785) 

 



performance. Further analysis of the distribution of rule lengths reveals that atomic core 

rules, typically comprising one to two conditions, are consistently generated across all 

datasets, whereas the maximum rule lengths vary significantly. For instance, maximum 

rule lengths of 19 and 20 are observed in the high-dimensional datasets connect-4 and 

mushroom, respectively, markedly exceeding those of lower-dimensional datasets. Of 

particular note is the blogger dataset, which exhibits a broad distribution of rule lengths. 

This, combined with the model’s dynamic adjustment mechanism, confirms its ability 

to adaptively balance rule complexity and classification accuracy based on the strength 

of feature interactions, thereby demonstrating robust adaptability to diverse data pat-

terns. 

Table 4. The length of rules generated by NRL-NAS with various datasets. 

Dataset Rule length 

Min Max Average 

adult 1 9 5.36 

bank-marketing 1 8 2.87 

banknote 2 6 2.91 

blogger  2 13 3.67 

chess 1 15 6.64 

connect-4 1 19 10.87 

letRecog 1 9 5.05 

magic04 1 17 2.11 

mushroom 2 20 5.33 

nursery 2 9 3.46 

tic-tac-toe 1 6 2.43 

wine 1 5 3.78 

 

5 Conclusion and Future Work 

In this study, we propose an interpretable classification framework that integrates neu-

ral rule learning with network architecture search. The proposed method is capable of 

automatically learning logical rules to represent and classify structured data while adap-

tively determining the optimal network architecture to maximize predictive perfor-

mance. Extensive experiments on multiple benchmark datasets demonstrate that our 

approach achieves a strong balance between predictive accuracy and model interpreta-

bility, generating concise and highly interpretable logical rules without sacrificing clas-

sification performance. As future work, we intend to extend the proposed framework 

to unstructured data domains and explore more advanced strategies for fully automating 

rule extraction, thereby further reducing the dependence on manual feature engineering. 
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