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Abstract To address the challenges associated with the inefficient generation of 

product functional design schemes in the face of complex user requirements, a 

multi-expert optimized reinforcement learning search network (MORN) is pro-

posed. By adding non-functional factors to functional design knowledge repre-

sentation, the algorithm breaks through the limitations of traditional single-di-

mensional evaluations and optimizes the generated functional unit chains. A 

highly efficient circular experience pool and dynamic priority sampling strategy 

are proposed to improve experience storage efficiency and training stability. 

Combining the dynamic weighting mechanism and the Mixture of Experts Model 

enhances the algorithm’s adaptability to complex design tasks. Experiments 

show that the circular experience pool technology can eliminate memory frag-

mentation, reducing the model convergence steps and training time by 29.17%, 

and 88.19%, respectively. The dynamic weighting mechanism maintains a stable 

success rate of 93.60% in scenarios with variable requirements, and the MoE 

model increases the search success rate to 94.33%. 

Keywords: functional knowledge integration, knowledge representation, deep 

reinforcement learning, Mixture of Experts. 

1 Introduction 

The growing complexity and diversity of user demands have increased challenges in 

product design. Relying solely on individual expertise and team experience often falls 

short in meeting rapidly evolving market needs. With the advancement of Internet tech-

nologies, a distributed design knowledge ecosystem has emerged, offering designers 

access to vast design resources. According to design science theory, new product design 

scheme comes from effective integration of existing knowledge. Knowledge integra-

tion (also termed design synthesis) refers to the systematic process of retrieving, select-

ing, and combining appropriate design knowledge to obtain novel products that fulfill 



user requirements.  Among various approaches, functional knowledge integration (FKI) 

is especially critical for generating high-quality conceptual solutions. This study fo-

cuses on FKI methodologies. 

Fig. 1 illustrates a case of applying FKI to design a flat-plate solar water heater. The 

goal is to supply warm water using solar energy. Through FKI, three functional units 

(FU) FU1, FU2 and FU3 are selected from the distributed design knowledge base and 

integrated to realize the product's functional design. 

 

Fig. 1. An Example of FKI. 

Current strategies for functional knowledge selection and integration predominantly 

rely on expertise of designers and simplistic rules, failing to fully leverage data-driven 

intelligent optimization methods. This limitation significantly constrains FKI’s adapt-

ability and generalization capabilities in complex environments. Furthermore, the di-

verse functionalities provided by different functional units lead to inconsistent repre-

sentation formats across units. Establishing an effective functional knowledge repre-

sentation model and developing intelligent FKI algorithms constitute critical prerequi-

sites for realizing robust FKI. 

This research proposes an AI-assisted FKI framework to address inefficiencies in 

navigating large-scale knowledge domains and better meet practical design needs. The 

main contributions include: 

(1) Enhancing functional unit representation by incorporating non-functional 

characteristics; 

(2) Optimizing the reward function and reinforcement learning network structure; 

(3) Introducing a ring-structured experience replay mechanism to improve experi-

ence reuse and computational efficiency, thereby boosting learning performance and 

adaptability. 
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2 Related work 

Functionality forms the core of product design, with designers focusing on fulfilling 

diverse user needs, including material, psychological, and social requirements during 

conceptualization [1–4]. To address this complexity, product functions are typically 

categorized into transformation, support, storage, and stimulation [2]. Flow-based in-

put-output models have been widely adopted, such as Wang’s [5] image-similarity-

based flow matching using material, energy, and information flows. While effective for 

material needs, these models struggle with psychological and social requirements. 

To improve FKI, Chen and Xie [6],[7] introduced a keyword-based representation 

using functional units as the smallest knowledge entities. They reformulated FKI as a 

multi-source path search problem, enabling automatic scheme generation. Enhance-

ments like auxiliary unit chains and incomplete matching improved scalability in com-

plex scenarios [8]. 

However, most existing integration approaches rely on exhaustive top-down or bot-

tom-up searches. While effective for small knowledge bases, they become computa-

tionally infeasible as scale increases. Zhang et al. [9] addressed this by proposing fine-

grained knowledge graph representations that preserve hierarchy and support efficient 

graph reasoning. To improve scalability, Chen et al. [10],[11] implemented parallel 

search across distributed processors. Zhang et al. [12] introduced a high-performance 

graph computing framework, and Yuan’s team [13] advanced graph processing on 

multi-core CPU/GPU platforms. 

Yet, these methods still suffer from combinatorial explosion. To address this, Lan et 

al. [14] proposed a reinforcement learning (RL) framework that models FKI as an ex-

ploration task, fundamentally eliminating exhaustive search. 

Experience replay is crucial in RL for stabilizing learning by reusing past experi-

ences. Traditional replay uses uniform sampling, while Schaul et al. [15] introduced 

Prioritized Experience Replay (PER) based on TD error to emphasize important sam-

ples. Cassirer et al. [16] developed the Reverb framework for improved replay effi-

ciency. Buzzega et al. [17] applied replay to continual learning, and Li et al. [18] pro-

posed AMPER for more efficient sampling in deep RL. 

Replay buffer capacity significantly affects diversity and stability [19–21]. Pan et al. 

[22] proposed a value-function-based method that reduces memory usage while main-

taining performance. Eren et al. [23] further evaluated buffer efficiency under con-

strained resources. 

Despite AI's potential, traditional RL faces challenges in data dependency and poor 

generalization under limited memory. Existing FKI platforms often lack efficient stor-

age and representation. To address these gaps, our work introduces a space-efficient 

replay architecture and an enhanced functional-unit model, boosting sample efficiency 

and generalization within memory constraints.  

 



3 Problem Description 

The functional knowledge unit integration algorithm operates within a reinforcement 

learning framework, where an intelligent agent explores optimal design paths on a func-

tional knowledge graph, as shown in Fig. 2. 

Experiences acquired through environmental interactions are stored in a replay 

buffer to support offline training of the agent model. A detailed exposition follows. To 

solve the FKI task, we model functional-unit chaining as an episodic decision process 

on the knowledge graph and train a Deep Monte Carlo Searching (DMCS) agent: in 

each episode the agent rolls out a path from the start to the target node, computes the 

episode return for each state–action pair, and updates a Q-network via Monte Carlo 

targets. 

 

Fig. 2. Functional Unit Exploration Method. 

3.1 The keyword representation method of functional units 

The keyword-based method represents a functional unit by describing its inputs and 

output using structured keywords [6], [7]. As shown in Fig. 3, each FU can have mul-

tiple inputs and a single output. Keywords follow a "modifier + core word" format, 

where the modifier adds semantic detail to the core word. Fig. 4 provides an example. 

 

 

Fig. 3. Functional Unit Representation. Fig. 4. Example of Input/Output Structure. 
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While effective, the current method has limitations. If two FUs share identical inputs 

and outputs, they are treated as equivalent despite differences in non-functional attrib-

utes such as cost, reliability, and lead time. While such attributes are critical in FU 

selection, they are overlooked by current descriptions, which prevents the optimal so-

lution to be obtained. 

3.2 Experience Replay Bottlenecks 

Conventional deep reinforcement learning employs first-in-first-out (FIFO) replay to 

speed up experience storage and retrieval. However, in sparse-reward settings, FIFO 

overwrites valuable early experiences, regardless of their importance. For instance, in 

robotic grasping tasks24, only 0.3% of samples are successful, yet 50% of those are 

discarded within 10,000 training steps. 

Additionally, traditional uniform sampling does not prioritize the experiences, caus-

ing slower convergence due to unweighted sampling. This issue reduces the effective-

ness of experience replay in complex learning scenarios. 

4 Proposed Methodology 

4.1 Incorporation of Real-World Factors 

To address the shortcomings of the current keyword representation of FU, this paper 

proposes to add non-functional characteristics to the keyword representation to enable 

the optimal integration process of functional units. Considering real-world enterprise 

requirements, three non-functional attributes are chosen, i.e., product cost, lead time, 

and reliability. The improved representation of a FU is shown in Fig. 5. 

 

Fig. 5. Representation of Input/Output and Non-functional Features. 

(1) Reliability: It is defined as the probability that N identical functional carriers re-

main operational after a specified time t. If n(t) units fail within this period, the 

reliability is calculated using Equation (1). 

 
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −

𝑛(𝑡)

𝑁
 (1) 

(2) Cost: Defined as the ex penses incurred by the supplier or manufacturer to imple-

ment the specified functional unit through the functional carrier.  



(3) Lead Time: Defined as the time required by the supplier or manufacturer to deliver 

a product capable of implementing the specified functional unit to the customer.  

 

4.2 Joint Metric Optimization of the Reinforcement Learning Model’s Reward 

Function 

To enhance practical applicability, we incorporate non-functional characteristics of 

functional units into the reward function. These characteristics allow customers to tailor 

solutions to specific needs and improve functional knowledge integration. 

In our previous work14, the reinforcement learning model generated functional unit 

chains using a reward based solely on unit matching redundancy. The reward function 

is defined using Equation(2). 

 𝑟 = 𝑚𝑎𝑥(0,10 − 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦)  (2) 

where "Redundancy" represents the redundancy between functional units, reflecting the 

degree of their mapping, and r represents the actual reward. A lower redundancy indi-

cates higher complementarity between functional units, making them more suitable for 

functional chain generation. Therefore, the reward value increases as redundancy de-

creases. By applying an inverse incentive mechanism of 10 - Redundancy, functional 

units with strong complementarity are prioritized. The function max(0,·) is used to en-

sure that the reward value remains non-negative, preventing negative values caused by 

excessive redundancy. Additionally, the constant 10 is introduced to control the reward 

range, effectively distinguishing different redundancy levels while ensuring the stabil-

ity and effectiveness of the reinforcement learning process.  

To incorporate non-functional features into the functional knowledge integration 

process, these features are introduced as joint influence indicators in the reward calcu-

lation. 

(1) The newly introduced three factors are normalized and weighted as the basis for the 

reward value. This approach eliminates the dimensional differences between indicators, 

ensuring that their values are unified within the range of 0 to 1. This not only facilitates 

comparison and subsequent factor management but also promotes network conver-

gence. 

(2) Given the heterogeneous customer prioritization among the factors, the reward 

function formulation necessitates implementing differential weighting coefficients. 

𝑊𝐹𝑟 is the weight of reliability, 𝑊𝐹𝑐, 𝑊𝐹𝑙, and 𝑊𝐹𝑟𝑒𝑑𝑛 are the weights for cost, lead 

time, and redundancy, respectively. To ensure that the reward remains within a reason-

able and observable range, we keep the total success reward value r within the fixed 

range of 0 to 10. 

(3) For the factors "cost" and "lead time," we know from real-world considerations that 

lower values result in higher product profitability, which is desirable for customers. 

Therefore, the variable 𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑠𝑡 is used instead of 𝑉𝑎𝑙𝑢𝑒. 

 
𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑠𝑡 = 1 −

𝐶𝑜𝑠𝑡

𝐶𝑜𝑠𝑡𝑚𝑎𝑥

 (3) 
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where 𝐶𝑜𝑠𝑡 represents the actual cost of the current design solution, measured in mon-

etary units (e.g., RMB). 𝐶𝑜𝑠𝑡𝑚𝑎𝑥  denotes the maximum price threshold for similar 

products, determined jointly by market demand and budget constraints. 

Similarly, 𝑉𝑎𝑙𝑢𝑒𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒  is introduced. 

 
𝑉𝑎𝑙𝑢𝑒𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒 = 1 −

𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒

𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒𝑚𝑎𝑥

 (4) 

where 𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒  represents the actual cycle time from product design to delivery, 

measured in days. 𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒𝑚𝑎𝑥 is the longest allowable delivery period stipulated in 

the customer’s contract 

(4) The calculation formula for r is as follows: 

𝑟 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑊𝐹𝑟 + 𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑠𝑡 ∗ 𝑊𝐹𝑐 + 𝑉𝑎𝑙𝑢𝑒𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒 ∗ 𝑊𝐹𝑙

+ 𝑚𝑎𝑥(0,10 − 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦) ∗ 𝑊𝐹𝑟𝑒𝑑𝑛  
(5) 

 

4.3 Efficient Circular Experience Replay Buffer Storage 

Traditional linear memory storage often fragments memory and loses valuable histori-

cal data. To solve this, we use a circular buffer with pre-allocated memory blocks to  

enhance locality and eliminate the need for dynamic memory management. The storage 

structure is shown in Fig. 6. 

 

Fig. 6. Model Diagram Of Experience Buffer. 

An experience is recorded as: 

 𝑒𝑥𝑝𝑠𝑡 = [𝑋1
𝑡 , 𝑋2

𝑡 , 𝑋3
𝑡] (6) 

where 𝑋1
𝑡 , 𝑋2

𝑡 , 𝑋3
𝑡, respectively, represent the experience groups formed by the state fea-

tures, temporal trajectories, and values from the joint indicators. 

When full, old data in the buffer are overwritten using FIFO, and this algorithm pre-

vents fragmentation and ensures both new and historical data are preserved. The over-

write pointer is updated via: 



 Overwritestart = (𝑝𝑡𝑟current + 𝑁new) 𝑚𝑜𝑑 𝑁buffer (7) 

where 𝑁new is the number of newly added experiences, and 𝑁bufferdenotes the total 

buffer capacity. 𝑝𝑡𝑟current represents the pointer position at the end of the last experi-

ence storage, while 𝑂𝑣𝑒𝑟𝑤𝑟𝑖𝑡𝑒𝑠𝑡𝑎𝑟𝑡  indicates the starting position for storing the next 

batch of experiences after inserting the new experiences into the experience buffer. "In-

itial position" represents the initial storage location of the valid space in memory.  

The circular buffer stores not only recent but also a considerable amount of historical 

experiences, which achieve a balance between timeliness and diversity to boost perfor-

mance in complex tasks. 

4.4 Experience Replay Mechanism 

To avoid the inefficiencies of uniform sampling and the temporal disruption introduced 

by Prioritized Experience Replay (PER), we propose a recency-aware sampling method 

during data overwriting. As shown in Fig. 7, each mixed sampling batch consists of 

experiences drawn from the most recent experiences in a proportion of (1 − ρ) and 

uniformly sampled from the entire dataset in a proportion of ρ. 

ℐ = Shuffle (𝒰[Overwritestart − ⌊𝜌𝑁buffer⌋, Overwritestart) ∪ 𝒰[0, 𝑁buffer)) (8) 

Here, ρ∈ [0,1] is the proportion of recent experiences considered. 𝒰 denotes a uni-

formly sampled index set from the interval [a,b), while Overwritestart − ⌊𝜌𝑁buffer⌋ in-

dicates the starting position of the recent experience segment. The Shuffle(·) denotes 

the index random permutation operation. Although both recent and global indices are 

randomly generated, direct merging can introduce local temporal correlations. A uni-

form random shuffle is applied to ensure temporally uniform sampling to avoid posi-

tional bias and meet the i.i.d. assumption required for stable gradient updates. Without 

this step, sampling order may introduce implicit patterns that affect model robustness. 

 

Fig. 7. Mixed Sampling Index Generation Method. 

Experiments based on multi-factor joint indicators show that the circular buffer ef-

fectively retains experiences from the agent’s exploration. A sufficiently large buffer 

avoids premature data deletion, helping the agent learn from both recent and historical 

experiences more effectively. 
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4.5 Functional Unit Chain Generation Algorithm 

In this section, the deep reinforcement learning network to generate the functional unit 

chain is described in detail. 

4.5.1 Representation of Functional Knowledge Graph 

In the knowledge base, the relationships between functional units can be described us-

ing a graph model. Therefore, introducing the concept of a knowledge graph in this task 

is a natural choice, as such a graph database structure can support subsequent 

knowledge reasoning 14. FKG is modeled as a directed graph G(V,E), where V repre-

sents the set of nodes in G, and E represents the set of edges. Each node 𝑣𝑖∈V repre-

sents a functional unit, while each edge 𝑒𝑖𝑗∈E represents the relationship between 

functional units 𝑣𝑖 and 𝑣𝑗. 

4.5.2 Feature Network Expert Model 

To enhance the adaptability and generalization ability of the network architecture in 

handling cross-domain design knowledge, this paper refines the model proposed in [14] 

and puts forward a Mixture of Experts (MoE) model. The core idea of the MoE model 

is to dynamically select the most suitable expert subnetworks based on the multi-feature 

information of the input data. Each expert models a distinct feature subspace, and di-

versity is encouraged through variations in structure and regularization. A gating net-

work calculates a SoftMax-based weight distribution 𝑔𝑖(𝑥) to determine expert rele-

vance. To reduce computation, only the top-k experts are activated for each input, and 

their outputs are combined as follows: 

 
𝑔𝑖(𝑥) =

𝑒𝑥𝑝(ℎ𝑖(𝑥))

∑ 𝑒𝑥𝑝 (ℎ𝑗(𝑥))𝑁
𝑗=1

 (9) 

where ℎ𝑖(𝑥) represents the raw score generated by the i-th expert through a linear trans-

formation in the gating network, N represents the number of experts, and 𝑔𝑖(𝑥) denotes 

the weight of the i-th expert. 

 
𝑔̃𝑖(𝑥) = {

𝑔𝑖(𝑥) 𝑖𝑓 𝑖 ∈ 𝑇𝑜𝑝𝑘(𝑔1(𝑥), ⋯ , 𝑔𝑁(𝑥))

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(10) 

 
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = ∑ 𝑔̃𝑖(𝑥)

  𝑘

𝑖=1
⋅ 𝐸𝑖(𝑥) (11) 

where 𝐸𝑖(𝑥) represents the output of the i-th expert subnetwork, while 𝑔̃𝑖(𝑥) denotes 

its corresponding weight, and k refers to the number of selected expert subnetworks. 

The model is jointly optimized using task loss and an entropy-based regularization 

term, which stabilizes the gating weight distribution. The objective function is: 

 
𝐿 = 𝐿𝑡𝑎𝑠𝑘 + 𝜆 ∑ 𝑔𝑖(𝑥) 𝑙𝑜𝑔 𝑔𝑖 (𝑥)

𝑁

𝑖=1
 (12) 

Here, 𝐿 represents the total loss function, which is a weighted sum of the task loss 

and the regularization term. 𝐿𝑡𝑎𝑠𝑘 denotes the task loss function, which measures the 



prediction error of the model on the current task. It optimizes the parameters of both 

the expert subnetworks and the gating network, ensuring the accuracy of path scoring. 

λ is the regularization coefficient, and the logarithm function is used to penalize uneven 

weight distribution, preventing the gating network from assigning weights too concen-

trated. Entropy regularization is used to constrain the distribution of the original gating 

network weights 𝑔𝑖(𝑥).  

4.5.3 Network Architecture Model 

The input features of the network model comprise environmental state data and agent-

observed behavioral information, including the current node, subsequent nodes, local 

redundancy between the current and subsequent nodes, action paths, global redundancy 

of the current path, and requirement of the product. As shown in Fig. 8, functional unit 

features are encoded as an x×y matrix, where x denotes the maximum number of inputs 

or outputs per unit and y is the maximum number of keywords per input/output. Each 

row corresponds to an input or output, with columns 1 to y−1 storing modifier word 

vectors and the last column storing the core word vector. Absent keywords are repre-

sented with zero vectors. To conserve memory, action trajectories are encoded as the 

mean of word vectors for each input’s modifiers and core word. Keyword embeddings 

are 200-dimensional vectors derived from Tencent AI Lab’s ChineseEmbedding da-

taset. In this experiment, the values of x and y are set to 12 and 6, respectively.  

 

Fig. 8. Example of Encoding Matrix of Input and Output. 

 

Fig.9. Overview of Network Architecture. 
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The specific network structure is shown in Fig. 9. It includes a 1×6 convolutional 

layer with 200 channels for feature extraction, followed by a single-layer unidirectional 

LSTM with 200 hidden units for sequential modeling. The outputs are concatenated 

with redundancy and component features to form the final representation. 

The MoE model contains 4 expert networks, as shown in Fig.10. These experts learn 

the modeling capabilities of specific feature subspaces through gating weights, focusing 

on Node Feature Extraction, Multi-dimensional Joint Information Evaluation, Tem-

poral Dependency of Time-sensitive paths, and Optimization Capability of Redun-

dancy constrained path matching, respectively. According to Google’s GShard archi-

tecture 25, with an activation ratio of 2:1, the expert model achieves an optimal trade-

off between model capacity and computational efficiency. In the small-scale experi-

ments used here, only 2 experts are activated for training selection, allowing for more 

suitable training based on specific input features. Since it is embedded in the fully con-

nected layer, the input and output dimensions remain consistent. 

 

Fig. 10. Mixture of Experts. 

4.5.4 Training algorithm 

Complete network training algorithm is shown in Fig.11. The algorithm achieves 

efficient agent training through the multi-expert optimized reinforcement learning 

search network (MORN), and Mean Squared Error (MSE) is used as the loss function . 

First, it combines an interval-greedy strategy, using the hyperparameter ϵ to control the 

agent’s exploration and exploitation. The agent interacts with the environment in each 

episode, generating state, action, and reward data, which are stored in the experience 

buffer. The reward is updated by calculating the Monte Carlo return to adjust future 

cumulative rewards, making the current reward more valuable in the long term. When 

the amount of experience in the buffer exceeds a set threshold, an experience replay 

mechanism is employed, and recent proportional priority sampling is used to extract 



batch data to train the Q-network. A circular buffer strategy is designed, which cycli-

cally overwrites old data and dynamically manages the experience pool. 

 

Fig. 11. Training Algorithm. 

5 Experiments and analysis 

This section presents experiments to evaluate the performance improvements of 

MORN. We compare MORN with the baseline algorithm DMCS, proposed by Lan 

[14], which leverages reinforcement learning for autonomous agent exploration. DMCS 

effectively mitigates gradient explosion and significantly reduces the search time for 

generating functional chains. 

We begin with the experimental setup, followed by analysis of the results. 

5.1 Data preparation 

Due to the limited size and lack of standard metrics in existing datasets for functional 

knowledge units, we follow the same data augmentation strategy as Lan et al. [14]. 

Starting from 59 original functional units, 354 training samples and 1,000 validation 

samples are generated. For real-world evaluation, we further test the models on 21 ac-

tual product design cases to ensure robustness across scenarios. 

5.2 Implementation details & training condition 

MORN algorithm is based on the PyTorch deep learning framework, using the Adam 

optimizer and MSE loss function, ReLU activation for the MLP layers, and Layer Norm 
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normalization. It was trained on a server with 20 processors (Intel i7-12700KF CPU @ 

3.61 GHz) and an NVIDIA GeForce RTX 3090Ti 24GB GPU. The training duration 

was 8.5 hours. The values for each hyperparameter are as follows: maximum search 

length L=10, learning rate φ = 5e −7, the number of episodes epi𝑚𝑎𝑥  = 1, 500,000, 

batch size bat = 512, experience replay threshold repthreshold = 1536, and maximum 

buffer size buf= 60,000. 

To simulate realistic integration scenarios, non-functional attributes were randomly 

assigned: reliability ∈ [0,1], cost ∈ [0,100], and lead time ∈ [0,10]. The loss through-

out the training process is shown in Fig.12. At the beginning of training, the learning 

policy starts exploration from scratch, causing the loss curve to drop rapidly in a short 

period. Then, as the agent enters the exploration phase with frequent policy updates, 

the curve fluctuates significantly and exhibits an upward trend. As ϵ gradually de-

creases, the policy stabilizes, and the loss converges. The rewards during training are 

shown in Fig. 12 (b). The reward increases as ϵ decreases in certain regions. The overall 

reward trend first rises and then stabilizes, indicating that training in each region is 

sufficient. Eventually, the reward converges around 5.3. 

 

Fig. 12. Loss (a) and Mean Reward (b) Versus Training Episodes (per 500 Episodes). 

5.3 Performance comparison experiments 

We evaluate performance using 1,000 randomly generated functional requirements 

from Lan’s demand generator [18]. The maximum search length is set to 10, and the 

search time is limited to 300 seconds. 

We compare MORN and DMCS across two key dimensions, i.e., computational ef-

ficiency and result quality. The computational efficiency of the algorithm is evaluated 

using success, mean time, and total time. Success represents the probability of success-

fully finding the optimal path within the maximum search time. Mean time refers to the 

average search time required to find the optimal path. Total time denotes the total time 

taken to complete all search tasks. Result quality is the quality of the search results and 

it is measured using the mean redundancy (mean redn) metric, which indicates the av-

erage redundancy of the optimal paths. 

In real-world scenarios, design requirements often differ in priority. To ensure a 

more balanced and reasonable product design, the influence of multiple joint factor 

indicators is averaged. Additionally, we conduct weighted experiments to reflect user-



specific preferences, assigning higher weights to redundancy due to its significance in 

design completeness. Other joint indicators are adjusted to remain consistent with the 

reward function in Lan's study, ensuring fairness and comparability. 

5.3.1 Multi-Factor Combined Metrics (MFCM) 

MFCM introduces four equally weighted evaluation metrics to refine reward. As shown 

in Table 1,  MFCM improves the success rate by 4.70% with the cost of the increase of 

execution time. 

Table 1. Comparison of Multi-Factor Combined Metrics (MFCM) Experiments. 

 Success(%) Mean redn Mean time(s) Total time (s) 

DMCS 88.70 5.94 0.09 105.26 

DMCS+MFCM 93.40 20.79 0.22 233.80 

By replacing the coarse single redundancy metric (gradient 1.0) with fine-grained 

feedback (each metric contributing 0.025), the agent better perceives state transitions. 

This facilitates more accurate decisions and naturally promotes balanced redundancy 

among functional units. 

5.3.2 High-Efficiency Ring-structured Experience Pool (HREP) 

HREP enhances storage and training efficiency using preallocated memory and a 

FIFO overwrite strategy. Data is averaged over 30 independent experiments, with 

memory block distribution states sampled every 10 minutes and experience overwrite 

cycle duration calculated. The results shown in Table 2 indicate that memory fragmen-

tation is completely eliminated, while overwrite latency is reduced by 86.59%. It also 

shortens training time from 72 to 8.5 hours and reduces convergence steps by 29.17%, 

as shown in Table 3. 

Table 2. Storage Efficiency Comparison. 

 DMCS 

(Linear Array) 

HREP 

(Ring Buffer) 

Improvement Ratio 

Memory Fragmenta-

tion Rate (%) 
32.72 0.00 100% 

Overwrite Operation 

Latency (µs) 
8.20 1.10 86.59% 

Table 3. Training Efficiency Comparison. 

 DMCS 

(Linear Array) 

HREP 

(Ring Buffer) 

Improvement Ratio 

Convergence Steps 

(experience replays) 
1.2×106 8.5×105 29.17% 

Average Training 

Time (hours) 
72.00 8.50 88.19% 
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As shown in Table 4, though HREP does not significantly outperform baselines on 

small datasets, its linear memory scalability makes it well-suited for large-scale or dy-

namic industrial scenarios. 

Table 4. High-Efficiency Ring-structured Experience Pool Experiment Comparison. 

 Success(%) Mean redn Mean time(s) Total time (s) 

DMCS 88.70 5.94 0.09 105.26 

DMCS+HREP 89.53 5.50 0.09 105.18 

5.3.3 Heterogeneous Factors (HF) 

To accommodate varied customer priorities, dynamic weight adjustments were intro-

duced: 

 [𝑊𝐹𝑟 , 𝑊𝐹𝑐, 𝑊𝐹𝑙 , 𝑊𝐹𝑟𝑒𝑑𝑛] = [1,3,2,4] (13) 

As shown in Table 5, the model maintained a 93.60% success rate under random 

weight shifts, which demonstrates robustness to heterogeneous design requirements. 

Table 5. Dynamic Weight Experiment Comparison. 

 Success(%) Mean redn Mean time(s) Total time(s) 

DMCS+MFCM 93.40 20.79 0.22 233.80 

DMCS+MFCM(HF) 93.60 19.40 0.18 195.44 

5.3.4 MoE Hybrid Expert Model (MoE) 

As shown in Table 6, the MoE model introduces a dynamic gating mechanism for adap-

tive expert selection, achieving the highest success rate of 94.33% while reducing re-

dundancy by 15.32%. Though it incurs a 20.74% increase in computational cost due to 

gating and parallel expert inference, response time remains under 0.25s per step, which 

is acceptable for industrial applications. 

Table 6. Comparison of Hybrid Expert Network Experiments. 

 Success(%) Mean redn Mean time(s) Total time(s) 

DMCS+MFCM+HREP 94.10 22.06 0.18 193.70 

DMCS+MFCM+HREP+MoE 94.33 18.68 0.22 233.88 

Overall, through progressive optimization across four stages, the success rate im-

proved from 88.70% to 94.33%. This synergy supports dynamic user preferences and 

significantly improves efficiency compared to manual processes, offering a practical 

solution for intelligent product design. 



6 Conclusion and Future Work  

In this work, we optimized the functional knowledge integration framework DCMS to 

improve its performance. By refining the reward distribution, our approach ensures that 

design requirements are accurately captured, preventing deviations in product solutions 

due to mismatches within the knowledge base. Additionally, the adoption of a more 

efficient experience pool significantly enhances model training efficiency and enables 

the discovery of more optimal design solutions.Furthermore, we propose a MoE mod-

ule to improve adaptability and generalization across diverse design tasks. For future 

work, we plan to explore multi-agent parallel search, where multiple agents collaborate 

to improve search efficiency. Given the confidentiality constraints of enterprise prod-

ucts, we will also investigate a distributed knowledge base framework to enable func-

tional product integration without requiring a centralized knowledge repository. 
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