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Abstract. Cardiac segmentation is crucial for analyzing heart structure and func-

tion, providing essential support for clinical diagnosis and treatment planning. 

However, obtaining fully annotated images is both costly and time-consuming. 

Scribble annotations, which utilize simple lines instead of pixel-wise annotations, 

offer a cost-effective alternative but lack sufficient information, making segmen-

tation network training challenging. To tackle this challenge, we introduce Scrib-

bleCorrNet (SCN), an innovative architecture designed for medical image seg-

mentation under scribble-based supervision. SCN employs Correlation-Aware 

Label Enhancement (CALE) strategies, introducing two key mechanisms: (i) 

pixel affinity propagation (PAP), which propagates high-confidence pixels using 

pairwise similarities in a correlation map, and (ii) region shape refinement (RSR), 

which refines pseudo-labels by leveraging shape information encoded in the cor-

relation map. Additionally, a class-aware contrastive learning (CACL) mecha-

nism enhances intra-class consistency and inter-class separation. Experiments on 

the ACDC2017 and MSCMR datasets demonstrate SCN’s superior performance 

compared to existing scribble-based segmentation methods.  

Keywords: Cardiac segmentation, scribble annotation, weakly supervised 

learning, contrastive learning. 

1 Introduction 

Cardiac MRI segmentation is crucial for diagnosing cardiac conditions and guiding in-

terventions, requiring accurate delineation of structures such as ventricles and myocar-

dium [1]. fully supervised learning relies on pixel-level labels [2], [3], which are labor-

intensive and subject to anatomical differences between patients [4], [5]. Weakly su-

pervised learning (WSL) addresses these challenges by using sparse annotations (e.g., 

scribbles, image-level labels) to reduce annotation costs while maintaining perfor-

mance [6-10]. However, sparse annotations such as scribbles limit model performance 

due to insufficient supervision [11-13]. To address this problem, we designed CALE 

that integrates two new strategies: pixel affinity propagation (PAP) for capturing fine-



grained pixel relationships and region shape refinement (RSR) for global shape-based 

pseudo-label refinement. In addition, the confidence-guided threshold mechanism 

(CGTM) iteratively updates the high-confidence region masks, while the class-aware 

contrastive learning (CACL) enhances feature discrimination through intra-class con-

sistency and inter-class separability. Our contributions include: 

⚫ CALE: We propose PAP to exploit pairwise pixel relationships and Region 

Shape Refinement (RSR) to integrate global shape information, enhancing 

pseudo label quality and segmentation accuracy. 

⚫ CGTM: We propose CGTM which can iteratively updates high confidence re-

gion masks, ensuring reliable supervision with minimal annotation require-

ments. 

⚫ CACL: The proposed CACL enhances the model’s ability to distinguish differ-

ent classes under weakly annotation scene and improved segmentation perfor-

mance. 

⚫ Comprehensive experiments conducted on public cardiac MRI datasets vali-

date the efficacy of SCN. Our method surpasses prior methods based on scrib-

ble annotations and various semi-supervised techniques, attaining comparable 

performance metrics.  

2 RELATED WORK 

2.1 Weakly-Supervised Segmentation 

Instead of relying on labor-intensive pixel-level annotations, necessitating techniques 

that utilize sparse annotations. Weakly supervised learning (WSL) reduces dependency 

on dense labels, leveraging sparse inputs like scribbles [15], image-level labels [16], or 

bounding boxes [17], [18]. Scribble-based methods have gained attention. Luo et al. [8] 

proposed a dual-branch network with hybrid pseudo-label supervision to improve seg-

mentation quality, while Lin et al. [11] introduced ScribbleSup, enhancing performance 

with regularization loss. Tang et al. [19] further explored regularization loss for gener-

alization, and Valvano et al. [12] used adversarial learning to stabilize pseudo-label 

quality. Pseudo-label refinement approaches, such as Scribble2Label [20] and Beyond 

Weakly Supervised [21], mitigate annotation noise through iterative consistency con-

straints. However, these methods remain vulnerable to initial pseudo-label quality, lim-

iting their ability to capture global structural information. To address this, we propose 

a dynamic correlation graph-based label propagation approach, combining pixel-wise 

local consistency and region-wise global shape refinement. This dual strategy dynami-

cally updates high-confidence masks, improving pseudo-label accuracy and segmenta-

tion performance. 

2.2 Contrastive Learning 

Self-supervised learning (SSL), particularly contrastive learning, offers an effective 

way to learn feature representations from unlabeled data through unsupervised loss 
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functions [23]. Contrastive learning pulls semantically similar samples (positive pairs) 

closer and pushes dissimilar ones (negative pairs) apart in latent space [24], [25]. Early 

methods like SimCLR [24] relied on data augmentation for positive pairs, but this often 

blur inter-class boundaries in fine-grained tasks like segmentation. Recent advance-

ments, such as CPC [26] and supervised contrastive learning (SCL) [27], improved 

feature extraction using true or pseudo-labels. However, these methods struggle with 

pixel-level detail capture or require high-quality pseudo-labels, limiting their efficacy 

in weakly supervised scenarios. 

To overcome these challenges, we propose a contrastive learning approach based on 

weakly supervised segmentation. We propose a class-aware contrastive learning 

(CACL) strategy specifically designed for sparse annotation scenarios. CACL intro-

duces category mean vectors computed from sparse annotations, enabling more robust 

intra-category feature aggregation and inter-class separation. 

3 METHOD 

In this section, we introduce ScribbleCorrNet (SCN), a weakly supervised segmenta-

tion framework for medical images using sparse scribble annotations. As shown in 

Fig.1, the framework integrates three core components: pixel affinity propagation 

(PAP), region shape refinement (RSR), and class-aware contrastive learning (CACL). 

PAP captures fine-grained pixel relationships to generate pseudo-labels, RSR refines 

these labels using global shape constraints, and CACL enhances feature discrimination. 

This combination enables accurate segmentation under scribble annotated scene.  



 

Fig. 1.   Overview of the formulated ScribbleCorrNet(SCN) framework. (a) The main network 

integrates pixel affinity propagation (PAP), region shape refinement (RSR), and class-aware con-

trastive learning (CACL). (b) The CACL module ensures class-aware feature alignment through 

contrastive learning. 

3.1 Correlation-Aware Label Enhancement 

Pixel Affinity Propagation. To propagate sparse scribble annotations to unannotated 

regions, we propose PAP. Given an encoder-extracted feature representation 𝑓 ∈
𝑅𝐻×𝑊×𝐷, where H, W, and D represent height, width and the number of feature chan-

nels, pixel - level semantic affinities are obtained via a correlation map that is softmax 

- normalized: 

 𝐶𝑖,𝑗 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑖∙𝑓𝑗)

√𝐷
                                                     (1) 
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where 𝑓𝑖 ∙ 𝑓𝑗 represents the dot product of the feature vectors at pixels i and j. In order 

to enhance the model’s ability to identify pairwise similarities, we embed the infor-

mation of the correlation matrix C into the model’s prediction 𝑌𝑖̂ to obtain the hard 

pseudo labels 𝑌𝑖,𝑐𝑜𝑟𝑟  after pixel propagation. 

 𝑌𝑖,𝑐𝑜𝑟𝑟 = 𝐶𝑖,𝑗 ∙ 𝑌𝑖̂                                                     (1) 

here, 𝐶𝑖,𝑗 denotes the correlation map, and 𝑌𝑖,𝑐𝑜𝑟𝑟 ∈ 𝑅𝐻∗𝑊∗𝐶 integrate semantic similar-

ity to enable smooth, context-aware diffusion of supervisory signals from annotated to 

unannotated regions. To ensure consistency, we introduce the PAP loss, which 

measures the discrepancy between the model’s predictions 𝑌𝑖̂ and propagated pseudo-

labels 𝑌𝑖,𝑐𝑜𝑟𝑟  via cross-entropy. This loss mitigates the limitations of sparse scribble an-

notations by aligning predictions with refined pseudo-labels. 

 ℒ𝑃𝐴𝑃 = −
1

𝑁
∑ log (

exp(𝑌𝑖̂,𝑌𝑖,𝑐𝑜𝑟𝑟 )

∑ exp(𝑌𝑖̂)𝐶
𝑐=1

)𝑁
𝑖=1                                             (3) 

here, 𝑌𝑖̂  represents the model predictions for the i-th pixel, and 𝑌𝑖,𝑐𝑜𝑟𝑟  denotes the 

pseudo-label category index for the i-th pixel. N is the total number of pixels. 

Region Shape Refinement.To incorporate shape information from the correlation map 

C, we propose RSR, which refines pseudo-labels for unlabeled regions using high-con-

fidence region-level statistics. Each row c in C encodes the similarity of a pixel to all 

others, capturing class-agnostic shape patterns. We refine pseudo-labels by integrating 

high-confidence region statistics with normalized rows of C, leveraging shape priors to 

enhance boundary accuracy. This process is formalized as follows: 

 𝑐̂ = 𝑓2 (𝕝 (
𝑐̂−min(𝑐)

𝑚𝑎𝑥(𝑐)−min (𝑐)
) > 𝜏)                                          (4) 

where 𝑓2(∙) is a shape-matching function, and 𝑐̂ ∈ 𝑅𝐻∗𝑊 represents the binary shape 

mask, embedding shape information. To identify high-confidence regions, we compute 

a high confidence mask 𝑀𝑖 and calculate the overlap ratio r between 𝑐̂ and the high-

confidence regions within 𝑀𝑖. 

𝑀𝑖,𝑗 = {
1, 𝑖𝑓 max (𝑃𝑖,𝑗 > 𝜏𝑟𝑒𝑔𝑖𝑜𝑛)

0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                              (5) 

 𝑟 =
|𝐶̂∩𝑀𝑖|

|𝑀𝑖|
                                                                      (6) 

here, the threshold 𝜏𝑟𝑒𝑔𝑖𝑜𝑛 is used to filter high-confidence predicted pixels for gener-

ating the pseudo-labels. the shape mask 𝑐̂ is used to refine the pseudo-labels 𝐹(𝑥)𝑖 . 

This process refines the pseudo-labels by identifying the most dominant class 𝑐∗ within 

the high-confidence region. The dominant class is determined as follows: 

𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∈𝐿𝐺(𝑙)                                                    (7) 

here, L represents the set of all unique classes in 𝐹(𝑥)𝑖. 𝑀𝑖 is the high-confidence mask, 

and 𝕝(∙) is the indicator function. After identifying, the pseudo-labels are updated by 



propagating this dominant class into the unlabeled regions, thereby expanding the high-

confidence regions: 

𝐹(𝑥)𝑖 = {
𝑐∗, 𝑖𝑓 𝑐̂𝑖 = 1,

𝐹(𝑥)𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
𝑀𝑖 = 𝑀𝑖 ∪  𝑐̂𝑖                                 (8) 

To ensure the effectiveness of updated pseudo-labels, we introduce two complemen-

tary loss terms that supervise distinct aspects of model predictions. The first term is the 

propagation consistency loss, which enforces consistency between propagated outputs 

𝑌𝑖,𝑐𝑜𝑟𝑟  and refined pseudo-labels 𝐹(𝑥)𝑖 . This loss aligns predictions with updated 

pseudo-labels, ensuring robustness of the propagation process. It is defined as: 

ℒ𝑃𝐶𝐿 =
1

|𝑁|
(ℒ𝑐(𝑌𝑖,𝑐𝑜𝑟𝑟 , 𝐹(𝑥)𝑖)) ∙ 𝑀𝑖                                       (9) 

where, ℒ𝑐 is the cross-entropy loss; 𝐹(𝑥)𝑖 is the updated high confidence pseudo-label; 

𝑌𝑖,𝑐𝑜𝑟𝑟  is the output pseudo-label after pixel propagation and 𝑀𝑖 is the high-confidence 

pixel mask, indicating the high-confidence pixel location.  

The second loss term supervises the model’s final predictions 𝑌𝑖̂ using the same up-

dated pseudo-labels 𝐹(𝑥)𝑖. Unlike the pixel propagation supervision, this loss directly 

guides the model’s overall segmentation predictions, encouraging consistency between 

the model’s outputs 𝑌𝑖̂ and the refined pseudo labels 𝐹(𝑥). The region-level supervision 

loss is defined as: 

ℒ𝑟𝑒𝑔𝑖𝑜𝑛 =
1

|𝑁|
(ℒ𝑐(𝑌𝑖̂, 𝐹(𝑥)𝑖)) ∙ 𝑀𝑖                                     (10) 

The total RSR loss is as follows: 

ℒ𝑅𝑆𝑅 = ℒ𝑃𝐶𝐿 + ℒ𝑟𝑒𝑔𝑖𝑜𝑛                                                    (11) 

The RSR strategy enhances pseudo-label reliability and context consistency by inte-

grating shape information from correlation graphs with statistical information from 

high-confidence regions. This dual approach improves model perception of unlabeled 

areas and significantly elevates pseudo-label quality, thereby boosting overall segmen-

tation performance.  

3.2 Confidence-Guided Thresholding Mechanism 

Traditional medical image segmentation methods often rely on fixed thresholds to iden-

tify high-confidence regions [30], [31], but these thresholds are suboptimal: overly 

strict thresholds underutilize unlabeled data, while loose ones degrade prediction accu-

racy. Inspired by [32], we propose the confidence-guided thresholding mechanism 

(CGTM), which adaptively updates high-confidence region masks by iteratively corre-

lating each pixel with the entire feature map. This mechanism dynamically aligns 

thresholds with data characteristics and model predictions, enhancing pseudo-label re-



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

liability. CGTM further refines masks by integrating shape information from the corre-

lation map and scribble annotations, enabling precise label propagation. This approach 

effectively captures complex anatomical structures and outperforms static or neighbor-

hood-based methods, achieving superior segmentation performance in challenging 

medical tasks. After multiple experimental verifications, the initial threshold 𝜏0  of 

CGTM is set to 0.85, which not only avoids mistakenly incorporating a large number 

of low-quality predictions into pseudo-supervision in the early stage, but also is not too 

harsh, resulting in too few pseudo-labels and difficulty in training. CGTM is updated 

iteratively based on model output 𝑌𝑖̂ . We employ the exponential moving average 

(EMA) to optimize τ to ensure the smoothness of threshold updates and avoid excessive 

fluctuations. Each update is defined as: 

𝛥𝜏 =
1

|𝐿|
∑ ∑ max

𝑙∈𝐿

[1(𝑌̂𝑖 = 𝑙) ⊙𝑚𝑎𝑥
   𝑐 (𝑌̂𝑖)]                                   (12) 

where 
𝑐

max
 (∙) denotes taking the maximum value along the max channel dimension. L 

is the set of all unique classes. We take the maximum confidence of all classes and take 

their average as the increment in each iteration. We found that such a threshold update 

strategy is effective. 

3.3 Class-Aware Contrastive Learning 

In weakly supervised semantic segmentation with sparse annotations, inter-category 

discrimination and intra-category consistency are critical for effective feature represen-

tation. However, sparse annotations limit direct supervision, leaving unlabeled regions 

ambiguous. While pseudo-labels help mitigate this issue, they risk introducing noise. 

To address these challenges, we propose CACL, which leverages category mean vec-

tors to enhance intra-class feature aggregation and inter-class separation, thereby 

strengthening global feature constraints. Specifically: let 𝐹𝑖𝜖𝑅𝐵∗𝐷∗𝐻∗𝑊 denote the fea-

ture output of the model’s last upsampling layer, and represent sparse annotations. 

Here, B, D, H, W denote batch size, feature dimension, height, and width, respectively. 

For each category c, let 𝑀𝐶 denote the set of pixels labeled as class c. The category 

mean vector 𝜇𝑐 is defined as: 

𝜇𝑐 =
∑ 𝑀𝑐𝑖 ⊙𝐹𝑖

∑ 𝑀𝑐+𝜖𝑖
                               (13) 

among them, ε is a smoothing term to prevent division by zero. To incorporate both 

labeled and unlabeled regions, we calculate the contrastive loss separately for the sparse 

annotations and pseudo labeled regions. For the labeled regions, we calculate the simi-

larity 𝑆𝑖,𝑐 of each pixel feature 𝐹𝑖 with the mean vector of all categories, which is de-

fined as: 

𝑆𝑖,𝑐 =
𝐹𝑖∙𝜇𝑐

𝑇
                                            (14) 



Here, the temperature parameter T governs the sharpness of the distribution. We ensure 

intra-class consistency by encouraging the pixel feature 𝐹𝑖 to maximize the similarity 

with its true class mean vector 𝜇𝑐: 

ℒ𝑠𝑐𝑟𝑖𝑏𝑏𝑙𝑒 = −
1

𝑀𝑦𝑖

∑ 𝑙𝑜𝑔
𝑒𝑆𝑖,𝑦𝑖

∑ 𝑒𝑆𝑖,𝑐
𝑐=1

𝑖∈𝑀𝑦𝑖

                                   (15) 

here, 𝑆𝑖,𝑦𝑖
 represents the similarity between pixel i and its true category 𝑦𝑖 , which is 

used to measure category consistency. 𝑀𝑦𝑖
 represents the set of labeled pixels of cate-

gory 𝑦𝑖 . For the unlabeled regions, we use pseudo labels 𝐹(𝑥)𝑖𝜖𝑅𝐵∗𝐻∗𝑊 which are gen-

erated through region propagation and confidence thresholding, to supervise the unan-

notated regions. The contrastive loss for pseudo-labeled regions is similarly defined as: 

ℒ𝑢𝑛𝑙𝑎𝑏𝑒𝑙 = −
1

|𝑀𝑦̂𝑖
|

∑ 𝑙𝑜𝑔
𝑒

𝑆𝑖,𝑦̂𝑖

∑ 𝑒𝑆𝑖,𝑐𝑐
𝑐=1𝑖∈𝑦̂𝑖

                                (16) 

here, 𝑆𝑖,𝑦̂𝑖
 represents the similarity between pixel i and its true category 𝑦̂𝑖, which is 

used to measure category consistency. 𝑀𝑦̂𝑖
 represents the set of labeled pixels of cate-

gory 𝑦̂𝑖. Finally, we combine the contrastive loss from both labeled and pseudo-labeled 

regions to define the total CACL as: 

ℒ𝐶𝐴𝐶𝐿 = ℒ𝑠𝑐𝑟𝑖𝑏𝑏𝑙𝑒 + ℒ𝑢𝑛𝑙𝑎𝑏𝑒𝑙                                                  (17) 

In the weakly supervised medical image segmentation task, the category-aware contrast 

learning strategy significantly improves the model performance, especially the perfor-

mance on sparsely labeled data sets verifies its effectiveness. 

3.4 Loss Function 

The total loss function can be written as: 
ℒ𝑡𝑜𝑡𝑎𝑙 = ℷ1ℒ𝑝𝑐𝑒 + ℷ2ℒ𝑃𝐴𝑃 + ℷ3ℒ𝑅𝑆𝑅 + ℒ4ℒ𝐶𝐴𝐶𝐿                         (18) 

here, ℒ𝑝𝑐𝑒  denotes the partial cross-entropy loss supervised by scribble annotations. 

ℒ𝑝𝑐𝑒 is defined as follows: 

ℒ𝑝𝑐𝑒 = − ∑ ∑ 𝑦𝑖,𝑠
𝑐 𝑙𝑜𝑔𝑦𝑖,𝑝

𝑐

𝑖∈𝜔𝑖𝑐

                                                 (19) 

where, 𝑦𝑖,𝑝
𝑐  is the predicted probability of pixel i belonging to class c, and ωs is the set 

of pixels in the scribble. 𝑦𝑖,𝑠
𝑐  represents the label of pixel i for category c in the scribble 

annotations. 
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4 EXPERIMENTS 

4.1 Dataset 

We validate our method on two public datasets, ACDC2017[33] and MSCMR [34]. 

ACDC2017. Contains 1,902 MRI slices at end-diastole and end-systole of 100 patients, 

with three cardiac structures (left/right ventricle, myocardium) annotated. Based on 

previous studies, the dataset is divided into training, validation, and testing parts in a 

ratio of 6:2:2. Augmentation strategies (random rotation, flipping, and resizing to 

256×256) are applied during training.  

MSCMR. Contains 686 late gadolinium-enhanced MRI slices of 45 patients with car-

diomyopathy. Among them, 20 patients have both scribbles and pixel-level annotations 

of cardiac structures. Five of these patients are used for validation and 15 patients are 

used for testing. The 25 patients with only scribble labels are used for training. 

4.2 Evaluation Metrics 

We quantitatively evaluate segmentation performance using standard metrics: The Dice 

Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (95HD) are 

employed as evaluation metrics. The DSC quantifies the volumetric agreement between 

predicted segmentations and reference annotations, while 95HD quantifies the maxi-

mum boundary deviation between predictions and labels. Metrics are computed for 

each cardiac structure and averaged to provide overall performance scores.  

4.3 Implementation Details. 

Our method is implemented using the U-Net framework and trained on NVIDIA 

TITAN V GPUs with PyTorch. For the purpose of ensuring comparability and fairness 

across experiments, all experiments adopted the same training protocol such as the en-

hancement strategy, and the backbone architecture adopted the backbone architecture 

of the original method. The experiment only takes seven or eight hours to complete the 

model training. All input images are resized to 256×256 pixels to match network input 

requirements. Training employs the Adam optimizer with an initial learning rate of 

1×10⁻³, adjusted dynamically using a StepLR scheduler. The batch size is set to 24, and 

training proceeds for 30,000 iterations. Optimized loss weights 𝜆1, 𝜆2, 𝜆3, 𝜆4 are set to 

[1, 0.3, 0.25, 0.1] following empirical hyperparameter tuning. 

 

 

 

 

 

 

 

 

 



Table 1. Performance comparison on the ACDC2017 dataset 

Method RV MYO LV Mean 

 DSC↑ 95HD↓ DSC↑ 95HD↓ DSC↑ 95HD↓ DSC↑ 95HD↓ 

PCE[13] 66.53 111.26 61.39 104.89 76.14 106.59 68.02 107.58 

S2l[19] 86.66 22.03 79.25 48.94 80.31 72.72 82.07 47.89 

MLoss[34] 85.67 3.63 83.80 1.33 90.98 3.91 86.82 2.96 

RLoss[35] 86.98 3.13 81.94 2.46 91.80 3.37 86.91 2.99 

MELoss[37] 86.94 12.09 81.35 23.65 90.05 23.08 86.12 19.61 

USTM[33] 86.52 6.61 75.52 65.21 80.55 72.91 80.86 48.24 

DMPLS[8] 86.1 7.90 84.20 9.70 91.3 12.10 87.20 9.90 

Fddseg[36] 

ours 

85.82 

87.81 

1.49 

1.33 

85.95 

85.96 

2.27 

3.53 

90.32 

91.76 

5.41 

4.23 

87.36 

88.51 

3.05 

3.03 

 

Table 2. Performance comparison on the MSCMR dataset 

Method RV MYO LV Mean 

 DSC↑ 95HD↓ DSC↑ 95HD↓ DSC↑ 95HD↓ DSC↑ 95HD↓ 

PCE[13] 77.49 181.95 57.06 206.50 73.72 201.36 69.42 196.60 

S2l[19] 77.79 169.33 81.80 24.59 89.04 88.37 82.88 94.29 

MLoss[34] 87.28 3.04 83.39 2.39 92.28 2.30 87.65 2.58 

RLoss[35] 86.98 3.13 81.94 2.46 91.80 3.37 86.91 2.99 

MELoss[37] 87.07 32.39 82.70 19.95 90.74 54.06 86.84 35.47 

USTM[33] 72.63 186.37 58.12 186.29 80.99 171.72 70.58 180.46 

DMPLS[8] 87.59 3.11 82.20 2.51 91.99 2.30 87.25 6.15 

Fddseg[36] 88.73 2.56 85.11 2.38 92.41 2.67 88.75 2.53 

ours 88.65 2.31 85.25 2.29 92.92 2.32 88.94 2.31 

 

4.4 Comparison with Other Methods 

We evaluate our method against eight state-of-the-art methods ([13], [19], [35–39]) 

using the same scribble annotations. Quantitative results on the ACDC2017 and 

MSCMR datasets (Tables 1 and 2) show that our method achieves the highest average 

Dice similarity coefficient (DSC, p<0.05) and 95HD, performing well in leveraging 

scribble annotations for accurate segmentation. 

 

Fig. 2. Visual comparison between our proposed method and other weakly supervised techniques 

on the ACDC2017 dataset. 
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As shown in Fig 2, Visual comparisons further highlight our method’s advantages. 

Pixel-level contrastive learning enhances feature discrimination, enabling better sepa-

ration of similar and dissimilar regions. Additionally, dynamic threshold updates and 

region propagation strategies generate accurate high-confidence pseudo-labels, im-

proving boundary precision in challenging anatomical regions. These mechanisms col-

lectively ensure superior structural consistency, outperforming other methods in seg-

mentation tasks. 

Table 3. ABLATION EXPERIMENT on the ACDC2017 dataset 

Method RV MYO LV Mean 

 DSC↑ 95HD↓ DSC↑ 95HD↓ DSC↑ 95HD↓ DSC↑ 95HD↓ 

PCE[13] 66.53 111.26 61.39 104.89 76.14 106.59 68.02 107.58 

PCE+CALE 87.79 1.39 85.75 5.68 91.52 8.01 88.35 5.03 

PCE+CALE+ 

CACL 
87.81 1.38 85.96 3.48 91.76 4.23 88.51 3.03 

 

4.5 Ablation Study 

We conducted ablation experiments on the ACDC2017 datasets (Table 3) to evaluate 

the contribution of each component in our framework. On ACDC2017, the PCE base-

line achieved a mean DSC of 68.02%. Adding the label propagation strategy improved 

this to 88.35%, demonstrating its effectiveness in enhancing supervision and segmen-

tation performance. Further integrating the class-aware contrastive loss (CACL) in-

creased the mean DSC to 88.51%, underscoring its role in optimizing inter-class feature 

separation. 

5 CONCLUSION 

This study presents a weakly supervised method for cardiac substructure segmentation 

using sparse scribble annotations. Specifically, the CALE module, which includes PAP 

and RSR, propagates scribble labels to unlabeled regions by leveraging semantic affin-

ity and shape priors, effectively improving pseudo-label quality and boundary accuracy. 

The CGTM adaptively updates high-confidence masks based on model predictions and 

feature correlations, enhancing the reliability of pseudo-labels. The CACL encourages 

intra-class compactness and inter-class separability by leveraging category-wise mean 

features, strengthening global feature discrimination. Experiments on ACDC and 

MSCMR datasets demonstrate superior performance over existing methods, highlight-

ing the efficacy of integrating propagation strategies with contrastive learning. How-

ever, the current work is still limited to processing 2D image segmentation. Future work 

will extend this framework to 3D segmentation and explore its application in other 

medical imaging domains, enabling more efficient, scalable annotation frameworks for 

clinical use. 
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