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Abstract. With the evolution of satellite communication systems towards
achieving low-latency and high-throughput performance, dynamic beam re-
source scheduling emerges as a challenging sequential decision-making task
that can be effectively tackled using deep reinforcement learning (DRL). How-
ever, owing to the sparse channel characteristics and complex multi-user inter-
ference in satellite communications, traditional DRL methods struggle to obtain
effective learning signals during exploration, resulting in suboptimal resource
allocation efficiency. To address this challenge, in this work, we propose Beam
selection with Integrated RND (BIRD), a novel framework that combines the
Dueling Double Deep Q-Network (DQN) architecture with Random Network
Distillation (RND) to enhance exploration capabilities in sparse state spaces.
Our main innovations include the design of an enhanced solution framework
that integrates Dueling DQN-based value evaluation architecture with RND
mechanism to improve exploration efficiency through intrinsic rewards. Addi-
tionally, we develop a novel Markov Decision Process (MDP) model for for-
malizing the beam selection as a sequential decision problem. Simulation re-
sults demonstrate that BIRD achieves a significant 24.1% improvement in sys-
tem sum rate compared to traditional beam selection methods.

Keywords: Multi-Beam Satellite, Deep Reinforcement Learning, Random Net-
work Distillation, Beam Selection.

1 Introduction

In recent years, the rapid development of non-geostationary orbit (NGSO) constella-
tions such as Oneweb, Starlink, and Telesat has established satellite communication
systems as a pivotal component of next-generation wireless networks [11]. However,
the traditional single-beam satellite system uses a wide beam to provide coverage for
ground users, which makes it difficult to meet the huge business demands in current
satellite communications due to resource limitations such as channel capacity and
power.

To overcome this challenge, multi-beam satellite (MBS) systems have emerged as a
fundamental technological solution, as illustrated in Fig. 1. These satellites are capable
of generating multiple beams concurrently and dynamically allocating beam resources,



significantly enhancing system efficiency [22]. Furthermore, with the advancement of
satellite payload technology, the increased number of available beams has made the
beam selection problem increasingly complex. This complexity is further compounded
by the unique characteristics of satellite communication channels. Unlike terrestrial
systems, satellite channels are inherently sparse due to the high-altitude deployment
and line-of-sight (LoS) dominated propagation environment, resulting in limited effec-
tive propagation paths between the satellite and ground users [12]. This channel sparsity
manifests in the channel matrix structure, where only a small number of elements have
significant values.

Fig. 1. Satellite coverage users

Traditional beam selection approaches, which often rely on exhaustive search or
greedy algorithms, struggle to efficiently navigate this sparse solution space. These
methods either become computationally intractable as the number of beams increases
or fail to capture the intricate relationships between beam configurations and channel
characteristics. Moreover, the dynamic nature of satellite communications, including
varying user demands and channel conditions, necessitates an adaptive approach that
can learn and optimize beam selection strategies over time.

Recent advances in deep reinforcement learning (DRL) have shown promising re-
sults in addressing complex decision-making problems in wireless communications. In
the context of beam selection, DRL agents can learn to make sequential decisions by
interacting with the environment, gradually improving their selection strategies through
experience. However, existing DRL-based approaches often struggle with efficient ex-
ploration in sparse state spaces, where meaningful feedback signals are rare. This chal-
lenge is particularly pronounced in satellite beam selection scenarios, where the spar-
sity of channel matrices makes it difficult for conventional exploration strategies to
discover optimal beam configurations.

As a result, we propose a novel framework that integrates the Dueling Double Deep
Q-Network (Dueling DDQN) architecture with Random Network Distillation (RND)
to enhance exploration capabilities in sparse state spaces, which we call Beam selection
with Integrated RND (BIRD). The primary contributions of this paper are threefold:
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— We rigorously formulate the challenging and high-dimensional satellite beam selec-
tion task, characterized by its complex dynamics and sparse state space, as a Markov
Decision Process (MDP), thereby establishing a formal foundation for applying ad-
vanced DRL methods.

— As a core component of our proposed BIRD framework, we develop a novel Dueling
DDQN architecture that effectively segregates state values and action advantages,
leading to significantly improved value estimation accuracy in the beam selection
scenarios.

— To overcome the critical exploration challenge posed by sparse reward signals in-
herent in satellite communication environments, we integrate a RND mechanism
within the BIRD framework, substantially boosting exploration efficiency via dy-
namically generated intrinsic rewards.

The remainder of this paper is structured as follows. Sect. 2 reviews related work in
beam selection methods and DRL. Sect. 3 presents the system model and problem for-
mulation. Sect. 4 details the proposed BIRD framework. Sect. 5 provides experimental
results and analysis. Finally, Sect. 6 concludes the paper. For convenience, the detailed
notations and definitions used in this paper are summarized in Table 1.

Table 1. Notations and Definitions

Notations Definitions

M Number of satellite beams
K Number of ground users
Ngpp Number of RF chains
H Channel matrix between satellite and users
F Beam selection matrix
P Digital precoding matrix
Ry, Achievable rate for user k

SINRy, Signal-to-interference-plus-noise ratio for user k

2 Related Work

2.1 Traditional Beam Selection Methods.

Conventional beam selection methods can be broadly categorized into optimization-
based and heuristic approaches [17]. For optimization-based methods, Hong et al. pro-
posed a Lagrangian-based solution to handle the complex coupling constraints in beam
allocation [8]. However, these methods often suffer from high computational complex-
ity and poor scalability in dynamic scenarios.

Greedy-based methods have also been widely used due to their simplicity and com-
putational efficiency. For instance, several works proposed a maximum magnitude
(MM) based beam selection scheme that iteratively selects the beam with the strongest
channel gain [1]. Another work developed an iterative weighted MMSE approach that
greedily optimizes the sum-rate performance [16]. While these greedy algorithms are



computationally efficient, they often lead to suboptimal solutions due to their myopic
nature.

To address these limitations, various heuristic algorithms have been proposed. Ara-
vanis et al. developed a hybrid approach combining genetic algorithm with simulated
annealing (GA-SA) for beam power allocation [3], while Cola et al. enhanced the sim-
ulated annealing method for joint optimization of bandwidth and power [6]. Addition-
ally, Particle Swarm Optimization (PSO) based methods have been widely applied to
beam resource scheduling problems [7]. However, as satellite communication systems
become increasingly dynamic and complex, the beam selection problem gradually
evolves into a complex sequential decision-making problem.

2.2 Exploration in DRL.

DRL has demonstrated remarkable performance in solving complex sequential de-
cision-making problems and has been widely applied to resource scheduling in wireless
communication systems [21]. In the context of satellite beam selection, DQN-based
approaches have shown promising results [10,23]. However, a fundamental challenge
in DRL is the exploration-exploitation dilemma, where agents must balance between
exploiting known good strategies and exploring potentially better alternatives. Sun et
al. investigated the introduction of random noise in the reward space rather than the
action space, an exploration strategy that can more efficiently explore the state space
while maintaining policy stability [26].This challenge becomes particularly acute in
environments with sparse rewards or large state spaces, where meaningful feedback
signals are rare and difficult to obtain.

Traditional exploration strategies in DRL primarily fall into uncertainty-based and
probability-based approaches. The e-greedy strategy, being the most fundamental, se-
lects the current optimal action with probability 1 — € and explores randomly with
probability € [2]. Boltzmann exploration introduces a temperature parameter to control
exploration, assigning higher selection probabilities to actions with higher estimated
values [5]. Sun revisited communication efficiency in multi-agent learning from a di-
mensional analysis perspective, pointing out that optimizing message timing and con-
tent solely at the receiving end is insufficient and requires a more comprehensive di-
mensional analysis perspective [29].Additionally, noise-based exploration strategies,
such as parameter space noise [14], achieve exploration by adding perturbations to net-
work parameters or action spaces. Li analyzed the mutual exclusion relationship be-
tween generalizability and discriminability in representational learning from an evolu-
tionary game theory perspective, a theory that can also be applied to understanding the
trade-offs in the exploration-exploitation dilemma [30]. Nevertheless, these methods
often perform poorly in sparse reward environments, as their random exploration nature
may require extensive time to discover valuable states.

To address the limitations of traditional exploration strategies, researchers have pro-
posed exploration methods based on intrinsic motivation. Sun proposed an Intrinsic
Motivated Multi-Agent Communication mechanism (IMMAC) based on the principle
of "communicate what surprises you," which improves cooperative decision-making
through intrinsic assessment of observed information importance, and similar ideas can
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be applied to single-agent exploration [24].These approaches generate additional intrin-
sic reward signals to guide more effective exploration [13]. Among them, RND has
gained significant attention due to its simplicity and effectiveness [4]. Sun employed
masked state modeling and intention inference techniques in the M212 framework, an
approach that can help agents process information more effectively in partially observ-
able environments, sharing conceptual similarities with RND's novelty exploration
principle [28]. RND generates intrinsic rewards by measuring the prediction error be-
tween a fixed random network and a trained predictor network, effectively quantifying
state novelty without requiring prior knowledge of the environment. Sun proposed the
T2MAC framework, which achieves more targeted and trusted multi-agent communi-
cation through selective engagement and evidence-driven integration, and this trust-
worthiness assessment mechanism could potentially be applied to evaluate intrinsic re-
wards generated by RND [25].While this approach has achieved remarkable success in
challenging scenarios where traditional exploration strategies fail, its potential in wire-
less communication systems remains largely unexplored, particularly in satellite beam
selection scenarios characterized by sparse feedback signals. This motivates our inves-
tigation into integrating RND with DQN for more effective exploration in satellite beam
selection problems.

3 System Model and Problem Formulation

3.1  Task Description

This work investigates a MBS system operating in low Earth orbit (LEO) that imple-
ments the DVB-S2X standard [15]. The system architecture, depicted in Fig. 1, em-
ploys a satellite platform delivering services to K ground-based terminals through mul-
tiple beams. To facilitate efficient multi-beam transmission under hardware constraints,
the satellite incorporates a hybrid beamforming architecture integrating an M¢-element
discrete lens array (DLA) with Ny radio frequency (RF) chains, where Npp < M;.

The DLA-based architecture enables signal transformation from the spatial domain
to the beamspace domain via a lens antenna array that functions as a discrete Fourier
transformer. This configuration facilitates the generation of M, orthogonal beams,
though only Ny beams can be simultaneously activated due to RF chain limitations.
This approach achieves significant hardware complexity reduction compared to fully-
digital beamforming while preserving optimal spatial multiplexing capabilities.

The beam selection optimization is formulated as a MDP, characterized by the quin-
tuple (S, A, T, R, B). The state space § encompasses the system state s, at time instant
t, comprising the channel state matrix H;. The action space A constitutes the set of
feasible beam selection matrices F;, where each action a, represents a viable beam con-
figuration adhering to RF chain constraints. The reward function R: S X A — R quan-
tifies the achievable sum rate for the state-action pair (s, a;), while the discount factor
B € (0,1) optimizes the trade-off between immediate and future performance.



Signal Model In this system, we can consider a satellite communication system serv-
ing K ground users, where the signal transmission encompasses three essential stages:
digital precoding, beam selection, and channel propagation. At any transmission in-
stant, the received signal vector y € CX*1 at ground users can be formulated as:

y = HFPs + n = YX_ hf Fp;s;, +n (1)

where the system parameters are defined as follows:

— The transmit symbol vector s € CK*1

E[ssf] = I,

— The digital precoding matrix P = [py, Py, ..., px] € CVRF*K modifies the amplitude
and phase of the input signals

— The beam selection matrix F € {0,1}"s*NRF establishes one-to-one connections be-
tween RF chains and beam ports, with the constraint || F(:, ) ll;= 1 for eachj €
{1,..., Ngp}

— The beamspace channel matrix H = [hy, hy,..., hg] € CYs*X characterizes the sig-
nal propagation characteristics

— The receiver noise vector n follows complex Gaussian distribution CNV (0, o2I,)

satisfies the power normalization condition

Beamspace Channel Model The satellite-to-ground channel exhibits unique charac-
teristics due to the orbital environment [19]. These include a predominant LoS compo-
nent owing to the elevated satellite position, significant free-space path loss coupled
with atmospheric attenuation, and rapid channel variations caused by the high orbital
velocity (= 7.8 km/s).

Incorporating these physical characteristics, the beamspace channel matrix H can be
expressed as:

H=[hy,...,hg] = U[ﬁ1g1ej¢1'---’ﬁ1(gkej¢l(] 2)

where U € CMs*Ms represents the DFT transformation matrix of the lens array, and
gy € CMs*1 denotes the spatial channel vector for the k-th user. The composite attenu-
ation factor 8, accounts for both free-space path loss and atmospheric attenuation,
while ¢, represents the Doppler phase shift induced by satellite motion.

3.2 Problem Formulation.

The beam allocation problem is essentially an optimization task under limited resource
constraints. By mapping this problem to the maximum weighted matching problem in
bipartite graphs, its computational complexity can be proven to be NP-hard:

m3X2?=1 X wij x5 <p mFaXZIk(ﬂ Ry (3)

where <,, denotes polynomial-time reduction, and w;; represents the matching weight
between the i-th beam and the j-th RF chain. In LEO satellite communication systems,
beam resource allocation faces unique challenges. The high-speed satellite motion not
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only leads to dynamic coverage variations but also introduces significant Doppler ef-
fects. Moreover, the inter-beam coupling interference significantly impacts system per-
formance. For user k, the signal-to-interference-plus-noise ratio can be expressed as:

2
hj Fpy|

SINR;, = z (4)

0243 j2k |nf Fp;

where py, is the k-th column of precoding matrix P, the numerator represents the
effective signal power, and in the denominator, 2 denotes the noise power while the
summation term represents co-frequency interference. Based on the DVB-S2X stand-
ard, the achievable rate for user k is given by:

Ry, =log,(1 + SINRy) 5)
Accordingly, we formulate the sum-rate maximization problem as:
max Yk=1Rx
s.t. fij €{0,1}, Vi,j
o fiy =1 Y

N .

(6)

The constraints reflect physical limitations: the binary constraint f; ; € {0,1} repre-
sents the discrete nature of beam selection; Z?fl fi,j = 1 ensures each RF chain selects
exactly one beam; and Z?’ff fi,j < 1 guarantees each beam is selected by at most one

RF chain.

In the following sections, we will investigate how to solve this discrete optimization
problem by constructing a MDP model to meet the practical requirements of LEO sat-
ellite systems.

4 Exploration-Enhanced DRL for Satellite Beam Selection

4.1 MDP Modeling

The beam selection problem in satellite communications presents significant computa-
tional challenges due to its NP-hard nature. Specifically, the problem exhibits the fol-
lowing characteristics: discrete decision variables with coupling constraints between
beam selections, complex trade-offs between system sum-rate and user fairness, and
high-dimensional state space due to the large number of potential beam configurations.
Moreover, the sparse nature of the satellite channel matrix further complicates the
learning process, as meaningful rewards become infrequent and scattered across the
state space.

To address these challenges, we formulate the beam selection problem as a MDP,
which can be mathematically described as follows:



State Space. The state space S comprises the beamspace channel matrix H € CMs*K
and an indicator tensor, where:

— The channel matrix H consists of two parts: the real and imaginary components, rep-
resenting the complex channel gains between the satellite beams and ground users.
the real part characterizes the in-phase component of the signal propagation, which
primarily reflects the amplitude attenuation due to path loss and atmospheric effects,
while the imaginary part represents the quadrature component that captures the phase
shifts caused by signal propagation delay and Doppler effects due to satellite move-
ment.

— The indicator tensor with dimension 1 X M, X K indicates whether a beam is se-
lected, initialized as 1 and set to O after selection

— M; denotes the number of satellite beams

— K represents the number of ground users

Action Space. In the MDP framework, the action space A is defined as:
A={alaeZ*, 1<a< M} (7

where each action a, represents the beam index selected at time step t. The selection
process has the following characteristics:

— The decision process contains Ngy time steps
— Only one beam is selected at each time step
— The action set updates dynamically to prevent duplicate selections

Reward Function.

In the beam selection problem, the system sum rate can only be evaluated after all
RF chains have been assigned their beams, as the inter-beam interference pattern de-
pends on the complete beam allocation. This creates a sparse reward situation where
meaningful feedback is only available at the end of each episode, making it difficult for
the agent to learn from intermediate steps. To address the sparse reward challenge in
satellite beam selection, we design a comprehensive reward function that combines
both extrinsic and intrinsic rewards

Textrinsic (Str at) = renergy + Trate + Tfairness - Tpenalty (8)
where:

® Tenergy €valuates beam energy efficiency:

_ lIfll

Tenergy =20- T (9)
where || f; ||, represents the energy of the selected beam, and || f,,,,, Il is the max-
imum energy among currently available beams. The scaling factor 20 was deter-
mined empirically to balance with other reward components.
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Trqte Calculates the system sum-rate, computed only after all beam selections are
completed:

~ {WMMSE(F, Poax), ift = Ngp
rate ™ |, otherwise

(10)

where the WMMSE algorithm considers inter-beam interference to compute the
achievable rate under maximum transmit power constraint P4,
Trqirness Promotes balanced energy distribution among users:

[
=—"—— 11
nk E$=1|fi'k|2+6 ( )
— (VK )
Trairness = 6 Zk:l Nk ]l{nk>0-5 and Zit;11|fi.k|2<o-2} (12)
Tpenaity iMmposes penalties for constraint violations:
- _ {50, if beam already selected (13)
penalty = 10 otherwise

Additionally, to better guide exploration, we introduce an intrinsic reward based on
RND:

Tintrinsic = E [(¢target (St) - ¢predictor (St))z] (14)

where ¢rarger and Ppreqictor are the target and predictor networks respectively.

This dual reward structure is particularly effective in the sparse satellite channel en-

vironment, as the intrinsic reward provides continuous learning signals even when
meaningful extrinsic rewards are rare, thereby facilitating more efficient exploration of
the beam selection space.

4.2  BIRD: A Dueling Double DQN Architecture with RND Enhancement.

et |
—| 1D error H 0,5,a,0p) H Ouls,1,0) ]
e T’ e ! RND module

5
5
5
5,

Environment

Fig. 2. Architecture of the proposed BIRD framework.

Based on our MDP formulation for satellite beam selection, where the state space

comprises the complex channel matrix H € CMs*K and the action space represents



beam selections, as illustrated in Fig. 2, we propose BIRD architecture to effectively
handle the sparse channel characteristics and complex beam selection decisions.

BIRD Framework. Fig. 2 illustrates the BIRD framework architecture. In this frame-
work, the agent interacts with the satellite beam environment, generating transition tu-
ples (s;, as, 11, S¢4+1). The agent’s learning system consists of two components: a value
network based on Dueling Double DQN and an exploration module based on RND.
The value network adopts a dual network architecture, comprising a predictor network
Qp and a target network Q;, with a replay buffer storing experience samples. The ex-
ploration module generates intrinsic rewards || f(s,) — f(s;) II? through a target-pre-
dictor network structure. The agent optimizes a combined loss Lyorq1 = Lpon + ALgp
(where Lpqgy represents the Dueling DQN loss), achieving exploration-exploitation
trade-off in the beam selection task.

Dueling DQN Network Architecture. Based on our MDP formulation, where each
state s; encodes both channel information and beam selection history, BIRD employs
a dueling architecture to better handle the high-dimensional state space and large-scale
beam selection decisions. This architecture decomposes the Q-function into two
streams (Z. Wang et al. 2016):

Q(se,ar) =V(sp) + <A(St: ag) — MLSZQIA (se a’)) (15)

where:

— V(s;) estimates the overall value of the current channel state and beam selection
history, capturing the inherent quality of the state regardless of beam choices

— A(s;, a;) evaluates the advantage of selecting beam a; in state s;, reflecting the rel-
ative merit of each action

— M is the total number of available beams as defined in our action space

At each step, the network extracts high-dimensional channel features from state s;, pro-
cesses them through the value and advantage streams, and outputs Q-values for all pos-
sible beam selections. Combined with e-greedy exploration and our designed reward
function, this architecture effectively learns to make sequential beam selection deci-
sions that maximize long-term system performance.

RND-Enhanced Exploration Mechanism. To address the exploration challenges in
satellite beam selection, particularly the sparse reward nature and vast state space, we
propose an RND-based exploration mechanism.

The RND component consists of two parallel networks:

— Target Network f:§ —» R<:

e Randomly initialized and fixed during training
e Maps states to a lower-dimensional embedding space
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— Predictor Network f:8 — R%:

o Learns to predict the target network’s output
e Shares the same architecture as the target network
e Updated through training to minimize prediction error

The predictor network is trained using:
Lpnp (@) = lEst~73[|| f(st: ) — f(se) ||2] (16)
where:

e ¢ represents the predictor network parameters
¢ B is a mini-batch sampled from the experience buffer
e Gradient updates are normalized to prevent training instability

Algorithm 1 BIRD Training Algorithm
Input: Batch size B; Learning rate ; Replay period : Memory capacity D; Episodes J;
RF chains Npp; Beams M,; Users I; Intrinsic reward weight 3; Target update rate 7

Output: Trained Dueling DOQN and RND predictor networks

1: Initialize replay memory D + 0

2: Initialize Dueling DQN Q(s,a;#) and target ('(s,a;4")
3 Initialize RND target f(s) and predictar f(s; ¢)
H
5:

for episode = 1 to J do
Observe initial state s;
6 fort=1to Ngp do
7 With probability e, select random beam uy; otherwise a, = arg max Q(s,. ;)

8 Execute ay, update available beams

o Caleulate extrinsic reward 7, insic

10 if t = Npr then

11 Caleulate fmal ryuqe and add to 7oy

12: end if

13: Caleulate intrinsic reward ripsrinsic = |_|‘-‘l_a,:r)j| }'E.wJH2
14: Tiotal =1 + B Tintrinsi

15 Store (s, ap, 7

$01)in D
16 S¢ 4 Sga1
17: end for
18 if episode mod Q = 0 and D] > B then
19 Sample mini-batch from D
20: Update RND predictor by minimizing £gnp
21 Calculate DDON targets and update Dueling DON
22 Update target network: # « 76+ (1 —7)8"
23 end if
24 Anneal €
25 end for

In the next section, we will present detailed algorithm pseudocode and hyperparam-
eter settings, demonstrating BIRD’s performance in practical satellite channel scenar-
i0s. Specifically, we will experimentally validate how the synergy between Dueling
DQN and RND enhances the efficiency and robustness of beam selection.

5 Simulation Results

To comprehensively evaluate BIRD’s performance, we conduct experiments in a sim-
ulated MBS communication environment. Algorithm. [alg: BIRD training] describes
the overall process of the proposed BIRD scheme in detail in the form of pseudo-



code.The system performance is evaluated using the SINR defined in (4) and sum rate
in (5).

Table 2. The Parameter Settings of Simulation

Parameter Symbol  Value
Satellite orbit altitude H 550Km
Signal-to-noise ratio SNR 10dB
Carrier frequency fe 12.4 GHz
Maximum transmit antenna Gm 35.9 dBi
gain

System bandwidth B 100MHz
Training episodes ] 10000
Mini-batch size B 32
Replay memory D 2048
Discount factor 14 0.99
Target network update rate T 0.001
RND embedding dimension d 128
Initial exploration rate Emax 1.0

Final exploration rate Emin 0.01
Exploration decay rate A 0.001

As shown in Table 2, we set up the simulation environment with the following key
parameters: number of antennas Mg = 64, number of users K = 16, number of RF
chains Ngzr = 8. In our experiments, we first analyze the impact of reward weighting,
where the total reward r; for each action combines extrinsic reward 7, and intrinsic re-
ward 1;, weighted by parameter 3:

n=n+fn

a7
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Fig. 3. Performance evaluation of beam selection algorithms under various system parameters.

The experimental results reveal that higher weight values generally lead to better
performance, with f =0.7 achieving the highest sum rate of approximately
62.3 bits/s/Hz, while f=0.1 yields the lowest performance at 60.0 bits/s/Hz. This indi-
cates that stronger intrinsic motivation helps the agent discover better policies. All con-
figurations demonstrate rapid learning characteristics within the first 25 episodes before
stabilizing, suggesting that the intrinsic reward weight primarily affects final perfor-
mance rather than learning speed. Notably, while £=0.7 achieves the best performance,
it also exhibits relatively larger fluctuations, as shown by the shaded areas, indicating
that higher intrinsic reward weights may introduce some instability while improving
performance. Considering both performance and stability, §=0.5 appears to be a rea-
sonable compromise, maintaining good performance with reduced variance. These
findings show the importance of properly balancing intrinsic and extrinsic rewards in
our proposed method, as the weight directly influences both the exploration capability
and stability of the learning process.

5.1 Performance Versus Different Senarios

Fig.3(b) shows the system performance as the number of transmit antennas increases
from 32 to 512. The results demonstrate that BIRD consistently outperforms other
methods across all antenna configurations. As the number of antennas increases, the
performance gap between BIRD and conventional methods becomes more pronounced,
indicating superior scalability of our proposed method. The greedy algorithm shows
particularly poor scaling behavior, with its performance gap widening significantly at
higher antenna numbers due to its inability to handle the exponentially growing solution
space effectively. Moreover, with 512 antennas, BIRD achieves a maximum sum rate
of 70.2 bits/s/Hz, showing a significant improvement of 10% over Dueling DQN and



27.4% over DQN. This performance advantage can be attributed to BIRD’s enhanced
exploration capability in the expanded state space provided by larger antenna arrays.
Fig.3(c) demonstrates the impact of user scaling on system performance. As the
number of users increases from 6 to 20, all methods show an upward trend in sum-rate
performance, but with different growth patterns. BIRD exhibits the strongest scaling
capability, maintaining its performance advantage throughout the range and showing
an increasingly wider gap over baseline methods as user numbers grow. The greedy
algorithm, while performing reasonably well with fewer users, shows rapid perfor-
mance degradation as user numbers increase due to its inability to handle the growing
inter-user interference effectively. This trend is particularly evident in the enlarged
view of the 8-10 user region, where BIRD achieves approximately 64.8 bits/s/Hz with
20 users, outperforming Dueling DQN by 15% and conventional DQN by 25%. The
near-linear growth in system sum-rate with increasing users suggests that BIRD effec-
tively manages the growing complexity of beam selection in multi-user scenarios, while
conventional methods show signs of performance saturation at higher user loads.

Fig. 3(d) illustrates the impact of RF chain numbers on system performance. As the
number of RF chains increases from 10 to 30, all methods demonstrate an upward trend
in sum-rate performance. The greedy algorithm shows the poorest scaling behavior,
with only marginal improvements as RF chains increase, suggesting its inability to ef-
fectively utilize additional RF resources due to its myopic decision-making process.
With fewer RF chains (15-20), the performance improvement is rapid for DRL-based
methods, as each additional RF chain significantly expands the available beam combi-
nations. As the number of RF chains continues to increase (20-25), the growth rate
begins to slow down, primarily because the number of effective beam combinations
gradually approaches saturation. Beyond 25 RF chains, the performance improvement
becomes more gradual, indicating that the system is approaching its theoretical capacity
limit. With 30 RF chains, BIRD achieves approximately 69 bits/s/Hz, outperforming
Dueling DQN by 12%, conventional DQN by 20%, and the greedy algorithm by 31%.
This performance advantage stems from BIRD’s RND mechanism, which better han-
dles the combinatorial explosion problem caused by increased RF chains, effectively
identifying and selecting optimal beam configurations in a larger action space. In con-
trast, traditional DQN and Dueling DQN often get trapped in local optima under large-
scale RF chain configurations, unable to fully utilize the additional RF resources.
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5.2 Performance Comparison

Rate(bits/s/Hz)

— Dueling DON
BIRD

o 2 50 75 00 125 50 175 200
Episade

Fig. 4. Sum rate comparison among different algorithms.

This subsection compares the overall sum rate performance of the algorithms under the base-
line system configuration, specifically using M; = 64 satellite beams, K = 16 ground users, and
Ngr = 8 RF chains,=0.7.The experimental results Fig. 4 clearly demonstrate the superior per-
formance of our proposed BIRD method, achieving a maximum sum rate of approximately
62.3 bits/s/Hz, compared to 57.3 bits/s/Hz for Dueling DQN, 54.8 bits/s/Hz for DDQN, and
50.4 bits/s/Hz for basic DQN. The greedy algorithm, while quickly reaching a performance level
of about 50.2 bits/s/Hz in the early stages, shows no further improvement due to its inherent
limitations. This result indicates that the myopic strategy of selecting immediate optimal choices
is insufficient for handling complex beam selection problems. In contrast, although DRL-based
methods require a training process, they can achieve superior performance through continuous
learning and exploration. Notably, our BIRD method demonstrates rapid learning capabilities by
reaching stability after only 25 episodes while achieving the best performance.

Table 3. Performance Comparison of Different Algorithms

Method Sum Rate (bits/s/Hz) Stability Relative Improvement (%)
Greedy 50.2 +03 100.0
DQN 50.4 +22 100.4
DDQN 54.8 +1.8 109.2
Dueling DQN 57.3 *+1.5 114.1
BIRD 62.3 +1.2 124.1

The stability analysis, as shown in Table 3, reveals that BIRD maintains minimal
performance fluctuation throughout the training process, while the basic DQN exhibits
the largest variance. The greedy algorithm, due to its deterministic nature, shows min-
imal performance variation, but this stability comes at the cost of exploring potentially
better solutions. The performance improvements can be attributed to three key aspects:
the Dueling structure, which contributes approximately 2.5 bits/s/Hz improvement over



DDQN, the RND mechanism, which provides an additional 5 bits/s/Hz gain, and most
importantly, the ability to surpass the performance ceiling of traditional greedy methods
through intelligent exploration and long-term optimization strategies.

6 Conclusion

In our work, we proposed a novel beam selection framework BIRD for satellite com-
munication systems. By introducing the intrinsic reward to guide exploration and lev-
eraging the advantage of Dueling architecture in value estimation, our method effec-
tively addresses the exploration challenges in the high-dimensional beam selection
space. Extensive experimental results demonstrate that our approach achieves signifi-
cant improvements over baseline methods, with a 24.1% increase in sum rate perfor-
mance compared to the greedy baseline. Future work could focus on extending the
framework to more complex scenarios such as dynamic user distributions and multi-
satellite coordination.
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