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Abstract. Decision trees are widely used supervised learning models known for 

their simplicity, interpretability, and effectiveness in classification and regression 

tasks. Feature selection can remove redundant and noisy features, enhancing the 

generalization and robustness of decision trees. However, due to the high com-

putational cost of existing feature selection methods, it is typically applied only 

once before classifier training, providing the classifier with dimensionally re-

duced data. This limits the synergistic effect between feature selection and the 

construction of split nodes in decision trees. The Related Family is an efficient 

feature evaluation method proposed by our research team. Its efficiency allows 

us to use it in the construction of split nodes in decision trees, leading to better 

splitting criteria. Building on this method, we introduce the Dynamic Related 

Family Decision Tree (DRFDT), which dynamically selects optimal features for 

each sample subgroup as the tree grows. Experiments demonstrate that DRFDT 

outperforms a wide range of classification algorithms across 15 UCI datasets, 

achieving an average accuracy of 89.30%. This represents significant improve-

ments over classical single-feature decision tree methods (CART: +3.87%), tra-

ditional classification algorithms (KNN: +5.71%, SVM: +4.54%), multi-feature 

split decision tree algorithms (CART-LC: +3.99%, O1: +4.25%), and state-of-

the-art decision tree classification algorithms (FGBDT: +4.88%, MPRBC: 

+4.77%, RSLRS: +26.84%). 

Keywords: Rough set theory, Decision trees, Related family, Feature selection. 

1 INTRODUCTION 

Decision trees, first proposed by Quinlan et al. in 1986 [11], are non-cyclic directed 

graph models based on tree structures, composed of internal nodes and leaf nodes. In-

ternal nodes represent test conditions that can divide data into multiple child nodes 

based on splitting attributes, while leaf nodes represent decision results [8]. To generate 

different decision tree structures, researchers have proposed various splitting criteria. 

Information Gain (IG) is a splitting criterion used in the ID3 algorithm [11]. How-

ever, ID3 has limitations [7]: it only processes categorical features and tends to select 

features with more values. The C4.5 algorithm [12] introduced Gain Ratio (GR) to 

overcome these shortcomings, normalizing information gain to avoid bias towards fea-

tures with more values. The Classification and Regression Tree (CART) algorithm [1] 
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uses the Gini Index (GI) as a splitting criterion and can handle both classification and 

regression tasks. 

Traditional decision tree algorithms typically use univariate splitting criteria, relying 

on splitting a single attribute at each node. However, univariate splitting may show 

limitations with complex decision boundaries or significant attribute interactions. 

Multi-feature splitting strategies have been proposed to enhance model expressive 

power [2]. These strategies can represent more complex decision boundaries, require 

fewer splits resulting in smaller trees, and are particularly effective for high-dimen-

sional data with strong feature interactions [6]. 

Rough set theory, introduced by Pawlak in 1982 [9], has emerged as a powerful 

mathematical framework for dealing with vagueness and uncertainty in data. It charac-

terizes concepts through lower and upper approximations, defining a boundary region 

of uncertainty that makes it particularly suitable for classification problems with im-

precise information. 

Rough set theory offers distinct advantages for feature selection by working directly 

with data without requiring additional information like probability distributions. 

Through analyzing attribute dependencies, it identifies minimal subsets of features (re-

ducts) that preserve classification power. Rough set theory has proven effective for 

monotonic classification [3], [4], [10], [13] and ensemble learning [5]. 

Traditionally, Rough set-based feature selection methods are used in data prepro-

cessing before classification. This two-stage "feature selection-classifier application" 

approach is widely adopted but rarely applied directly to decision tree construction. 

Recently, Rough set theory has been integrated into classifier development, as seen in 

Xia et al.’s RSLRS algorithm [14], which uses stability of local redundant attributes for 

feature selection. However, this method faces challenges with high- dimensional data 

and noise sensitivity. 

Yang et al. proposed the Related Family Method [15], which provides an innovative 

and efficient solution for feature evaluation in high-dimensional data. This algorithm 

can remove redundant features while maintaining key discriminative information in the 

data, reducing computational complexity from exponential or quadratic levels in tradi-

tional methods to linear levels. Experiments demonstrate that the Related Family 

Method significantly outperforms traditional rough set methods across multiple UCI 

datasets, not only achieving higher classification accuracy (average improvement of 5-

10 percentage points) but also using fewer features in some cases. It is precisely because 

of the out-standing efficiency and effectiveness of the Related Family Method in pro-

cessing high-dimensional data that it serves as an ideal feature evaluation tool for our 

proposed Dynamic Related Family Decision Tree (DRFDT) algorithm, providing com-

putational feasibility for dynamically executing feature selection at each node of the 

decision tree, thus enabling the model to adaptively select optimal splitting feature sub-

sets based on the characteristics of different sample subgroups. 

Based on the highly efficient feature evaluation method, we propose the Dynamic 

Related Family Decision Tree (DRFDT) algorithm, which combines Related Family 

feature selection efficiency with decision tree interpretability. DRFDT dynamically ex-

ecutes feature selection at each decision node, allowing the model to adaptively select 
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optimal feature subsets based on local sample characteristics. Our main innovations 

include: 

1. Rough Set-based Dynamic Feature Selection: By integrating the Related Family 

Method with rough set principles, we propose an adaptive feature selection mechanism 

that optimizes feature evaluation at each tree node. By constructing maximal con-

sistent granules based on rough set approximations, the algorithm provides node-spe-

cific feature selection with strong theoretical guarantees. 

2. Adaptive Decision Tree Splitting Mechanism: At each node, the algorithm applies 

dynamic feature selection based on local sample distribution, enabling better adap-

tation to varying data patterns. We introduce the "Partition Purity" metric to evaluate 

candidate feature subsets and apply rough set boundary region analysis to identify 

and remove noise samples during training. 

3. Theoretically Sound Classification Framework: By embedding rough set-based feature 

selection into the decision tree structure, we maintain interpretability while efficiently 

processing large- scale datasets. This design avoids the computational burden of tra-

ditional decision trees on high-dimensional data while preserving their interpretable 

advantages. 

Through experimental validation, DRFDT outperforms a wide range of classifica-

tion algorithms across 15 UCI datasets, achieving an average accuracy of 89.30%. This 

represents significant improvements over classical single-feature decision tree methods 

(CART: +3.87%), traditional classification algorithms (KNN: +5.71%, SVM: +4.54%), 

multi-feature split decision tree algorithms (CART-LC: +3.99%, O1: +4.25%), and 

state-of-the-art decision tree classification algorithms (FGBDT: +4.88%, MPRBC: 

+4.77%, RSLRS: +26.84%). 

2 Rough Set Theory and Dynamic Feature Evaluation 

Mechanism 

2.1 Dynamic Related Family Feature Evaluation 

In our previous work [16], we introduced several fundamental concepts related to 

fuzzy covering decision information systems, including fuzzy covering information 

systems, lower and upper ap- proximations in fuzzy information systems, positive re-

gions of fuzzy information systems, consistent granules in fuzzy information systems, 

and attribute reduction methods for fuzzy information systems. Building upon the foun-

dation established in [16], this paper proposes corresponding definitions in the context 

of crisp sets, and combines them with Related Family [15] method to implement a Dy-

namic Related feature evaluation approach. 

Definition 2.1: Given a nonempty domain 𝑈 of discourse and the power set 𝒫(𝑈) 

of 𝑈. 𝒞 = {𝐶1, 𝐶2, … , 𝐶𝑚}, where 𝐶𝑖 ∈ 𝒫(𝑈) (𝑖 = 1,2, … , 𝑚) and 𝑈 is a universal set. 

𝒞 is called a covering on 𝑈, if for every 𝑥 ∈ 𝑈, there exists 𝐶𝑖 ∈ 𝒞 such that 𝑥 ∈ 𝐶𝑖, i.e., 

⋃𝑖=1
𝑚 𝐶𝑖 = 𝑈. (𝑈, 𝒞, 𝐷) is a covering information system (covering decision system). 



Given a dataset data = (𝑈, 𝐴, 𝐷) whose values are normalized into [0,1] column-by-

column, where 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} is the sample set, 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} is the feature 

set, and 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑙} is the label set. For 𝑥𝑖 ∈ 𝑈 and 𝑎𝑗 ∈ 𝐴, 𝑎𝑗(𝑥𝑖) represents 

the value of sample 𝑥𝑖 under feature 𝑎𝑗. 

1. For convenience, we choose an arithmetic progression as the center point set 𝐺 =
{𝐺𝑘|𝑘 = 1,2, … , 𝑡, 𝐺𝑘 = 𝑘 ∗ step, 𝑡 ∗ step ≤ 1}, where step is the tolerance. 

2. Choose a radius 𝛿𝑗𝑘 ∈ [0.1,1] to form the granule 𝐶𝑗
𝑈(𝐺𝑘 , 𝛿𝑗𝑘) for each center 

point 𝐺𝑘 ∈ 𝐺. Here, 𝑗 indicates the coverage under feature 𝑎𝑗, and 𝑈 indicates that the 

granule is generated for the universe 𝑈. The granule is defined as follows: 

𝐶𝑗
𝑈(𝐺𝑘 , 𝛿𝑗𝑘) = {𝑥𝑖 ∈ 𝑈 ∣ |𝑎𝑗(𝑥𝑖) − 𝐺𝑘| ≤ 𝛿𝑗𝑘}  (1) 

𝑈/𝐷 = {𝐷1 , 𝐷2, … , 𝐷ℎ} is the partition of 𝑈 induced by the equivalence relation 𝐷, 

where each 𝐷𝑖  represents an equivalence class of samples with the same decision value. 

Definition 2.2: A Covering Information System (CIS) is defined as (𝑈, 𝒞, 𝐷), where 

𝒞 = {𝐶𝑖 ∣ 𝑖 = 1,2, … , 𝑚} is a family of coverings of 𝑈, 𝐶𝑖 are condition attributes (or 

the features), and 𝐷  is the decision attribute (or the label). Let 𝑈/𝐷 = {𝐷𝑖 ∣ 𝑖 =
1,2,3, … , 𝑙} be the decision classes induced by 𝐷, where 𝐷 is a classical equivalence 

relation. 

Since ∪ 𝒞 is still a covering on 𝑈, for a set 𝑋 ⊆ 𝑈, the covering lower approximation 

on (𝑈, 𝒞, 𝐷) can be defined as 

𝐿∪𝒞(𝑋) =∪ {𝐾 ∈∪ 𝒞 ∣ 𝐾 ⊆ 𝑋}.  (2) 

The upper approximation can be defined as 

𝑈𝑃∪𝒞(𝑋) =∪ {𝐾 ∈∪ 𝒞 ∣ 𝐾 ∩ 𝑋 ≠ ∅}.  (3) 

Based on the set inclusion operation, the positive region can be defined as 

𝑃𝑂𝑆𝒞(𝐷) =∪ {𝐿∪𝒞(𝐷𝑖) ∣ 𝐷𝑖 ∈ 𝑈/𝐷}.  (4) 

The target of the attribute reduction of a covering information system is to find the 

minimal subset of 𝒞 such that the positive region is invariant. 

Definition 2.3: A CIS is defined as (𝑈, 𝒞, 𝐷), where 𝒞 = {𝐶𝑖 ∣ 𝑖 = 1,2, … , 𝑚} is a 

family of coverings of 𝑈, and 𝑈/𝐷 = {𝐷𝑖 ∣ 𝑖 = 1,2,3, … , 𝑙}. The consistent granule set 

of (𝑈, 𝒞, 𝐷) is defined as 

𝐶𝑜𝑛(𝑈, 𝒞, 𝐷) = {𝐾 ∣ 𝐾 ∈∪ 𝒞, ∃𝐷𝑖 ∈ 𝑈/𝐷 s.t. 𝐶 ⊆ 𝐷𝑖}.  (5) 

We term the elements in 𝐶𝑜𝑛(𝑈, 𝒞, 𝐷) as consistent granules of (𝑈, 𝒞, 𝐷). 

For a center point 𝐺𝑘 ∈ 𝐺 and the set of all possible radius values 𝛾 = {𝛿1, 𝛿2, … , 𝛿𝑡} 

where 𝛿𝑖 ∈ [0,1], 𝑖 = 1,2, … , 𝑡, we define the largest consistent granule of 𝐺𝑘 as fol-

lows: For any 𝐶ℎ ∈ 𝒞, if 𝛿𝑗𝑘 is the maximum radius value such that 𝐶ℎ
𝑈(𝐺𝑘, 𝛿𝑗𝑘) ⊆ 𝐷𝑖 

for some 𝐷𝑖 ∈ 𝑈/𝐷, and there does not exist a value larger than 𝛿𝑗𝑘 for which this in-

clusion holds,  then 𝐶ℎ
𝑈(𝐺𝑘 , 𝛿𝑗𝑘) is called the largest consistent granule of 𝐺𝑘 relative 

to the universe 𝑈. The collection of all the largest consistent granules under covering 

𝐶ℎ is denoted as MCon(𝑈, 𝐶ℎ, 𝐷). 

MCon(𝑈, 𝒞, 𝐷) = ⋃
𝐶ℎ∈𝒞

MCon(𝑈, 𝐶ℎ, 𝐷).  (6) 

Proposition 2.4: 𝑃𝑂𝑆𝒞(𝐷) =∪ M𝐶𝑜𝑛(𝑈, 𝒞, 𝐷) 

Definition 2.5: We define reducible features. (𝑈, 𝒞, 𝐷) is a CIS, where 𝒞 = {𝐶𝑖 ∣
𝑖 = 1,2, … , 𝑚} is a family of coverings of 𝑈, 𝑈/𝐷 = {𝐷𝑖 ∣ 𝑖 = 1,2,3, … , 𝑙}. If 𝑃𝑂𝑆𝒞 =
𝑃𝑂𝑆𝒞−{𝐶𝑖}, we say 𝐶𝑖 is dispensable in 𝒞. Otherwise, 𝐶𝑖 is indispensable in 𝒞. For every 
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ℙ ⊆ 𝒞, if 𝑃𝑂𝑆𝒞 = 𝑃𝑂𝑆ℙ and every covering in ℙ is indispensable, we say ℙ is a reduct 

of 𝒞. 

The collection of all indispensable coverings in 𝒞 is denoted by CORE(𝒞). The col-

lection of all reducts of 𝒞 is denoted by RED(𝒞). 

Definition 2.6: Dynamic Related Family Feature Evaluation algorithm builds upon 

the Related Family Feature Evaluation [15]. Given a CIS (𝑈, 𝒞, 𝐷), where 𝒞 = {𝐶𝑖 ∣
𝑖 = 1,2, … , 𝑚}  is a family of coverings of 𝑈 , and 𝑀𝐶𝑜𝑛(𝑈, 𝒞, 𝐷) =
{𝐾1, 𝐾2, 𝐾3, … , 𝐾𝑝}, For any 𝑥𝑖 ∈ 𝑈, we define 𝑟𝑖 = {𝐶𝑘 ∣ 𝑥𝑖 ∈ 𝐾𝑗 , 𝐾𝑗 ∈ 𝐶𝑘, 𝐶𝑘 ∈ 𝒞} as 

the related set of 𝐾𝑗 , and 𝑅(𝑈, 𝒞, 𝐷) = {𝑟𝑖 ∣ 𝑖 = 1,2, … , 𝑚}  is the related family of 

(𝑈, 𝒞, 𝐷). 

We introduce how to dynamic obtain the related family evaluation results for sample 

subsets after partitioning the sample set. First, we discuss the monotonicity of the larg-

est consistent granule radius after the sample set is partitioned. Based on this property, 

we can quickly obtain the largest consistent granules of the sample subsets. Once the 

largest consistent granules of the sample subsets are obtained, the related family method 

can be applied to fast determine the feature selection results for the sample subsets. 

Property 2.8: Monotonicity Property of Consistent Granule Radius. For any 𝐺𝑘 ∈
𝐺, let 𝐶ℎ

𝑈(𝐺𝑘 , 𝛿𝑖𝑘) be the largest consistent granule with respect to the universe 𝑈, and 

𝐶ℎ
𝐸(𝐺𝑘 , 𝛿𝑗𝑘) be the maximal consistent granule with respect to the universe 𝐸. If 𝐸 ⊆

𝑈, then 𝛿𝑖𝑘 ≤ 𝛿𝑗𝑘. 

Proof. We prove this property by contradiction. 

Let us assume the contrary: there exists 𝐸 ⊆ 𝑈, but 𝛿𝑖𝑘 > 𝛿𝑗𝑘. 

According to the definition of maximal consistent granules, 𝐶ℎ
𝑈(𝐺𝑘 , 𝛿𝑖𝑘) is the larg-

est consistent granule over domain 𝑈, and 𝐶ℎ
𝐸(𝐺𝑘, 𝛿𝑗𝑘) is the largest consistent granule 

over domain 𝐸. 

Since 𝐶ℎ
𝑈(𝐺𝑘, 𝛿𝑖𝑘)  is consistent, there exists a decision class 𝐷𝑜  such that 

𝐶ℎ
𝑈(𝐺𝑘 , 𝛿𝑖𝑘) ⊆ 𝐷𝑜. Given that 𝐸 ⊆ 𝑈, for any 𝑥 ∈ 𝐸, if 𝑥 ∈ 𝐶ℎ

𝑈(𝐺𝑘, 𝛿𝑖𝑘), then 𝑥 must 

also belong to 𝐷𝑜. This implies that using radius 𝛿𝑖𝑘 can also form a consistent granule 

over domain 𝐸: 𝐶ℎ
𝐸(𝐺𝑘 , 𝛿𝑖𝑘) ⊆ (𝐷𝑜 ∩ 𝐸). 

However, according to our assumption, 𝛿𝑖𝑘 > 𝛿𝑗𝑘, while 𝐶ℎ
𝐸(𝐺𝑘, 𝛿𝑗𝑘) is the largest 

consistent granule over 𝐸. This creates a contradiction, as we’ve shown that a consistent 

granule with a larger radius 𝛿𝑖𝑘 could exist over domain 𝐸. 

Therefore, our initial assumption must be false, and we conclude that 𝛿𝑖𝑘 ≤ 𝛿𝑗𝑘. This 

demonstrates that when we reduce the sample space from 𝑈 to 𝐸 for the same center 

point 𝐺𝑘, the maximum allowable radius for forming consistent granules in the smaller 

sample space must be greater than or equal to the maximum radius in the original space, 

as the reduction in sample size decreases the constraints for forming consistent gran-

ules.  

The monotonicity of consistent granule radius has important applications in decision 

tree construction, providing both theoretical guarantees and computational advantages. 

Based on monotonicity, we can design an incremental computation strategy. When 

moving from parent node 𝑢 to child node 𝑣, for each center point 𝐺𝑘, we only need to 

start from the parent node’s radius 𝛿𝑢, gradually increase the radius and check con-

sistency, until finding the maximal consistent granule radius 𝛿𝑣 of the child node. This 



approach aligns with the incremental learning principle in rough set theory, where 

knowledge refinement occurs as new information becomes available. 

We proposed the maximal consistent granule generation algorithm, applying the 

monotonicity of maximal consistent granules, to efficiently compute maximal con-

sistent granules. 

Table 1. Incremental Maximal Consistent Granule 

 

This incremental computation strategy significantly improves the efficiency of fea-

ture selection during decision tree construction, enabling our Rough Set-based Dy-

namic Related Family Decision Trees to maintain low computational complexity on 

high-dimensional data. By leveraging rough set theory principles, we avoid redundant 

computations while maintaining the theoretical guarantees on feature selection quality. 

In our approach, radius threshold 𝛿 serves as a key parameter for controlling the 

quality of rough set approximations: 

Definition 2.9: Adaptive Precision Consistent Granule Generation. Given a cover-

ing information system (𝑈, 𝒞, 𝐷), where 𝒞 = {𝐶𝑖 ∣ 𝑖 = 1,2, … , 𝑚} is a family of cover-

ings of 𝑈, and 𝑈/𝐷 = {𝐷𝑖 ∣ 𝑖 = 1,2,3, … , 𝑙}, for each 𝐺𝑘 ∈ 𝐺 , the largest consistent 

granule set with radius greater than a given threshold 𝛽 is defined as: 

MCon𝛽(𝑈, 𝐶ℎ, 𝐷) = {𝐶ℎ
𝑈(𝐺𝑘, 𝛿𝑗𝑘) ∣ 𝐶ℎ

𝑈(𝐺𝑘, 𝛿𝑗𝑘) ∈ MCon(𝑈, 𝐶ℎ, 𝐷), 𝐺𝑘 ∈ 𝐺, 𝛿𝑗𝑘

> 𝛽}.  (7) 

Thus, the largest consistent granule set with radius greater than 𝛽 for the entire cov-

ering system 𝒞 is: 

MCon𝛽(𝑈, 𝒞, 𝐷) = ⋃
𝐶ℎ∈𝒞

MCon𝛽 (𝑈, 𝐶ℎ, 𝐷).  (8) 

After obtaining the maximal consistent granule set of the node through threshold 

parameters, we can derive feature evaluation results for the node using the related fam-

ily method. The specific algorithmic process is as follows: 
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Table 2. Dynamic Related Family Feature Evaluation 

 

This rough set reformulation not only provides theoretical justification for the Re-

lated Family method but also establishes it as a principled approach for feature selection 

within the well-established framework of rough set theory 

3 Multi-Feature Splitting 

In our Rough Set-based Dynamic Related Family Decision Trees, samples are pro-

jected onto lower-dimensional spaces through feature subsets selected based on rough 

set principles. This projection process can be formalized as follows: 

Definition 3.1: Feature Subset Projection. Let 𝐹′𝑖  be a feature subset obtained by 

Dynamic Related Family Feature Evaluation algorithm. The projection of the dataset 

𝑈 onto 𝐹′𝑖  is defined as: 

𝑈′𝑖 = 𝑈 ⋅ 𝑀𝐹′𝑖
  (9) 

where 𝑀𝐹′𝑖
 is a projection matrix that retains only the columns corresponding to the 

features in 𝐹′𝑖 . The resulting dataset 𝑈′𝑖 has 𝑁 samples and |𝐹′𝑖| features. 

From a rough set perspective, this projection operation preserves the discernibility 

relations determined to be most important by the feature selection process. If the feature 

subset 𝐹′𝑖  is a reduct or an approximate reduct of the original feature set, then the pro-

jection preserves the positive region and maintains essential classification information. 

Partition Purity serves as a key metric in our approach, quantifying how well the 

feature subset approximates the decision classes. From a rough set perspective, this 

metric evaluates the quality of the lower and upper approximations: 

Definition 3.2: Partition Purity for Feature Subsets. Let {𝐶1, 𝐶2, . . . , 𝐶𝑞} be the clus-

ters obtained from K-means clustering on 𝑈′𝑖, and let {𝐿1, 𝐿2, . . . , 𝐿𝑤} be the true label 

sets. The Partition Purity of the feature subset 𝐹′𝑖  is defined as: 

Partition Purity(𝐹′𝑖) =
1

𝑁
∑ max

ℓ

𝑘

𝑗=1

|𝐶𝑗 ∩ 𝐿ℓ|  (10) 



where |𝐶𝑗 ∩ 𝐿ℓ| is the number of samples in cluster 𝐶𝑗 that have the true label 𝐿ℓ, and 

maxℓ|𝐶𝑗 ∩ 𝐿ℓ| represents the majority label count in cluster 𝐶𝑗. 

The value range of Partition Purity is [0,1], where 1 represents perfect clustering 

(each cluster contains samples of only one class, equivalent to perfect lower approxi-

mation), and lower values indicate increasing approximation error. 

This rough set interpretation of Partition Purity provides a theoretical foundation for 

evaluating feature subsets based on their approximation quality, guiding the selection 

of optimal splitting features at each node. 

Our approach innovatively integrates K-means clustering with rough set principles 

to create a multi-path splitting mechanism. These theoretical advantages derive from 

the synergy between rough set theory’s focus on discernibility relations and clustering’s 

ability to identify natural groupings in the feature space. In our Dynamic Related Fam-

ily Decision Tree approach, the selection of the number of clusters 𝐾 is straightforward 

and practical–we simply set 𝐾 equal to the number of classes in the dataset, where |𝑌| 
represents the number of distinct classes in the dataset. Our experiments across diverse 

datasets confirm that this straightforward approach works effectively in practice. Even 

for datasets with a large number of classes (such as the Movement libras dataset with 

15 classes), setting 𝐾 equal to the class count produces well-balanced splits that lead to 

high classification accuracy. The simple relationship between classes and clusters 

aligns well with the fundamental classification objective–separating samples from dif-

ferent classes into distinct groups. By matching the cluster count to the class count, we 

create a natural structural correspondence between the problem definition and the algo-

rithmic approach. 

4 Construction and Prediction of Rough Set-Based Dynamic 

Related Family Decision Trees 

4.1 Rough Set-Based Dynamic Related Family Decision Tree Construction 

Algorithm 

The complete algorithm for constructing our Rough Set-based Dynamic Related 

Family Decision Tree integrates rough set principles with multi-feature splitting: 
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Table 3. Build Dynamic Related Family Decision Tree 

 



4.2 Rough Set-Based Prediction Algorithm 

The prediction algorithm implements the navigation through approximation spaces 

described in the previous section: 

Table 4. Predict With Dynamic Related Family Decision Tree 

 

The prediction process navigates through a hierarchy of approximation spaces, iden-

tifying the most appropriate refinement at each step based on the discernibility between 

the test sample and approximation centers. This rough set-based prediction approach 

enables efficient classification of new samples while maintaining the theoretical guar-

antees provided by the rough set framework 

5 EXPERIMENTAL ANALYSIS 

In this section, we conduct comprehensive experiments to evaluate the classification 

performance of our proposed Rough Set-based Dynamic Related Family Decision Tree 

(DRFDT) algorithm. Our experimental analysis aims to validate the practical effective-

ness of the rough set theoretical framework we’ve established and demonstrate its ad-

vantages in real-world classification tasks. We compare DRFDT against three classical 

classification algorithms and three state-of-the-art decision tree variants. Additionally, 

we investigate the impact of our adaptive parameter selection mechanism on classifi-

cation performance. We carefully selected fifteen datasets from the UCI machine learn-

ing repository, covering a diverse range of domains, dimensions, and complexities, as 

detailed in Table 5. Prior to experimentation, all datasets underwent preprocessing to 

normalize numerical features to the [0,1] range, facilitating consistent granule construc-

tion and rough set approximation. 
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Table 5. Description of experimental datasets. 

No Data Sets Sample Features Classes 

1 aliz v3 62 2094 4 

2 leukemia 72 7071 2 

3 armstrong 72 2195 3 

4 CLL_SUB 111 11341 3 

5 inosphere 351 35 2 

6 Movement libras 360 91 15 

7 Ultrasonic flowmeter diagnostics 361 44 4 

8 DrivFace 606 6401 3 

9 vowel 990 14 11 

10 Obesity Estimation 2111 17 7 

11 segment 2310 20 7 

12 twonorm 7400 21 2 

13 thyroid 7200 22 3 

14 electrical 10000 14 2 

15 Internet Firewall Data 65532 12 4 

Our experimental evaluation compares DRFDT with three classical classification 

algorithms—Classification and Regression Trees (CART), Support Vector Machines 

(SVM), and k-Nearest Neighbors (KNN with k=3)—as well as three state-of-the-art 

decision tree variants: Feature Generalized Binary Decision Tree (FGBDT), Multi-Per-

spective Rule-Based Classification (MPRBC), and Relative Stability Local Redun-

dancy-based Rough Set (RSLRS). We also included two additional tree-based methods: 

Oblique Decision Tree (O1) and CART with Linear Combinations (CART-LC), which 

employ multivariate splitting strategies. To comprehensively evaluate classification 

performance, we adopted accuracy as the primary metric and employed ten-fold cross-

validation across all experiments. 

In Our experimental, A key mechanism in our DRFDT algorithm is its built-in adap-

tive mechanism. This mechanism divides the training sample set into an internal train-

ing set (90%) and an internal validation set (10%). For each candidate leaf node purity 

threshold, ranging from 0.90 to 0.99 with increments of 0.01, the algorithm evaluates 

classification accuracy. The leaf node purity threshold that yields the highest classifi-

cation accuracy is selected as the optimal value for the dataset. The DRFDT tree is then 

trained on the entire training sample set using this optimized threshold. 

5.1 Performance Comparison and Analysis 

Table 6 presents the classification accuracy of all algorithms on the 15 datasets. For 

fair comparison, we employed consistent 10-fold cross-validation and report the aver-

age accuracy percentages. The highest accuracy for each dataset is highlighted in red 

(with values within 1% of the maximum considered equivalent), while the second-high-

est is in blue. 



Table 6. Classification Accuracy Comparison on UCI Datasets (%). 

Dataset SVM 
CAR

T 
KNN 

FGBD

T 

MPRB

C 
RSLRS O1 

CART-

LC 

DRFD

T 

vowel 86.87 78.08 60.71 64.34 61.71 55.05 55.56 58.08 86.36 

Ultrasonic 50.13 84.77 73.95 83.10 74.95 42.11 65.75 82.19 89.19 

twonorm 97.70 84.81 96.62 81.31 97.89 70.45 79.73 93.31 97.66 

thyroid 93.13 99.69 93.81 99.49 94.81 71.14 99.38 99.24 96.79 

segment 93.07 96.67 94.94 90.91 95.94 68.01 93.51 83.77 95.54 

Obesity 92.80 97.30 97.30 91.71 93.33 56.80 88.89 87.71 96.54 

libras 79.72 61.39 68.33 58.33 69.33 58.06 40.28 44.44 76.39 

leukemia 84.48 94.38 84.76 94.46 85.76 72.22 72.23 70.18 93.05 

Firewall 92.02 99.77 99.39 99.85 99.39 54.93 99.85 99.82 99.30 

inosphere 93.44 88.04 83.49 89.73 84.49 72.08 85.92 85.92 88.93 

electrical 98.15 99.98 91.86 99.99 92.86 77.81 100 100 99.11 

DrivFace 90.10 94.56 95.87 100 96.87 74.75 100 100 95.55 

CLL_SUB 35.14 62.17 54.94 66.67 55.94 51.35 99.38 98.94 56.72 

armstrong 95.89 75.18 82.14 75.18 83.14 75.00 97.04 97.22 86.43 

aliz v3 88.81 63.81 80.48 71.19 81.48 37.10 98.33 97.85 81.90 

Average 84.76 85.44 83.59 84.42 84.53 62.46 85.05 85.31 89.30 

The experimental results demonstrate that our proposed DRFDT algorithm, 

grounded in rough set theory, achieves superior overall performance across the tested 

datasets. DRFDT attains the highest average classification accuracy (89.30%) among 

all compared methods, significantly outperforming both classical algorithms (SVM: 

84.76%, CART: 85.44%, KNN: 83.59%) and state-of-the-art decision tree variants 

(FGBDT: 84.42%, MPRBC: 84.53%, RSLRS: 62.46%, O1: 85.05%, CART-LC: 

85.31%). DRFDT outperforms a wide range of classification algorithms across 15 UCI 

datasets, achieving an average accuracy of 89.30%, which represents an average im-

provement of 7.35% compared to other methods. This represents significant improve-

ments over classical single-feature decision tree methods (CART: +3.87%), traditional 

classification algorithms (KNN: +5.71%, SVM: +4.54%), multi-feature split decision 

tree algorithms (CART-LC: +3.99%, O1: +4.25%), and state-of-the-art decision tree 

classification algorithms (FGBDT: +4.88%, MPRBC: +4.77%, RSLRS: +26.84%). 

DRFDT provides more balanced and consistent performance across a wider range of 

datasets. This suggests that our rough set-based approach to feature selection and deci-

sion boundary construction offers a more generalizable classification framework, par-

ticularly effective when handling datasets with moderate dimensionality and complex 

class distributions. 
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6 CONCLUSIONS AND FUTURE WORK 

In this paper, we present the Rough Set-based Dynamic Related Family Decision 

Tree (DRFDT), a novel decision tree algorithm that integrates rough set theory with 

adaptive feature selection and dynamic sample partitioning. Our experimental results 

across 15 diverse UCI datasets demonstrate that DRFDT significantly outperforms both 

classical machine learning algorithms and state-of-the-art decision tree methods, 

achieving an average classification accuracy of 89.30%. The statistical analysis con-

firms that DRFDT provides substantial improvements in classification performance 

while maintaining the interpretability advantages of decision tree models. 

For future work, we plan to explore several promising directions to further enhance 

the DRFDT algorithm: 

1. Rough Set-Based Adaptive Clustering: While our current implementation 

utilizes k-means for sample partitioning, future research will focus on devel-

oping a clustering approach directly based on rough set approximation re-

gions. This would leverage the natural granularity of rough set theory to de-

termine optimal partitioning without requiring predefined cluster numbers, 

potentially providing more semantically meaningful decision boundaries. 

2. Variable Precision Rough Set Integration: We aim to formally incorporate 

variable precision rough set models that allow controlled relaxation of ap-

proximation precision. This would provide a more flexible theoretical frame-

work for handling datasets with different noise levels and class boundary 

characteristics. 

The rough set perspective offers a theoretically sound foundation for decision tree 

construction that differs fundamentally from traditional impurity-based splitting crite-

ria. By establishing a formal connection between rough set approximation quality and 

decision tree optimization, our work opens new avenues for research at the intersection 

of these fields. We believe that further development of these theoretical connections 

will lead to significant advances in both the efficiency and effectiveness of decision 

tree models for complex classification tasks. 
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