
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

NeuLF-Net: A Neural Latent Fusion Network for 3D 

Surface Reconstruction  

Boren Li1, Xuhua Shi1,*, Haizhen Yu1 

1 Faculty of Electrical Engineering, Ningbo University, China 
shixuhua@nbu.edu.cn 

Abstract. Learning-based implicit neural networks have achieved inspirational 

performance on point cloud surface reconstruction. To reconstruct continuous 

surfaces from raw, discrete point clouds, existing methods typically project point 

clouds to grid latents or directly encode them as point latents. However, these 

methods rarely combine grid latents and point latents effectively and typically 

only perform simple topological transformations that ignore the spatial positional 

information of points, which seriously restricts the ability to capture fine details. 

In addition, traditional linear interpolation fails to sufficiently consider the global 

spatial information when inferring features of spatial points in sparse regions, 

resulting in a complete loss of expressiveness in some regions. In this paper, we 

propose a novel neural latent fusion network, named NeuLF-Net. The network 

serves as an end-to-end surface reconstruction framework, efficiently retaining 

the spatial encoding advantages of grid latents while capturing the fine-grained 

descriptive power of point latents. Specifically, we introduce a Neighbor Grid 

Enhancement Layer, which fully utilizes the neighbor information of the grid 

latents and point latents to enable enhancement of the two latents type. Further-

more, we design a novel adaptive interpolation strategy that exhibits better adapt-

ability for point cloud spatial feature extraction. We extensively evaluate our 

pipeline with previous methods on three datasets including ShapeNet, Synthetic 

Rooms and ScanNet. Both quantitative and qualitative analyses demonstrate that 

NeuLF-Net substantially enhances the overall quality of point cloud reconstruc-

tion. From a visual perspective, the reconstruction results appear more realistic. 

Keywords: NeuLF-Net, Implicit surface reconstruction, Point clouds, Adaptive 

interpolation strategy. 

1 Introduction 

Point clouds are one of the representations of 3D shapes, typically obtained by devices 

such as 3D scanners or LiDAR. They are characterized by sparsity, irregularity, and 

lack of topological structure [1]. Due to their discrete nature, raw point clouds data 

often difficult to meet practical requirements when directly applied to scientific and 

engineering applications. Therefore, point cloud surface reconstruction is pivotal in 

transforming scattered point clouds to continuous surfaces to fit various application 

scenarios. 

mailto:shixuhua@nbu.edu.cn


The field of point cloud surface reconstruction has received extensive research. Tra-

ditional 3D point cloud reconstruction methods generally rely on geometric and opti-

mization techniques [2]-[7], but these methods usually require prior knowledge of the 

point clouds and are limited in their ability to handle complex topological structures. 

Recently, deep learning-based point cloud surface reconstruction methods have demon-

strated their advantages. These approaches learn complex surface patterns from point 

cloud data in an end-to-end manner, through deep neural networks, thereby generating 

accurate and detail-rich 3D surfaces. In particular, learning-based implicit representa-

tions have become a popular direction because they use implicit functions to represent 

continuous surfaces and can naturally handle arbitrary complex topological structures. 

This theory was first introduced in ONet [8]. In order to learn implicit function fields, 

Existing major methods typically project the input point clouds to a grid latents [23]-

[32], or directly process as point latents [33]-[39], and finally generate continuous sur-

faces from the implicit fields through surface extraction algorithms. 

However, projecting point clouds to grid latents often leads to shortcomings such as 

loss of accuracy, lack of flexibility, and loss of some details. In contrast, directly pro-

cessing point latents retains more details but incurs high computational complexity and 

sensitive to sampling density, making it difficult to maintain topological integrity. Spe-

cifically, although [29] proposes an alternating topology approach, it remains funda-

mentally grid-based. The paper aims to solve the challenges. We propose a Neighbor 

Grid Enhancement Layer (NGEL), which enhances the feature representation of point 

latents by utilizing neighbor grid information and subsequently applies the enriched 

point latents to refine the grid latents. By embedding the NGEL module into the U-Net 

[40] architecture, we achieve multi-scale information fusion between points and grids, 

facilitating the effective processing of detail-rich point clouds data. The module is not 

simply about extracting neighbor points or girds for linear interpolation. It fuses point 

position encoding, point latents, and neighbor grid latents, calculating enhanced point 

latents through a learned approach. Then, in the inference phase, we present an adaptive 

interpolation strategy that adopts different strategies based on the spatial location of the 

query point, computing the corresponding high-dimensional features, and ultimately, 

the occupancy function value is derived. Finally, we construct a new network architec-

ture called NeuLF-Net, which integrates the NGEL module and the adaptive interpola-

tion strategy into the network to efficiently process point latents. The entire training 

process is end-to-end. Experimental results on the ShapeNet, Synthetic Rooms and 

ScanNet datasets demonstrate that NeuLF-Net outperforms other SOTA methods, 

achieving superior performance. The main contributions are summarized below: 

• We proposed a Neighbor Grid Enhancement Layer, which integrates with a U-Net 

architecture to facilitate multi-scale feature enhancement. 

• We designed an adaptive interpolation strategy that produces more accurate interpo-

lated features for the query points. 

• We integrated the NGEL and the adaptive interpolation strategy into the proposed 

NeuLF-Net, maintaining an end-to-end processing paradigm. 
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2 Related Works 

2.1 Convolutions for Explicit Representations 

The explicit representations of 3D shapes mainly include voxel, point clouds, and mesh 

representations, all of which are discretizations of the spatial domain. Voxel represen-

tations [9]-[11] as a 3D extension of pixel representations, are processed by extending 

2D convolution to 3D convolution and were among the earliest representations applied 

in point clouds reconstruction. However, voxel representations are limited by resolution 

and memory constraints, leading to relatively coarse surface reconstructions. Point 

clouds representations [12],[13], characterized by their unstructured and unordered na-

ture, lack topological information, which restricts their applicability in practical scenar-

ios. Mesh representations [14]-[18], consisting of triangles connected by shared verti-

ces or edges, provide strong generality. Nevertheless, directly generating triangular 

meshes from neural networks remains a significant challenge. 

2.2 Convolutions for Implicit Representations 

In contrast to explicit representation methods, implicit representation methods learn a 

continuous implicit function to predict the occupancy function value or signed distance 

function value for any arbitrary 3D coordinate in space. The surface is subsequently 

extracted using the classical Marching Cubes algorithm [19]. Mescheder et al. [8] in-

troduced ONet, a method that implicitly represents three-dimensional surfaces through 

a deep network. This approach employs a neural network based on PointNet [36] to 

generate a set of feature vectors representing the entire shape and incorporates the Mul-

tiresolution IsoSurface Extraction (MISE) algorithm for efficient surface extraction. 

Park et al. [21] proposed DeepSDF, which utilizes a continuous signed distance func-

tion to compute the distance from any point in space to the surface, generating the final 

surface by calculating the zero-level set. Giebenhain et al. [22] presented AIR-Nets, 

which encode input point clouds into a set of local latent representations of 3D space. 

However, the representational capacity of vector-based encodings remains significantly 

constrained. 

To address this issue, one approach projects point clouds into feature grids. Peng et 

al. introduced ConvONet [23], which combines a convolutional encoder with an im-

plicit occupancy decoder, effectively aggregating both local and global feature infor-

mation. This method maps input point clouds onto 2D feature planes or 3D feature 

volumes and uses bilinear or trilinear interpolation to retrieve features for arbitrary 

points, predicting their occupancy probability values. Tang et al. proposed SA-

ConvONet [24], which leverages symbolic oblivious optimization for implicit fields in 

its input. S. Lionar et al. designed DP-ConvONet [25], introducing dynamic plane con-

volution operations into the model. Gropp et al. [26] proposed implicit geometric reg-

ularization techniques, significantly improving the smoothness and quality of the gen-

erated shapes. Jiang et al. [27] partitioned the scene into multiple regions and employed 

local SDF representations within each region, enabling efficient local reconstruction 

and global integration. Although there is extensive research on grid-based surface 



reconstruction methods, projecting point clouds to grid for processing leads to the loss 

of fine details, which is determined by the inherent characteristics of the grid structure. 

Another approach is to directly handle point latents. Erler et al. [33] proposed the 

Points2Surf method, which extracts local geometric features from input point clouds 

through local sampling, effectively capturing surface details. Wang et al. [34] intro-

duced RangeUDF, which employs point convolution techniques, enabling the model to 

utilize more raw surface points at the input stage, thereby improving reconstruction 

performance, especially in large-scale scenes. Boulch et al. [35] proposed POCO, 

which extracts local features for every point through point convolution operations and 

aggregates them by neighbor information. Additionally, the method introduces an at-

tention-based weighting module to decode these features and predicts the occupancy 

function value of each point. Fan et al. [36] proposed Bifusion, which is based on point 

and voxel representations but is limited by the resolution of the voxels. Ummenhofer 

et al. [37] proposed AdaConv, which uses the point convolution features with the aid 

of oriented normals of the point clouds. However, point-based methods typically rely 

on neighbor features to infer global topology. When the point cloud is sparse, it leads 

to incomplete reconstructions, particularly in complex scenes. In order to solve these 

problems, our work is devoted to combining the advantages of two types of latents, to 

generate a more realistic and detailed surface.  

 

Fig. 1. The architecture of NeuLF-Net. There are four main stages in our architecture. We first 

extract point latents and grid latents from input point clouds, which are processed by the U-Net 

network composed with the NGEL to generate enhanced point and grid latents. Ultimately, the 

adaptive interpolation module valuates the occupancy function value of query points. R and d 

represent the grid resolution and the number of feature channels, respectively. 

3 Methods 

Goals. Given a set of three-dimensional discrete points 𝒫 = {𝑝𝑖 ∈ 𝑅3}𝑖=1
𝑁  as input, our 

goal is to construct a continuous implicit function ℱ𝜃:  𝑅3 → [0,1], such that for any 

query point 𝑞 ∈ 𝑅3 in space, the value of the occupancy function 𝑂𝑞 = ℱ𝜃(𝑞) can be 

calculated, where 𝑁 represents the number of sampled points in the point cloud. By 

sampling points in 3D space and labeling them, we learn the implicit function ℱ𝜃 to 

make the reconstructed surface as close as possible to the ground truth surface.  
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3.1 NeuLF-Net Architecture 

NeuLF-Net consists of four key parts: feature extraction, NGEL module, adaptive in-

terpolation strategy and mesh generation. The entire network structure is illustrated in 

Fig. 1. 

We first use PointNet [20] to extract the initial point latents 𝐹𝑝 = {𝑐𝑖 ∈ 𝑅𝑑}𝑖=1
𝑁 , 

where 𝑑 represents the dimension of the point latents. Then we normalize the point 

cloud and use orthogonal projection to map it to the grid space, initializing the grid 

latents 𝐹𝑔. In this case, we use a plane as grid latents, which results in 𝐹𝑔 ∈ 𝑅𝑅×𝑅×𝑑, 

where 𝑅 is the grid resolution. In this way, the initialization of the feature is completed.  

During the encoding phase, we apply the U-Net architecture to encode the two latents 

type. Each layer is an NGEL module, designed to leverage the neighborhood infor-

mation of the grid latents to enhance the point latents representation ability, and reapply 

the point latents to the grid through spatial mapping, achieving interactive enhance-

ment. When down-sampling is performed, the grid resolution is halved and the number 

of characteristic channels is doubled. The upsampling stage is the opposite. In the in-

ference phase, we propose an adaptive interpolation strategy, which demonstrates 

greater robustness compared to traditional linear interpolation in the architecture. Fi-

nally, the mesh is generated using the Marching Cubes algorithm. 

  

Fig. 2. Left: NGEL module. It extracts neighboring grid features, fuses positional encoding in-

formation, and employs an attention mechanism to compute enhanced point features that are 

subsequently fed back into the grid. Top Right: Neighbor Grid Extraction. Red dots represent 

grid features, and blue dots represent point features. The module extracts local grid and positional 

information to support the subsequent enhancement of point features. Bottom right: Legend in-

dicating the specific details of the model architecture. 

3.2 NGEL 

We propose the Neighbor Grid Enhancement Layer (NGEL), as illustrated in Fig. 2, 

which combines the advantages of both latent representations. To illustrate this, we take 

the projection onto the xy-plane grid as an example, with a similar process applying to 

voxel grid. 

Point Clouds Spatial Mapping. For any normalized coordinate point 𝑝(𝑥0, 𝑦0, 𝑧0) 

in space, we calculate the normalized grid coordinates 𝑝nor(𝑥, 𝑦), as well as the corre-

sponding grid index index(𝑖, 𝑗), with the calculation formula as follows: 

 𝑝nor(𝑥, 𝑦) = (
𝑥0

1+ε
,

𝑦0

1+ε
), (1) 



 index(𝑖, 𝑗) = (⌊𝑥 × 𝑅⌋, ⌊𝑦 × 𝑅⌋), (2) 

where 𝑅 is the grid resolution, and ε is a small constant. The center coordinates of 

the grid 𝑐𝑖,𝑗  can be computed using the index information as follows: 

 𝑐𝑖,𝑗 = index(𝑖, 𝑗)/𝑅. (3) 

Neighbor Grid Extraction(NGE). For the grid index(𝑖, 𝑗) of 𝑝nor(𝑥, 𝑦), we extract 

the neighbor grid set 𝑁𝑖,𝑗 where the point is located. The definition of 𝑁𝑖,𝑗 is as follow: 

 𝑁(𝑖, 𝑗) = { index(𝑖 + Δ𝑖 , 𝑗 + Δ𝑗) ∣∣ Δ𝑖 , Δ𝑗 ∈ {−1,0,1} }. (4) 

Considering the boundary conditions, it is necessary to clip the neighbor grid infor-

mation to obtain the actual neighbor. When 𝑖 + Δ𝑖 < 0 or 𝑖 + Δ𝑖 ≥ 𝑅, the actual grid 

coordinate 𝑖𝑓 to be taken is: 

 𝑖𝑓 = min(max(𝑖 + Δ𝑖 , 0) , 𝑅 − 1), (5) 

similarly, 𝑗𝑓 is: 

 𝑗𝑓 = min(max(𝑗 + Δ𝑗 , 0) , 𝑅 − 1). (6) 

This guarantees that the neighbor grid remains within the valid range. The processed 

actual neighbor grid index set is defined as: 

 𝑁𝑓(𝑖, 𝑗) = { index(𝑖𝑓 , 𝑗𝑓) ∣∣ Δ𝑖 , Δ𝑗 ∈ {−1,0,1} }. (7) 

Thus, the corresponding neighbor grid latents set ℱ𝑔: 

 ℱ𝑔 = { 𝐹𝑔(𝑖, 𝑗) ∣∣ (𝑖, 𝑗) ∈ 𝑁𝑓(𝑖, 𝑗) }, (8) 

where 𝐹𝑔(𝑖, 𝑗) is the grid latents at the index(𝑖, 𝑗). 

Position Encoding. To incorporate the positional information of the point cloud into 

the latent space, we calculate the relative position encoding of the neighbor grid centers 

with respect to the point cloud. We take the set of center coordinates of the neighbor 

grid for this point 𝐶: 

 𝐶 = { 𝑐𝑖,𝑗 ∣∣ (𝑖, 𝑗) ∈ 𝑁𝑓(𝑖, 𝑗) }. (9) 

Since the coordinates of the point are fixed, the formula for calculating the position 

encoding is as follows:  

 ℱ𝑒𝑛𝑐 = { 𝑀𝐿𝑃 (𝑐𝑖,𝑗 − 𝑝nor(𝑥, 𝑦)) ∣
∣ (𝑖, 𝑗) ∈ 𝑁𝑓(𝑖, 𝑗) }, (10) 

where MLP denotes the Multi-Layer Perception. 

Latent Update. To incorporate the grid latents into the point cloud, we consider a 

simple attention mechanism. we compute the importance of each neighbor grid relative 

to point 𝑝, and obtain the normalized weight 𝑤̃, the calculation formula is as follows: 
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 𝑤̃ = softmax (MLP(ℱp − ℱ𝑔 + ℱ𝑒𝑛𝑐)), (11) 

Finally, the point latents is updated, and the enhanced point latents 𝐹𝑝
′ is: 

 𝐹𝑝
′(𝑖, 𝑗) = ∑ 𝑤̃(𝑖, 𝑗)(𝑖,𝑗)∈𝑁𝑓(𝑖,𝑗) ⋅ 𝐹𝑔(𝑖, 𝑗). (12) 

To feedback the enhanced point latents into the grid latents and obtain the enhanced 

grid latents 𝐹𝑔
′, we rescan the grid space and apply average pooling to points in the same 

grid to update the grid latents: 

 𝐹𝑔
′(𝑖, 𝑗) =

1

|𝐼𝑖,𝑗|
∑ 𝐹𝑝

′
𝑝∈index(𝑖,𝑗) , (13) 

where 𝐼𝑖,𝑗 indicates the number of points in the index(𝑖, 𝑗) grid. The NGEL module 

is seamlessly integrated with the U-Net module, leveraging skip connections to further 

enhance the feature extraction and expressive ability of the module. The encoder will 

eventually output the point latents and the grid latents.  

 

Fig. 3. Left: Three cases of interpolation. Red points represent grid corner points, green points 

denote zero-feature grid corners, blue points indicate query points, and orange points refer to 

other sampled points. The detailed explanation is presented in Sec 3.3. Right: Adaptive interpo-

lation strategy. The input includes sampled points features and grid corners features, and the 

output is the feature vector of the query point.  

3.3 Adaptive Interpolation Strategy 

Given the point latents, grid latents, and any query point 𝑞 ∈ 𝑅3 in the space, our goal 

is to compute the learned features and estimate the occupancy function value. The typ-

ical approach is to use linear interpolation algorithm to extract the point features from 

the grid and decode it through point-wise MLP directly. However, in the sampling 

stage, many query points fall into grid regions without any features. When linear inter-

polation only considers the corner features of the current grid, yields a zero vector, 

indicating that the query point is not on the surface and neglecting its spatial positional 

information. In fact, the sampling point is merely located farther from the surface, and 

we can address this issue by leveraging its neighboring points. The network structure 

is illustrated in Fig. 3. 

We consider the following cases with 2D grid: 



(a). If the center of the grid containing the query point 𝑞 has features, its computation 

is equivalent to linear interpolation. The formula is as follows: 

 (𝑥𝑑 , 𝑦𝑑) = (
𝑥−𝑥0

𝑥1−𝑥0
,

𝑦−𝑦0

𝑦1−𝑦0
), (14) 

 𝑧𝑞 = 𝑐11(1 − 𝑥𝑑)(1 − 𝑦𝑑) + 𝑐21𝑥𝑑(1 − 𝑦𝑑) + 𝑐12(1 − 𝑥𝑑)𝑦𝑑 + 𝑐22𝑥𝑑𝑦𝑑 . (15) 

Here, 𝑐11, 𝑐21, 𝑐12, 𝑐22 denote the corner points of the grid. 

(b). If the corner points of the grid containing query point 𝑞 are not all zero-featured, 

it indicates that the query point is located near the surface of the point cloud. Traditional 

linear interpolation is affected by zero features, resulting in unstable feature represen-

tations near grid boundaries. Therefore, in this case, we need to improve the linear in-

terpolation algorithm that disregards the effect of zero vectors. Since traditional inter-

polation assigns weights summing to one for a query point, the total weight should 

remain unchanged after discarding the weights associated with zero vectors. To ensure 

that the remaining valid weights comply with the normalization requirement, we apply 

a normalization process. Accordingly, we introduce the sgn function to handle this is-

sue. 

 
if   is zero feature

s
i

1

0
gn( )

otherw se

c
c


= 


 (16) 

Therefore, the calculation formula of weight is as follows: 

 𝑤𝑞 = sgn(𝑐11)(1 − 𝑥𝑑)(1 − 𝑦𝑑) + sgn(𝑐21)𝑥𝑑(1 − 𝑦𝑑) (17) 

+sgn(𝑐12)(1 − 𝑥𝑑)𝑦𝑑 + sgn(𝑐22)𝑥𝑑𝑦𝑑 . 

Finally, the updated feature of the query point 𝑧𝑞
′  is obtained as: 

 𝑧𝑞
′ = 𝑧𝑞/𝑤𝑞 . (18) 

(c). If all the corner points of the grid containing query point 𝑞 have zero features, it 

indicates that the query point is some distance away from the surface of the point cloud. 

In this case, linear interpolation yields a zero feature for the query point, which to some 

extent neglects the information from other sampled points in the surrounding space. 

Inspired by POCO [35], we posit that the features of a query point are strongly influ-

enced by nearby sampled points. In the decoding stage, rather than using learned 

weights, we adopt the Laplace weighting method. Let the K-nearest neighbor set of the 

sampled point 𝑞 be denoted as 𝒩𝐾(𝑞) = {𝑞𝑘 ∈ 𝑅3}𝑘=1
𝐾 . Then: 

 𝑤𝑖 = 𝑒−λ|𝑞−𝑞𝑖|, (19) 

where λ  denotes the weight decay rate, and 𝑤𝑖  represents the weight of the i-th 

neighbor of 𝑞 . This computation ensures that distant neighbors are assigned lower 

weights, while closer points receive higher weights. Similarly, we normalize the 

weights and perform a weighted sum with the neighboring features to obtain the inter-

polated feature of 𝑞: 
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 𝑧𝑞 = ∑ softmax(𝑤𝑖)𝐾
𝑖=1 ⋅ 𝑝𝑞𝑖

. (20) 

 

Fig. 4. Object-level comparisons on ShapeNet with 3k input points. GT represents the ground 

truth watertight mesh surface. The red and blue boxes highlighting the key differences in the 

comparison results across different methods. Comparison of our model to ConvONet, POCO and 

ALTO. 

In this context, the softmax function is used for normalization, and 𝑝𝑞𝑖
 refers to the 

feature of the neighbor point 𝑞𝑖.  

In summary, the proposed adaptive interpolation strategy robust interpolated fea-

tures under diverse query point sampling conditions. Then we continue to use ResNet 

[41] to decode the occupancy values and generate continuous surfaces via the Marching 

Cubes algorithm. 

Table 1. Object-level quantitative comparison on the ShapeNet dataset with different point den-

sity levels. σ is the standard deviation of the Gaussian noise.  

Method 3K points and 𝛔 =  𝟎. 𝟎𝟎𝟓 1K points and 𝝈 =  𝟎. 𝟎𝟎𝟓 

IoU↑ CD↓ NC↑ FS ↑ IoU↑ CD↓ NC↑ FS↑ 

ONet 0.761 0.87 0.891 0.785 0.772 0.81 0.894 0.801 

ConvONet 0.884 0.44 0.938 0.942 0.859 0.50 0.929 0.918 

SA-ConvONet 0.884 0.45 0.942 0.966 0.842 0.55 0.918 0.903 

POCO 0.926 0.30 0.950 0.984 0.884 0.40 0.928 0.950 

ALTO 0.930 0.30 0.952 0.980 0.905 0.35 0.940 0.964 

Ours 0.943 0.28 0.954 0.987 0.918 0.34 0.942 0.966 

3.4 Training and Inference 

To train the network, we refer to previous work [8] and use the binary cross-entropy 

loss function to compute the distance between the predicted value and the ground truth. 

The formula is as follows: 

 ℒ(𝑂𝑞̂ , 𝑂𝑞) = −
1

𝑁
∑ [𝑂𝑞 log(𝑂𝑞̂) + (1 − 𝑂𝑞) log(1 − 𝑂𝑞̂)]𝑁

𝑞=1 . (21) 



 The proposed model is implemented in PyTorch, and trained using the Adam opti-

mizer with a learning rate of 5 × 10−5. During the experiments, we set the convolu-

tional resolution 𝑅 to 64, the dimension of the point latents 𝑑 to 32, and the weight 

decay rate λ to 5. The training is conducted on a Nvidia RTX4080 SUPER GPU. 

Table 2. Object-level quantitative comparison on the ShapeNet dataset with different noise levels 

and 3K input points.  

Method 𝛔 =  𝟎. 𝟎𝟎𝟓 𝝈 =  𝟎. 𝟎𝟐𝟓 

IoU↑ CD↓ IoU↑ CD↓ 

ConvONet 0.884 0.44 0.787 0.73 

SA-ConvONet 0.884 0.45 0.736 0.90 

POCO 

Bifusion 

0.926 

0.920 

0.30 

0.27 

0.817 

0.810 

0.58 

0.49 

ALTO 0.930 0.30 0.830 0.51 

Ours 0.943 0.28 0.840 0.52 

4 Experiments 

In this section, we describe the datasets, baselines and evaluation metrics. After that we 

validate the proposed NeuLF-Net and perform both quantitative and qualitative com-

parisons with SOTA methods. Finally, we validated the effectiveness of the method 

through ablation study. 

4.1 Datasets, Baselines and Metrics 

Datasets. ShapeNet [42] is a classic object-level dataset for point cloud surface recon-

struction tasks, containing 13 categories of object watertight meshes. Similar to the 

processing method in ONet [8], we sampled 3000 points and applied Gaussian noise 

with a standard deviation of 0.005. For reconstructing scene-level datasets, we em-

ployed the Synthetic Rooms dataset, first introduced in [23], which includes data from 

5000 synthetic room scenes. Each scene is composed of objects, ground, and randomly 

sampled walls from the ShapeNet. We sampled 10000 points and similarly applied 

Gaussian noise with a standard deviation of 0.005. ScanNet [43] is a real-world scene 

dataset containing more than 1500 scans. We set the same parameters as the Synthetic 

Rooms dataset for testing. 

Baselines. To assess the effectiveness of the proposed NeuLF-Net, we conduct a 

comparative analysis against both grid-based and point-based approaches. The grid-

based methods include ONet [8], ConvONet [23], SA-ConvONet [24], and ALTO [29], 

while the advanced point-based method include POCO [35], Bifusion [36]. To ensure 

fairness, we set the same number of sampled points and noise levels when comparing 

the performance of different models. 

Evaluation Metric. To assess the quality of the surface reconstruction results and 

compare them with previous studies, we use the following primary evaluation metrics: 

IoU: Measures the overlap between reconstructed surface and GT surface. Chamfer 
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Distance: Assesses the similarity between point clouds. Normal Consistency: Measures 

the similarity between the normal vectors of the reconstructed surface and the ground 

truth surface. F-score: A comprehensive evaluation of the model’s detail recovery ca-

pability and coverage ability with threshold value 1%. 

 

Fig. 5. Scene-level comparisons on Synthetic Rooms with 10k input points. Qualitative compar-

ison of point clouds reconstruction in indoor scenes.  

4.2 Object-level Reconstruction 

Quantitative Evaluation. Firstly, we evaluated our approach using a simple shape da-

taset. As shown in Table 1, we conducted performance evaluations on the ShapeNet 

dataset with different sampling densities. We considered three different input point 

cloud sample sizes: 3000 and 1000, for comparison with the metrics of other models. 

We observed that our approach outperforms other techniques based on points and grids. 

Notably, it demonstrates a significant advantage in the IoU metric. 

We further examine the impact of varying noise intensities. Notably, the model 

demonstrates robust stability even under increased noise conditions. The corresponding 

experimental findings are presented in Table 2. 

Qualitative Evaluation. The ShapeNet dataset reconstruction results are shown in 

Fig. 4. In the first row, for the lamp reconstruction, other methods display significant 

irregularities and lack of smoothness on the lampshade, especially in certain detailed 

areas (as shown in the red box), where either the details are not reconstructed or they 

are extremely blurry. In contrast, our method can precisely reconstruct these details, 

presenting a smoother and more continuous geometric shape. Similar issues are also 

reflected in the chair contour reconstruction in the second row and the car rearview 

mirror reconstruction in the third row. Compared with other methods, our approach can 

more clearly exhibit the geometric contours, preventing blurriness and missing details. 

In general, our method shows more realistic and accurate surface reconstruction, with 

higher geometric precision and stability than other models. 

4.3 Scene-level Reconstruction 

Quantitative Evaluation. For the reconstruction of the scene-level datasets, we used 

the Synthetic Rooms Dataset for surface reconstruction and compared it with the base-

line on the same dataset. We considered a scenario with 10,000 input sample points and 

Gaussian noise with a standard deviation of 0.005 for the comparison. Our results are 



presented in Table 3, and it is evident that, compared to the ShapeNet dataset, our model 

exhibits a more pronounced superiority in the complicated scene dataset. 

Table 3. Comparison on the Synthetic Rooms dataset with 10K input points and σ = 0.005. 

Methods IoU↑ CD↓ NC↑ FS ↑ 

ONet 0.475 2.03 0.783 0.541 

ConvONet 0.849 0.42 0.915 0.964 

SA-ConvONet 0.850 0.42 0.912 0.961 

POCO 0.884 0.36 0.919 0.980 

ALTO 0.914 0.35 0.921 0.981 

Ours 0.920 0.33 0.936 0.985 

Qualitative Evaluation. We visualize the qualitative comparisons of Synthetic 

Rooms dataset in Fig. 5, it can be observed that the grid-based method yields relatively 

stable results but cannot correctly reconstruct the detailed part of the lamppost (blue 

box). The point-based method can properly display the lamppost, but it generates some 

incorrect holes. Our method performs well in both stability and detail reconstruction, 

demonstrating that it effectively combines the advantages of the both latents. 

To validate the generalization ability of our model, we train it on Synthetic Rooms 

and test it on ScanNet. We visualize the qualitative comparisons in Fig. 6. In the first 

and second lines, the ConvONet processes complex wall structures in a very rough 

manner, while our method is clearer and reveals more detailed information. In the third 

row, ConvONet even fails to reconstruct the staircase, while our method produces a 

more complete result, capturing even the small table and lamp details. The above results 

indicate that our method can effectively process point cloud data from the real world, 

fully demonstrating the superiority of our approach. 

 

Fig. 6. Scene-level comparisons on ScanNet with 10k input points. Our method retains more 

details of the room and walls. 
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4.4 Ablation Study 

In this section, we evaluate the effectiveness of the proposed model and compare it with 

the baseline model, with the specific results shown in Table 4. Our NGEL module sig-

nificantly improved performance. This indicates that, compared to methods that only 

use grid latents, using neighbor information to update both grid and point latents ena-

bles the learning of more advanced point clouds spatial representations.  

Moreover, although the adaptive interpolation strategy takes more time than linear 

interpolation method, it improves reconstruction accuracy, making the use of this 

method worthwhile. Compared with other KNN-based methods, although our method 

has the same worst-case time complexity, due to its adaptive strategy, the worst-case 

time complexity is not reached in most cases, and the inference time is improved com-

pared with other two methods. This can be demonstrated in Table 5.  

Table 4. Ablation study on Synthetic Rooms dataset with 3K points. We investigate different 

designs including NGEL and adaptive interpolation strategy. 

Methods IoU↑ CD↓ NC↑ FS ↑ 

ConvONet 0.818 0.46 0.906 0.943 

POCO 0.801 0.57 0.904 0.812 

ALTO 0.882 0.39 0.911 0.969 

ConvONet+NGEL 0.900 0.38 0.911 0.973 

Ours 0.905 0.34 0.913 0.978 

Table 5. Runtime comparison of different interpolation strategy. 𝑁 represents the number of 

points. While 𝐾 represents the number of nearest neighbor nodes. 

Method Strategy Parameters Time complexity Inference time(s) 

ConvONet Linear  4166657 𝒪(𝑁) 2.35 

POCO KNN  12790454 𝒪(𝐾𝑁) 42.6 

ALTO KNN 4787905 𝒪(𝐾𝑁) 5.28 

Ours Adaptive  7124983 𝒪(𝐾𝑁) 4.79 

5 Conclusion 

In this paper, a novel network NeuLF-Net has been proposed for point clouds im-

plicit surface reconstruction, which efficiently fuses point latents and grid latents. First, 

we designed the NGEL to enhances point latents through neighbor grid information, 

and re-applies the latents to grid through spatial mapping, overcoming the limitations 

of a single latents in processing point cloud features. Then, we proposed an adaptive 

interpolation strategy that analyzes the sampled points, fully exploits the advantages of 

both latents, and adaptively computes high-dimensional features, demonstrating robust-

ness. Comprehensive experiments and comparisons demonstrated its effectiveness and 

Generalizability on the ShapeNet, Synthetic Rooms and ScanNet dataset, showcasing 

its strong potential. 
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