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Abstract. Multivariate Time Series Forecasting (MTSF) holds significant appli-
cation value in finance, energy, transportation, and other domains. Existing
Transformer-based approaches typically face two critical challenges: (1) The
computational complexity of cross-channel modeling grows quadratically with
the number of channels, and (2) Noisy interference in cross-channel information
leads to inefficient dependency modeling. This paper proposes a lightweight
model named CAAT (Channel-Aggregated Attention Transformer) that achieves
efficient forecasting through a Channel-Aggregation Module (CAM) and spatio-
temporally decoupled attention mechanisms. The CAAT framework first com-
presses multivariate sequences into latent representations via MLPs, followed by
saliency-based probabilistic sampling to select high signal-to-noise ratio channel
features. Subsequently, the aggregated channel features are injected into the tem-
poral dimension, enabling joint modeling of cross-temporal and cross-channel
dependencies through temporal-axis attention mechanisms alone. Experimental
results demonstrate that CAAT achieves significant improvements in prediction
accuracy compared to baseline methods.

Keywords: MTSF, Transformer, Spatiotemporal Decoupled Attention, Channel
Aggregation Module.

1 Introduction

Multivariate Time Series Forecasting (MTSF) is a core task in data mining and fore-
casting, aiming to accurately predict future trends using multiple historical time series.
It plays an important role in applications such as financial market prediction, building
energy management systems, and traffic flow control. In recent years, Transformer
models [1] have excelled on large-scale datasets and high-channel dimensional scenar-
ios owing to their powerful long-range dependency modeling capabilities. However, a



key challenge in current research is how to achieve efficient modeling of both temporal
and cross-channel dependencies while retaining the advantages of Transformer models.

Existing Transformer methods mainly focus on temporal modeling while often over-
looking the rich inter-channel dependencies present in multivariate series. In fact, cross-
channel information is crucial for enhancing model generalization and forecasting ac-
curacy. Methods that solely focus on temporal dependencies struggle to effectively ex-
ploit these inter-channel relationships, whereas approaches that attempt to model cross-
channel interactions often suffer from data heterogeneity and low signal-to-noise ratios,
leading to reduced generalization ability. Moreover, when the number of channels is
large, models such as iTransformer [2] and PatchTST [3] exhibit computational com-
plexity that grows quadratically with the number of channels, making efficient cross-
channel modeling in practical applications challenging.

To address the aforementioned issues, we propose a novel model—CAAT. CAAT
retains the long-range modeling advantages of Transformers while achieving efficient
modeling of both cross-temporal and cross-channel dependencies through a lightweight
Channel Aggregation Module (CAM). The main contributions of this work can be sum-
marized as follows:

1.Channel Aggregation: We propose an efficient channel aggregation method that

addresses the heterogeneity and low signal-to-noise ratio issues in multivariate se-

ries, achieving high-quality extraction of cross-channel information.

2.Joint Cross-Temporal and Cross-Channel Dependency Modeling: By injecting the

aggregated cross-channel information into the temporal dimension, the model effec-

tively leverages the attention mechanism’s strength in long-range dependency mod-
eling, thereby resolving the problem of rapidly increasing computational complexity
with the number of channels found in traditional methods.

3. Experiments conducted on seven widely-used real-world multivariate time series

datasets demonstrate that CAAT achieves significant improvements in both forecast-

ing accuracy and model generalization, validating its effectiveness and superiority
in multivariate time series forecasting tasks.

2 Related Work

In recent years, numerous innovative studies have emerged in the field of time series
forecasting, primarily focusing on optimizing model architectures and innovating data
representation methods. These studies have not only enriched time series modeling ap-
proaches but also significantly improved forecasting performance in practical applica-
tions.

Transformer-based models have demonstrated strong performance in multivariate
time series forecasting. For example, iTransformer [2] uses an inverted architecture by
treating each variable’s history as an independent token to capture inter-variable corre-
lations via self-attention. PatchTST [3] divides a time series into patches—similar to
the Vision Transformer approach—to reduce computational costs and improve gener-
alization through self-supervised pretraining. Meanwhile, Crossformer [4] employs a
dual-branch attention mechanism for modeling temporal dependencies and variable
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correlations, though it suffers from high computational complexity, and FEDformer [5]
combines frequency domain decomposition with a Transformer design to better capture
cycles and trends.

On the lightweight side, models like DLinear [6] decompose time series into trend
and residuals using simple linear layers, showing that simpler models can excel in long-
term forecasting. TiDE [7] enhances forecasting accuracy with MLPs and a dynamic
feature interaction module for capturing inter-variable dependencies. SCINet [8] ex-
tracts multi-scale patterns via multi-resolution downsampling, and TSMixer [9] com-
bines MLPs with temporal mixing operations. Autoformer [10] improves long sequence
forecasting using autocorrelation mechanisms with deep decomposition strategies,
while LightTS [11] is recognized for its efficiency in resource-constrained scenarios.

Additionally, the Temporal Fusion Transformer [12] offers a compelling balance of
accuracy and interpretability. TimesNet [13] introduces a multi-periodicity-aware ar-
chitecture that transforms time series into 2D space to capture intra-period and inter-
period variations effectively. Stationary [14] addresses non-stationarity in time series
by learning stationary representations, improving generalization across different do-
mains.

However, existing Transformer-based methods mainly focus on modeling depend-
encies along the temporal dimension (such as long-term dependencies and periodic pat-
terns). Despite employing various architectural optimizations to enhance computational
efficiency, they do not explicitly address the modeling of inter-channel dependencies.
In multivariate time series, the interactions between channels provide rich information
gains that can further improve forecasting performance when fully exploited.

3 Method

3.1 Model architecture

Our model is based on the Transformer [1] architecture and introduces two key inno-
vations: Channel Aggregation Module (CAM) - featuring MLP-based feature compres-
sion and saliency-aware channel selection; Cross-dimensional information injection
mechanism - embedding fused channel features into temporal dimension. This design
enables efficient joint modeling of cross-time and cross-channel dependencies in mul-
tivariate time series, with the innovative architecture comprising the following key el-
ements.

The model first uses a MLP to compress cross-channel sequences into a low - dimen-
sional latent space. Secondly, based on the saliency probability of the channel aggrega-
tion module, key channel information is dynamically sampled, and cross - channel fea-
tures are adaptively weighted and fused through learnable weight parameters. Finally,
the fused features with a high signal - to - noise ratio are injected into the time dimen-
sion. By simply applying a lightweight attention mechanism on the time axis, long -
term joint modeling of cross-temporal and cross-channel dependencies can be modeled
synchronously. Specifically, given an input sequenceX € R®<L(C is the variable dimen-
sion,L is the length of the backtracking window), it is reconstructed into a patch se-
quence RON*P(N is the number of blocks, D is the intra-block dimension).
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Fig. 1. The CAAT architecture demonstrates the tensor transformation process.

The embedded sequences from all channels are fed into a Transformer encoder with
shared parameters, where the multi-head self-attention mechanism captures local tem-
poral patterns, significantly reducing computational complexity. The hidden states out-
put by the encoder are then passed through independent linear decoding layers to pre-
dict the future T steps for each channel, and the predictions are finally aggregated to
form the output Y € R®¥T. This approach, by compressing the sequence length through
patching, processing channels independently, and leveraging a shared-parameter en-
coder, achieves efficient computation while preserving local temporal features, making
it well-suited for high-dimensional long sequence forecasting scenarios.

Patch Embedding.Given an input feature x,,, € R®*N*P and an optional labeled fea-
ture X, € RENXPwhere:C is the variable dimension,N is the number of chunks,
and D is the dimension of each chunk. First, if x,,. IS non-empty, it is spliced with x.,.
along the last dimension:

e, = concat (Xenc, Xmark, dim = —1) (€))
where the spliced tensore;, € R¢*N*2D has double the intra-block dimension. The
spliced feature tensor is then rearranged to accommodate subsequent processing layers.

Change the shape of the tensor from R&N*2D g R(CxN)*2D -

e;, = rearrange(e;,, ‘'cnd = (cn)d") 2
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Next, the latent projection layer W,,; is applied, which maps the input tensor to the
latent space via a linear transformation, generating the embedding representation e, €
R(CXN)XDlotent :

€Cout = Wproj (ein) (3)

Ultimately, the output contains three elements:C is the variable dimension, Nis the
number of chunks, and e, is the embedding representation in potential space.

Self Attention. In order to further enhance the association modeling capability between
features, this method introduces a self-attention mechanism in the feature extraction
module. Specifically, we adopt a multi-head self-attention structure similar to that in
Transformer for weighted aggregation of the extracted image or voxel features. For the
input feature sequence Wq, Wy, Wy, € R4*4" the Query, Key and Value matrices are
first obtained by linear transformation:

Q = XW,, K = XW,, V = XW, @)

whereX € R¥*4 is the learnable parameter matrix. The attentional output is com-
puted by scaling the dot product:

T
Attention(Q, K, V) = softmax (%) \' (5)

The final output features are weighted aggregated attention results enhanced by re-
sidual connectivity and feed-forward networks. In this work, the Self Attention module
is integrated after CAAT to enhance the information interaction between features of
different spatial locations or different dimensions, thus improving the overall represen-
tation capability and downstream task performance.

3.2 Channel Aggregation Module

The Softmax function in the Transformer architecture is able to transform the raw
scores into a probability distribution such that each output value is between 0 and 1 and
all output values sum to 1. Based on this fact, the sampling module of CAAT relies on
Softmax for the modeling of the probability of significance.
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Fig. 2. Module architecture diagram.

For the specific implementation process, first for each tensor x € R ©N*P of the input
feedforward neural network (C is the total number of channels of the multivariate time
series, N is the total number of patches per channel, and D is the number of feature
dimensions contained in each patch, which were extracted in the previous hidden lay-
ers). The deep features are then extracted at the MLP of the first layer in each FFN
architecture and downsampled to obtain the core feature F € R®™< (d is the feature
dimension obtained after downsampling, d<=D). Then the core features F are softmax
normalized to obtain the significance weights:

Pomi = =2 lend) i~ 12, .4 (6)

Z?:leXP (Fc,n,j) o

where P, € R %is a probability distribution denoting the significance of each feature
dimension of channel ¢ at time step n. At this point we wish to sample the significance
probability of all channel information in this feature space to reduce its features from
d-dimension to 1-dimension, yielding Y € R ©™: a random selection of one of the most
significant channels from the d-dimensional channels:

i* ~ Multinomial(P,,) @

Where i* is the index of the most important feature drawn from the d-dimensional
features, and the heaviest feature retained after polynomial sampling (randomly select-
ing an element of the sample according to a given probability distribution) is Y¢n=
Feni It is clear that the introduction of random generator counts helps to improve the
model's generalization ability during the training phase. At this point only one most
important feature is retained for each of the N patches under each time step.

Yc,n = (iizlpc,n,i : Fc,n,i (8)
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This space contains the features that have been extracted for all channels during this
round of training. We then dynamically selected one of the most representative chan-
nels from the original D-dimensional features, thus realizing the downscaling effect of
significance probability sampling. This channel was then copied into C number of cop-
ies and stacked channel-by-channel with the original channel information to obtain R
CxNx(P+d)_ Finally, after a second MLP downsampling, channel information of the same
dimension R ©N® as before the input module is obtained. This method of combining
the feature information enhanced by learning with the original input allows the model
to learn both global and local feature information during the training process, which
avoids the limitation of single reliance on the original features, and also avoids the
oversimplification problem that may be caused by relying on the post-mining features
alone, and effectively enhances the model’s representation capability and robustness.

3.3  Cross-dimensional information fusion mechanisms

While the Channel Aggregation Module (CAM) effectively extracts high-quality inter-
channel features, integrating this information into the temporal modeling pipeline re-
mains a key design challenge. To address this, CAAT introduces a dedicated Temporal-
Channel Fusion Layer, which merges the strengths of Transformer-based temporal at-
tention with the representational advantages of CAM, achieving efficient and joint
modeling across both dimensions.

Specifically, the fusion process starts with a conventional Transformer attention
layer operating along the temporal axis of the input tensor X € R ©N® where C is the
number of channels, N is the number of time patches, and D is the embedding dimen-
sion. The output of this attention layer undergoes residual connection and layer normal-
ization to yield an intermediate representation X', capturing temporal dependencies.

Next, this representation is rearranged into a format suitable for channel-wise pro-
cessing and passed into the Channel Aggregation Module. The CAM produces a com-
pact and informative cross-channel feature representation that emphasizes salient pat-
terns across variables. These channel-wise features are then injected back into the tem-
poral sequence through concatenation and projection, allowing their influence to prop-
agate during subsequent temporal modeling.

A second residual connection and normalization step ensures training stability and
preserves both global and local feature interactions. This fusion mechanism allows the
model to simultaneously capture long-range temporal patterns and latent inter-channel
structures, without incurring additional computational complexity as the number of
channels increases.

This design seamlessly bridges the temporal modeling backbone and the channel ag-
gregation branch, forming a unified architecture that enables efficient and expressive
multivariate time series forecasting.



3.4 Loss Function

We choose to use the MSE as the underlying loss function, and for the i th time series,
- . . s (D) -
calcula;'q)a the L2 paradigm squares of its prediction segment X, ,., . and its true seg-
L .
mentx; iy 47

O]

@
XL+1:L+T

. 2
Loss® = - xL+1:L+T||2 9)

The losses of the M time series were averaged to obtain the overall target loss:
L=E, (%ZﬁlLoss(i)) (10)

where E,. denotes the expectation of the data distribution (or batch samples), which
is often approximated by batch averaging in practical training.

4 Experiments

4.1  Basic settings

Datasets. In this study, seven representative time series datasets are used for systematic
evaluation, including three classical domain datasets (covering practical application
scenarios such as meteorology, traffic flow, and power load) and four ETT benchmark
datasets (ETTh1, ETTh2, ETTm1, ETTm2) [10]. The classical datasets, with larger data
size and richer feature dimensions, can effectively verify the generalization ability of
the model in complex real-world scenarios; while the ETT datasets, as a standard test
set in the field of time series forecasting, facilitate direct performance comparison with
existing studies.

Model Variants. We select a series of Transformer-based models as baselines, includ-
ing iTransformer [2], PatchTST [3], Crossformer [4], TSMixer [9]and CAAT strictly
follows the experimental protocols outlined in the original papers to ensure fair and
consistent comparisons.

Specifically, the input sequence length T €{96,192,336,720} is uniformly applied
across all models to comprehensively evaluate performance under short-, medium-, and
long-term forecasting scenarios. During training, we adopt a fixed configuration: a
batch size of 128 and a maximum of 100 training epochs. All models share the same
network architecture hyperparameters—hidden dimension of 512, 8 attention heads, 2
encoder layers, and 1 decoder layer. For performance evaluation, we employ MSE and
MAE as the primary quantitative metrics.

4.2 Evaluation of Predictive Capability

After end-to-end supervised training, CAAT is evaluated against other baseline models
on test datasets. All data are standardized, and RevIN [15] is employed to eliminate
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scale discrepancies. A dynamic patch adjustment strategy is adopted to accommodate
the characteristics of different datasets (For example, a patch length of 8 for the Elec-
tricity dataset and 12 for the ETT dataset). The evaluation on the validation set is con-
ducted using MSE and MAE as performance metrics.

CAAT achieves the lowest prediction errors across all evaluated datasets, signifi-
cantly outperforming advanced models such as PatchTST and Transformer, and
demonstrating superior generalization capabilities. On datasets like ETT, which exhibit

Table 1. Comparison results between CAAT and other baseline models.

Models CAAT iTransformer PatchTST Crossformer TSMixer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.376 0.398 0.386 0.405 0.394 0.406 0.423 0.448 0.401 0.412
192 0.425 0.428 0.441 0.436 0.440 0.435 0.471 0.474 0.452 0.442
336 0.467 0.447 0.487 0.458 0.491 0.462 0.570 0.546 0.492 0.463
720 0.449 0.457 0.503 0.491 0.487 0.479 0.653 0.621 0.507 0.490
96 0.289 0.341 0.297 0.349 0.288 0.340 0.745 0.584 0.319 0.361
192 0.370 0.392 0.380 0.400 0.376 0.395 0.877 0.656 0.402 0.410
336 0.408 0.424 0.428 0.432 0.440 0.451 1.043 0.731 0.444 0.446
720 0.420 0.441 0.427 0.445 0.436 0.453 1.104 0.763 0.441 0.450
96 0.322 0.361 0.334 0.368 0.329 0.365 0.404 0.426 0.323 0.363
192 0.367 0.384 0.377 0.391 0.380 0.394 0.450 0.451 0.376 0.392
336 0.399 0.408 0.426 0.420 0.400 0.410 0.532 0.515 0.407 0.413
720 0.459 0.442 0.491 0.459 0.475 0.453 0.666 0.589 0.485 0.459
96 0.176 0.261 0.180 0.264 0.184 0.264 0.287 0.366 0.182 0.266
192 0.242 0.303 0.250 0.309 0.246 0.306 0.414 0.492 0.249 0.309
336 0.306 0.345 0.311 0.348 0.308 0.346 0.597 0.542 0.309 0.347
720 0.405 0.402 0.412 0.407 0.409 0.402 1.730 1.042 0.416 0.408
96 0.166 0.208 0.174 0.214 0.176 0.217 0.158 0.230 0.166 0.210
192 0.215 0.248 0.221 0.254 0.221 0.256 0.206 0.277 0.215 0.256
336 0.276 0.287 0.278 0.296 0.275 0.296 0.272 0.335 0.287 0.300
720 0.351 0.346 0.358 0.347 0.352 0.346 0.398 0.418 0.355 0.348
96 0.143 0.236 0.148 0.240 0.164 0.251 0.219 0.314 0.157 0.260
192 0.160 0.252 0.162 0.253 0.173 0.262 0.231 0.322 0.173 0.274
336 0.174 0.270 0.178 0.269 0.190 0.279 0.246 0.337 0.192 0.295
720 0.227 0.311 0.225 0.317 0.230 0.313 0.280 0.363 0.223 0.318
96 0.388 0.260 0.395 0.268 0.427 0.272 0.522 0.290 0.493 0.336
192 0.407 0.266 0.417 0.276 0.454 0.289 0.530 0.293 0.497 0.351
336 0.424 0.273 0.433 0.283 0.450 0.282 0.558 0.305 0.528 0.361
720 0.452 0.290 0.467 0.302 0.484 0.301 0.589 0.328 0.569 0.380

ETThl

ETTh2

ETTm1

ETTm2

Weather

Electricity

Traffic




strong periodicity and structural regularity, CAAT effectively models long-term de-
pendencies and periodic patterns, yielding highly accurate predictions and showcasing
its strong ability to extract standard temporal features.

More notably, on complex real-world datasets such as Electricity, characterized by
high volatility and pronounced non-stationarity, CAAT maintains consistently stable
performance.These results strongly indicate that CAAT is not only well-suited for
structured sequence prediction tasks but also highly robust and adaptive in handling
challenging scenarios with high variability and dynamic patterns.

4.3  Ablation analysis

Module Ablation. To assess the impact of the channel sampling module, we conducted
a two-group ablation study: the control group used the full CAAT model, while the
experimental group employed a version without channel sampling. In this version, in-
put features undergo only nonlinear transformation via the FFN, without cross-channel
feature selection.

Results on the ETTh1 dataset show that removing the sampling module leads to a
12.7% increase in MSE and a 9.3% increase in MAE, indicating the module’s critical
role in improving prediction accuracy through effective channel-wise feature filtering.

Fig. 3. Attention map of the CAAT . Fig. 4. Attention map of the CAAT after ablation.

Two figures compare attention maps of the full and ablated CAAT. The ablated model
shows uniform, narrow attention, lacking global integration. The full model preserves
periodicity and disperses attention more broadly, indicating enhanced global awareness
via channel sampling.

This module enhances performance through the following approaches: (1) reinforc-
ing key temporal patterns while suppressing noise, and (2) selecting high signal-to-
noise ratio channels. It delivers feature representation gains of up to 11%, demonstrat-
ing particularly outstanding performance in modeling long-term dependencies of high-
frequency signals.

Sampling Strategies Exploration.To investigate different channel sampling strate-
gies, we designed an ablation study with three setups: uniform sampling (equal selec-
tion probability for all channels), random sampling (averaged features with random
channel selection), and significance probability sampling (Softmax-based dynamic
weighting).Unlike the main experiments that focus on overall performance, this study
compares MAE and MSE across sampling methods. We evaluate them on ETTh1 and
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ETTh2 datasets using four lookback lengths: T € {96, 192, 336, 720}, to assess their
effectiveness under different temporal resolutions.

Comparative analysis shows that RP-Sampling suffers from performance fluctuations
due to inconsistent channel selection, while M-Sampling is more stable but lacks sen-
sitivity to key features. In contrast, the Significance Probability Sampling used in the
main model dynamically weights important features via Softmax. On the ETTh2 dataset
(horizon 336), it achieves an MSE of 0.408, outperforming M-Sampling (0.422) and
RP-Sampling (0.417), highlighting its ability to adaptively enhance salient features.

Table 2. The three sampling methods.

Dataset M-Sampling RP-Sampling SP-Sampling
Metric MSE MAE MSE MAE MSE MAE
96 0.377 0.398 0.389 0.400 0.376 0.398
192 0.428 0.431 0.426 0.429 0.425 0.428
ETThl
336 0.467 0.448 0.465 0.449 0.461 0.446
720 0.457 0.464 0.461 0.462 0.449 0.457
96 0.291 0.344 0.287 0.342 0.289 0.341
192 0.374 0.396 0.375 0.397 0.370 0.392
ETTh2
336 0.422 0.431 0.418 0.429 0.408 0.424
720 0.421 0.445 0.423 0.447 0.420 0.441

5 Conclusion

The model proposed in this paper fully exploits the Transformer’s capability in model-
ing long-range dependencies. It introduces an innovative framework that first maps
multivariate time series into a latent space via a multilayer perceptron, then applies a
significance probability-based sampling strategy to extract informative cross-channel
features. These selected features are subsequently injected into the temporal dimension
for attention-based modeling.

This design effectively mitigates the challenges posed by complex inter-channel de-
pendencies and low signal-to-noise ratios in traditional approaches, while also avoiding
the steep computational cost associated with increasing channel dimensionality. Exten-
sive experiments demonstrate that the proposed method consistently outperforms
strong baselines in both forecasting accuracy and generalization ability. Overall, this



work offers a novel and practical solution for efficient and effective multivariate time
series forecasting.
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