

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

MSFuzz: Directed Greybox Fuzzing Using Multi-Target

Sensitivity-Based Energy Scheduling

Chengwei Qin and Zhao Ma()

School of Computer Science, China University of Geosciences, Wuhan 430078, China
chwqin@cug.edu.cn

Abstract. Directed Greybox Fuzzing (DGF) effectively targets specific program

locations for bug discovery, but existing tools face challenges in multi-target di-

rected fuzzing due to static stage division and coarse energy scheduling. Key

challenges include global optimization biases that overlook lower-priority tar-

gets, inadequate prioritization of seeds that reach multiple targets, and inflexible

exploration-exploitation stage allocation. This paper presents adaptive strategies

to tackle these issues: a multi-target sensitivity-based energy scheduling ap-

proach that dynamically prioritizes seeds based on their target sensitivity; and a

state-aware stage coordination strategy that balances exploration and exploitation

using real-time fuzzing metrics to enable flexible stage transitions. We imple-

mented these techniques in the tool MSFuzz, which optimizes resource allocation

to avoid single-target bias and prevent inefficient stage durations. Evaluations on

Magma, FuzzBench, and real-world programs show that MSFuzz outperforms

state-of-the-art fuzzers like AFLGo, achieving 6.57× faster crash reproduction on

Magma, 1.32× higher target-guided efficiency on FuzzBench. MSFuzz also dis-

covered 27 unique crashes (13 CVEs) in real-world programs.

Keywords: Directed Greybox Fuzzing, Bug Discovery, Energy Scheduling.

1 Introduction

Fuzzing is a technique of great significance in the domains of software security and

quality assurance. It aims to evaluate a target program’s robustness against unexpected

or malformed inputs by automatically generating random or semi-random test cases.

Coverage-guided fuzzing (CGF) marked a major advancement in the field with the in-

troduction of AFL[1], which leverages code coverage information to guide input muta-

tions. However, since CGF primarily optimizes for global coverage, it often fails to

effectively steer the fuzzing process toward high-risk areas in the code. In light of the

limitations of CGF, directed greybox fuzzing (DGF) has gained increasing attention,

especially following the release of AFLGo[2]. Unlike CGF, which aims for compre-

hensive code coverage, DGF introduces the concept of predefined targets and focuses

testing resources on paths that are more likely to reach specific areas of interest, such

as patched regions, critical functions, or potentially vulnerable code segments.

mailto:728312569@qq.com

DGF tools have been widely adopted and are designed to support a variety of tasks,

including deployment in CI/CD pipelines[4,5], reproducing crashes [6,6], and discov-

ering vulnerabilities in binaries[8].

However, it is worth noting that directed fuzzers often perform poorly in multi-target

directed fuzzing. One of the primary reasons is that existing DGF tools generally strug-

gle with balancing global and local optimization during multi-target energy scheduling,

and they exhibit low sensitivity to seeds that are capable of reaching multiple targets.

The energy scheduling strategy is designed to control the mutation frequency of

seeds in fuzzing. In DGF, the core objective of energy scheduling is to allocate compu-

tational resources effectively, thereby improving the efficiency of reaching target re-

gions and accelerating vulnerability triggering.

In multi-target directed fuzzing, the fuzzer should allocate more computational en-

ergy to seeds that exhibit higher efficiency in reaching multiple targets. By doing so,

these seeds are more likely to trigger a greater number of unique execution paths and

uncover more vulnerabilities after mutation.

DGF tools such as AFLGo, Hawkeye[6], and Windranger[7] employ static energy

scheduling strategies when dealing with multiple targets. These approaches primarily

rely on single-target guidance, and they often lack differentiated resource allocation

mechanisms when facing large-scale target sets. As a result, the scheduling efficiency

is generally suboptimal, leading to seed selection based on globally or locally subopti-

mal strategies.

For instance, AFLGo computes the cumulative basic block distance from each seed

to all target locations. While this method helps improve overall convergence speed, it

tends to suffer from a "winner-takes-all" problem in multi-target directed fuzzing—

where a small number of high-priority targets monopolize the testing resources, leaving

secondary targets systematically underexplored.

We summarize the following key challenges:

Problem 1: Global optimal strategies hinder multi-target directed greybox

fuzzing. For example, during its directed fuzzing process, AFLGo gradually reduces

the energy assigned to seeds with large distance values, resulting in an increasingly

monotonous seed queue. This energy allocation becomes biased toward globally opti-

mal seeds, causing seed execution to converge on a small number of high-priority target

paths and hindering exploration of lower-priority paths.

Problem 2: Lack of fine-grained incentives for seeds that can reach multiple

targets. Current energy scheduling strategies exhibit limited sensitivity to seeds that

can reach multiple targets. Most existing strategies depend on single-target guidance

functions, like reducing the distance to a particular target, which leads to inadequate

identification and prioritization of seeds that can reach multiple targets. These methods

do not dynamically evaluate a seed's potential impact on various targets, resulting in a

failure to effectively encourage these seeds.

Problem 3: Imbalance in the coordination of exploration and exploitation. The

fuzzing process in DGF can be categorized into two stages based on energy allocation

strategies: the exploration stage, where seeds are altered to enhance code coverage, and

the exploitation stage, which utilizes gathered knowledge to direct seeds toward the

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

target and ultimately activate vulnerabilities. Currently, the time allocated for the ex-

ploration and exploitation stages in DGF is fixed. A prolonged exploration period might

hinder the execution of new mutation seeds, while a quick exploration stage could lead

to an insufficient corpus for the following exploitation stage.

To address these challenges, we propose two novel strategies: MSES (Multi-target

Sensitivity-based Energy Scheduling) and SSCS (State-aware Stage Coordination

Strategy). MSES is an adaptive energy allocation strategy specifically designed to

tackle Problems 1 and 2. It dynamically adjusts energy distribution to enhance support

for multi-target fuzzing. Unlike traditional strategies, MSES effectively identifies and

prioritizes seeds that have the potential to reach multiple targets, allocating more energy

to those with higher efficiency and reachability. This approach not only overcomes the

limitations of global optimization heuristics but also enhances the effectiveness and

scope of vulnerability discovery in multi-target environments. By accurately modeling

the target sensitivity of the seed queue and flexibly tuning energy scheduling, MSES

offers a more efficient and precise energy management scheme for DGF tools. SSCS,

on the other hand, is a stage coordination strategy based on fuzzing state awareness,

designed to address Problem 3. It introduces a state-aware switching mechanism that

dynamically coordinates the exploration and exploitation stages according to the cur-

rent fuzzing state. By adaptively adjusting stage transitions, SSCS enhances the overall

fuzzing process.

The main contributions of this paper are as follows:

• We design an advanced energy allocation method that enhances DGF efficiency by

prioritizing seeds with the potential to reach multiple targets.

• We develop a state-aware, two-stage coordination strategy that adaptively balances

exploration and exploitation based on runtime metrics.

• We implement these techniques in MSFuzz and show, through extensive experi-

ments on Magma, FuzzBench, and real-world programs, that MSFuzz significantly

outperforms existing fuzzers in crash reproduction, target reaching, and vulnerability

discovery.

The rest of this paper is structured as follows. The DGF-related background and our

research motivations are presented in Section 2.The design details of MSFuzz are de-

scribed in Section 3. The experimental evaluation of MSFuzz is provided in Section 4.

Finally, We conclude the paper in Section 5.

2 Background

In this section, we first introduce the fundamental theories and techniques of DGF. We

then analyze the limitations of existing energy scheduling strategies through a case

study, and further elaborate on the key research problems addressed in this work.

2.1 Directed Greybox Fuzzing

DGF is an advanced fuzzing technique designed for goal-oriented testing. Its core idea

is to introduce target guidance into the fuzzing process in order to prioritize the explo-

ration of specific code regions or trigger particular behaviors. Unlike traditional Cov-

erage-Guided Fuzzing (CGF), which aims to maximize global code coverage, DGF fo-

cuses on specific sensitive areas of a program, such as patch code[9], vulnerable func-

tions[8,11], or exception handling logic[10]. As a result, DGF demonstrates higher pre-

cision and efficiency in tasks such as vulnerability reproduction, patch validation, and

security assessment.

CGF employs a global exploration strategy that randomly mutates inputs to trigger

as many program paths as possible. While this approach can comprehensively cover

the execution flow of a program, its lack of guidance often results in low efficiency,

spending significant time exploring areas unrelated to potential vulnerabilities.

In contrast, DGF guides test inputs toward predefined target regions, reducing ex-

ploration of non-critical paths and thus improving the efficiency of discovering high-

risk vulnerability discovery. The selection of target regions can be based on various

sources of information, including manually annotated code by security analysts, auto-

matically identified sensitive functions or API calls through static analysis, runtime

trace analysis to identify high-risk paths[12], vulnerability knowledge bases, or histor-

ical vulnerability data used to infer potentially dangerous code segments[13].To effec-

tively approach these targets, DGF often incorporates lightweight static analysis tech-

niques to construct call graphs and control flow graphs, which support core target-dis-

tance calculations.

DGF leverages a variety of optimization techniques to improve vulnerability discov-

ery efficiency, including input optimization, distance metrics refinement, seed sched-

uling, energy scheduling strategies, and mutation optimization. These techniques work

in synergy to enhance input effectiveness, improve target reachability, and optimize the

use of testing resources. Among them, energy scheduling strategies play a crucial role

by dynamically adjusting the allocation of computational resources based on feedback

from fuzzing. This allows high-value test cases to receive more execution opportunities,

improving overall fuzzing efficiency. For example, LOLLY[14] proposed a sequence-

coverage-guided energy scheduling method that allocates energy based on a seed’s abil-

ity to cover unique execution sequences. SLIME[15] introduced a program-feature-

aware scheduling method that organizes seeds into multiple attribute-sensitive queues

and applies a variance-aware Upper Confidence Bound (UCB-V) algorithm for seed

selection.

DGF typically uses a two-stage scheduling strategy to balance path discovery and

target-directed execution in energy scheduling. This strategy divides the fuzzing pro-

cess into two stages: exploration and exploitation. In the exploration stage, the fuzzer

prioritizes seeds that trigger new paths, aiming to accumulate comprehensive coverage

information. This enriched coverage provides a solid foundation for subsequent exploi-

tation. Once in the exploitation stage, the fuzzer allocates more energy to seeds that are

already close to the target regions, enabling faster convergence towards the conditions

required to trigger vulnerabilities.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

2.2 Motivation

Energy scheduling strategies are designed to control the frequency of seed muta-tions

during fuzzing. The primary goal of energy scheduling is to efficiently allocate compu-

tational resources in DGF, allowing for faster convergence to target regions and accel-

erating the triggering of vulnerabilities.

In multi-target directed fuzzing, the fuzzer should allocate more energy to seed files

that are more efficient and capable of reaching multiple targets. These seeds, once mu-

tated, are more likely to explore different execution paths and uncover additional vul-

nerabilities.

However, most existing DGF tools[2,6,10] employ static, globally optimal energy

scheduling strategies when dealing with multiple targets. These approaches typically

rely on single-target optimization and lack sensitivity to the differences between mul-

tiple targets. As a result, such strategies often lead to low scheduling efficiency when

dealing with large sets of objectives.

AFLGo, for example, performs target-oriented optimization by computing the ag-

gregated basic block distance from each seed to all targets. In multi-target directed

fuzzing, this strategy tends to lead to over-concentration of resources, where a few high-

priority targets tend to dominate fuzzing r over time, while others are systematically

neglected.

Limitations of energy scheduling in multi-target reachability. Fig. 1 shows the

sample code used for the case analysis in this section. Assume that there are three initial

seeds during the fuzzing task: Seed 𝑠1: (𝑥 = 1, 𝑦 = 0, 𝑧 = 6, 𝑣 = −1) , Seed 𝑠2: (𝑥 =
2, 𝑦 = 3, 𝑧 = 1, 𝑣 = 1), Seed 𝑠3: (𝑥 = 0, 𝑦 = 7, 𝑧 = 2, 𝑣 = 1).

Fig. 1. The sample code and its control flow graph (CFG) for the case analysis in multi-target

directed greybox fuzzing.

The control flow graph (CFG) corresponding to this code snippet is illustrated in

Fig. 1, where the blue nodes d, f, and 𝑖 represent three target locations in the code. The

execution path for seed 𝑠1 is 𝑎 → 𝑐 → 𝑑 → 𝑒 → 𝑓 → ℎ → 𝑗, seed 𝑠1 is 𝑎 → 𝑐 → 𝑒 →
ℎ → 𝑖, and for seed 𝑠3 it is 𝑎 → b → ℎ → 𝑖.

We compute the harmonic mean distance D from each node along these paths to the

three targets, and annotate these values in Fig. 1. The computed average target distances

for the three seeds are: 𝐷𝑠1
=

18

7
+

18

11
+2.4+

4

3
+2+1

6
≈ 1.82, 𝐷𝑠2

=
18

7
+

18

11
+

4

3
+1

4
≈ 1.64, 𝐷𝑠3

=
18

7
+2+1

3
≈ 1.86.

AFLGo consistently selects the seed with the smallest global distance, in this case,

the seed 𝑠2. However, such a selection lacks target awareness, as it overlooks two target

locations on the right-hand branch of the CFG. Among the other two seeds, seed 𝑠1 is

capable of reaching two targets, while seed 𝑠3 reaches target 𝑖 through a shorter execu-

tion path. These seeds should be considered valuable in multi-target directed fuzzing.

The shortest path seed is frequently prioritized over other seeds with significant tar-

get-reaching potential because of AFLGo's emphasis on global optimization. This ex-

ample shows how uneven energy scheduling in multi-target directed fuzzing circum-

stances affects current techniques.

Furthermore, it can be observed that seed 𝑠1 touches two target locations (nodes d

and f) along its execution path, making it a high-quality seed in a multi-target context.

It has the potential to reduce the number of mutations required to reach multiple targets.

However, under AFLGo’s energy scheduling strategy, seed 𝑠2 is still given higher pri-

ority than seed 𝑠1, without adequately considering seed 𝑠1’s multi-target reachability.

This highlights a key limitation in current approaches: the inability to effectively

identify and reward multi-target-reachable seeds, reflecting a lack of sensitivity to

multi-target testing requirements.

Inappropriate division between exploration and exploitation. The DGF is typi-

cally divided into two stages: exploration and exploitation. In the exploration stage,

MSFuzz mutates and executes seed inputs to increase code coverage, thereby collecting

more runtime information and generating new inputs that are more likely to reach the

target locations. In the exploitation stage, MSFuzz uses the accumulated information to

guide seeds closer to the targets, with the ultimate goal of triggering vulnerabilities.

However, most existing DGF approaches adopt a predefined time allocation strat-

egy, statically dividing the total fuzzing time between exploration and exploitation. For

example, AFLGo allocates 20 hours to exploration and 4 hours to exploitation. Such

static scheduling can lead to two key problems:

Premature exploitation reduces target reaching: If the exploration stage is too short,

MSFuzz may enter the exploitation stage without sufficient coverage information, mak-

ing it difficult to generate high-quality, target-oriented seeds.

Excessive exploration wastes resources: If the exploration stage is too long, valuable

resources may be spent on non-critical paths, delaying the transition to exploitation and

weakening the overall focus of the fuzzing process.

3 Design of MSFuzz

In this section, we first present the overall architecture of MSFuzz, followed by a de-

tailed description of its two core components.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

3.1 Overview

By combining the MSES and SSCS components, MSFuzz enables energy scheduling

that is sensitive to multiple targets. The framework of MSFuzz is shown in Fig. 2, and

the fuzzing process consists of three stages: exploration, update, and exploitation.

Fig. 2. The framework of MSFuzz.

Exploration Stage: In this stage, MSFuzz begins in the exploration stage during the

initial stage of fuzzing. The primary goal in this stage is to generate new seeds and

identify potential execution paths. Seeds from the original queue undergo mutation to

produce new test cases. If a mutated input triggers a new path, it is saved as a new seed,

added back to the queue, and its associated attributes are recorded. During exploration,

the SSCS strategy monitors the proportion of seeds that fail to reach any target. When

this metric drops below a threshold calculated by SSCS, MSFuzz transitions into the

update stage.

Update Stage: Before entering the exploitation stage, MSFuzz re-evaluates each

seed by updating its attribute values and rebuilding the attribute queues. During this

process, MSFuzz iterates over all seeds, ranks them based on their performance in each

attribute, and populates the corresponding attribute queues. If a queue has not reached

its maximum size, or if the current seed outperforms the lowest ranked seed in the

queue, it is added to the queue. If adding a new seed causes the queue to exceed the

limit, the lowest performing seed is removed. This process reconstructs the queues

based on the latest attribute values and provides the basis for energy scheduling.

Exploitation Stage: Once all attribute queues have been updated, MSFuzz enters

the exploitation stage to perform energy scheduling. MSFuzz estimates the potential of

each attribute queue to discover new targets or trigger crashes. Based on this estimation,

it prioritizes queues with the highest potential and allocates energy to mutate the seeds

within. When the generation rate of target-reaching seeds falls below the stage-switch-

ing threshold defined by SSCS, MSFuzz re-enters the exploration stage and begins a

new iteration.

3.2 Multi-target Sensitivity-based Energy Scheduling

To enable multi-target sensitivity optimization, MSFuzz extends the SLIME[15] frame-

work by introducing the MSES. Unlike the coverage-guided design of SLIME, MSES

incorporates target-directed principles into fuzzing by defining multiple target-sensitive

attributes. It constructs a set of attribute-specific seed queues and performs seed selec-

tion and prioritization based on these attributes. To further optimize energy distribution,

MSES employs a variance-aware Upper Confidence Bound (UCB-V) algorithm in-

spired by the multi-armed bandit model to select the seed from the queue with the high-

est estimated reward.

The properties of MSES: To ensure seed sensitivity to multiple targets during the

fuzzing process, MSFuzz performs fine-grained energy allocation that adapts to both

global and local prioritization strategies. Based on existing seed evaluation metrics in

fuzzers[2,6,8], MSES introduces a set of target-guided seed queues designed for multi-

target scenarios. The following target-sensitive attributes are defined:

Definition 1. Global Average Distance (GAD). The GAD value of a seed 𝑠 is com-

puted using the seed distance formula defined in AFLGo. Seeds are sorted in descend-

ing order of GAD(𝑠), and seeds with shorter GAD values are given higher scheduling

priority.

Definition 2. Target Reach Count (TRC). The TRC value of a seed 𝑠 represents the

number of unique targets that can be triggered by the seed’s mutations, defined as:

TRC(𝑠) = |{𝜏 ∈ 𝒯|∃𝑡 ∈ 𝑇(𝑠), Trigger(𝑡, 𝜏)}| (1)

where 𝑇(𝑠) is the set of test cases mutated from 𝑠, and 𝒯 is the target set. A higher

TRC value indicates greater potential for multi-target coverage.

Definition 3. High-Risk Target Count (HRTC). The HRTC value quantifies the

number of high-risk basic blocks near targets that are covered by a seed’s execution

path. Using control-flow graph analysis, we extract basic blocks 𝑏 whose static distance

to a target 𝜏 satisfies 𝑑static(𝑏, 𝜏) ≤ 𝜃𝑑 . Seeds are sorted in descending order of

HRTC(𝑠), prioritizing those that trigger more high-risk blocks:

 HRTC(𝑠) = ∑ |{𝑏 ∈ 𝐵risk
𝜏 | 𝑏 ∈ Path(𝑠)}|𝜏∈𝒯 (2)

Where 𝐵risk
𝜏 = {𝑏 | 𝑑static(𝑏, 𝜏) ≤ 𝜃𝑑} (𝜃𝑑 = 3), 𝑃𝑎𝑡ℎ(𝑠) denotes the set of basic

blocks covered by seed 𝑠.

Definition 4. Target Coverage Gain (TCG). TCG measures a seed’s ability to intro-

duce new target coverage through mutation, defined as:

 TCG(𝑠) =
|NewTargets(𝑠mut)|

|Mutations(𝑠)|
 (3)

where 𝑠mut is a mutated test case generated from 𝑠, NewTargets(𝑠mut) denotes the

set of newly covered targets, and Mutations(𝑠) is the total number of mutations applied

to 𝑠.

Definition 5. Target Relevance Entropy (TRE). TRE measures the distribution en-

tropy of target-relevant basic blocks observed in historical execution paths of a seed,

defined as:

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 𝑃(𝑏) =
Count(𝑏)

∑ Count𝑏′∈𝐵rel
(𝑏′)

 (4)

 𝑇𝑅𝐸(𝑠) = − ∑ 𝑃𝑏∈𝐵rel
(𝑏) log2 𝑃 (𝑏) (5)

where 𝐵rel is the set of basic blocks with control dependencies to target locations,

and 𝑃(𝑏) is the empirical probability of block 𝑏 occurring in historical execution paths.

During the exploitation stage, MSFuzz select one of the attribute queues and mutate

seeds from the selected queue. Since queues that are more likely to contain high-quality

seeds should be prioritized, MSES models the queue selection process as a Multi-

Armed Bandit (MAB) problem.

Under this formulation, selecting an attribute queue corresponds to pulling an arm

of the bandit, where successfully discovering a new target or triggering a crash is con-

sidered a reward. MSES dynamically evaluates the priority of each queue by analyzing

its historical reward potential and preferentially selects seeds from queues with higher

estimated returns.

To solve this MAB problem, MSES employs the UCB-V algorithm to estimate the

upper confidence bound for each queue, which is used as the primary decision criterion.

As a queue is selected more frequently, the confidence in its ability to trigger valuable

test cases increases, further influencing its selection probability.

Let 𝑄[𝑖] denote the number of interesting test cases generated from queue 𝑖. Assume

there are 𝑀 attribute queues. For each selected queue 𝑖 (𝑖 ∈ 𝑀), we define:

 𝑄[𝑖] = ∑ 𝑛𝑠𝑠∈𝑆 (6)

where S is the set of seeds in queue 𝑖, and 𝑛𝑠 is the number of interesting test cases

triggered by seed 𝑠. The total reward for queue 𝑖, denoted as 𝑅[𝑖], is defined as:

 𝑅[𝑖] = ∑ 𝑄𝑀
𝑖=1 [𝑖] (7)

The squared sum of rewards for queue 𝑖, denoted as 𝑅𝑆𝑄[𝑖], is calculated as:

 𝑅𝑆𝑄[𝑖] = ∑ (𝑀
𝑖=1 𝑄[𝑖] × 𝑄[𝑖]) (8)

Let 𝑁[𝑖] denote the number of times queue 𝑖 has been selected, and 𝑁𝑡𝑜𝑡𝑎𝑙 the total

number of queue selections:

 𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑁𝑀
𝑖=1 [𝑖] (9)

The estimated variance for queue 𝑖 is then computed as:

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑖] =
𝑅𝑆𝑄[𝑖]

𝑁[𝑖]
−

𝑅[𝑖]×𝑅[𝑖]

𝑁[𝑖]×𝑁[𝑖]
 (10)

Finally, the Upper Confidence Bound with Variance (UCB-V) for queue 𝑖 is calcu-

lated as:

 𝑈𝐶𝐵_𝑉[𝑖] =
𝑅[𝑖]

𝑁[𝑖]
+ √

2×𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑖]×log(𝑁𝑡𝑜𝑡𝑎𝑙)

𝑁[𝑖]
+

3×log(𝑁𝑡𝑜𝑡𝑎𝑙)

𝑁[𝑖]
 (11)

This UCB-V score is used by MSES to select the most promising attribute queue

for mutation, ensuring that energy is allocated to high-potential seeds in a statistically

balanced and adaptive manner.

3.3 State-aware Stage Coordination Strategy

To address the imbalance between exploration and exploitation stages, MSFuzz also

implements a State-aware Stage Coordination Strategy (SSCS). SSCS dynamically co-

ordinates the transitions between exploration and exploitation based on real-time fuzz-

ing states, enabling MSFuzz to flexibly and adaptively manage the time allocation be-

tween the two stages.

We define the following stage dynamic state attributes to support the exploration and

exploitation two-stage switching decision, as shown in Table 1.

Table 1. Definition of State-Aware Attributes

Symbol Description

Stage 0 (Exploration), 1 (Exploitation)

𝑛𝑡𝑠
Number of seeds triggering unique paths

through target blocks

𝑠𝑞𝑒
Size of the seed queue in the exploration

stage

𝑅new
Number of new paths discovered per

time unit

𝜙 Mutation utility ratio of seeds

𝑇util Duration of the exploitation stage

𝑇max
Time threshold to force stage switching

when no new paths are found

𝑛𝑜𝑠 Number of switch

SSCS constructs core state parameters by quantifying the distributional characteris-

tics of the seed queue, supporting dynamic decisions between exploration and exploi-

tation stages.

It defines the non-target seed ratio 𝜌 to represent the effectiveness of exploration in

reaching target blocks, computed as follows:

 𝜌 =
𝑠𝑞𝑒−𝑛𝑡𝑠

𝑠𝑞𝑒
 (12)

Here, 𝑠𝑞𝑒 denotes the total number of seeds in the current exploration stage, while

𝑛𝑡𝑠 is the number of seeds that uniquely pass through target blocks. A higher 𝜌 value

indicates that the generated seeds are less likely to reach targets, suggesting diminishing

returns in further exploration.

To guide adaptive stage switching, we define a dynamic coordination coefficient

𝜆exploit that governs when MSFuzz transitions from exploration to exploitation. As

𝜆exploit is influenced by feedback from the previous exploitation stage, it is updated

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

only at the end of an exploration cycle. A larger 𝜆exploit leads to prolonged exploration,

whereas a smaller value favors early transition to exploitation for intensifying target-

guided scheduling. The stage transition mechanism is illustrated in Fig. 3.

Fig. 3. Two-stage state switching workflow between the exploration stage and the exploitation

stage.

The transition condition from exploration to exploitation is defined as: 𝜌 > 𝜆exploit,

which signals saturation in path diversity, prompting MSFuzz to focus on target-di-

rected mutation. The update of 𝜆exploit adopts a non-linear decay mechanism inspired

by LeoFuzz[16], defined as:

 𝜆exploit
∗ = 𝜆exploit − 𝛽 (tanh (

𝑓(𝑅new,𝜙,𝑇util)

√𝑡
⋅ √𝑛𝑜𝑠) − 𝛿) (13)

Here, 𝜆exploit
∗ is the threshold for the next cycle, tanh() ensures controlled updates,

𝑡 is the duration of the current exploitation stage, and 𝑛𝑜𝑠 tracks the number of stage

transitions. The function 𝑓(𝑅new, 𝜙, 𝑇util) captures feedback signals from the exploita-

tion stage:

 𝑓(𝑅new, 𝜙, 𝑇util) = 𝜔1 ⋅ 𝑅new + 𝜔2 ⋅ 𝜙avg + 𝜔3 ⋅
𝑇util

𝑇util+𝑐
 (14)

𝑅new is the number of new paths discovered per unit time, representing exploration

effectiveness. 𝜙avg is the average mutation utility across seeds, reflecting mutation

depth. 𝑇util is the duration of the current exploitation stage, and 𝑐 is a smoothing con-

stant. This feedback-driven, non-linear weighting mechanism enables 𝜆exploit to adap-

tively regulate the switch from exploration when test gain becomes saturated.

To avoid local optima and prolonged stagnation, the fuzzer monitors the target seed

generation rate 𝜉 during exploitation. If 𝜉 falls below a threshold 𝜃explore, the fuzzer

switches back to the exploration stage. 𝜉 is computed as:

 𝜉 =
Δ𝑛𝑡𝑠

𝑇util
 (15)

Here, Δ𝑛𝑡𝑠 denotes the number of newly discovered target-covering seeds, and 𝑇util

is the exploitation duration. A continuously declining 𝜉 indicates saturation in target-

space coverage, suggesting that the exploitation stage has exhausted its potential and

should transition back to exploration. Conversely, if 𝜉 remains high, the fuzzer contin-

ues exploiting the local target region.

The update rule for 𝜃explore is defined as:

 𝜃explore
∗ = 𝜃explore + 𝛽 ⋅ 𝑒−Δ𝑛𝑡𝑠 ⋅

𝑇util

𝑇util+𝑐
 (16)

Here, 𝛽 is a decay factor controlling the update speed of 𝜃explore. The exponential

term 𝑒−Δ𝑛𝑡𝑠 reflects recent target discovery activity—larger Δnts slows down the de-

cay to preserve the current exploitation stage, while smaller values accelerate decay to

encourage earlier transitions. The time-weighted factor
𝑇util

𝑇util+𝑐
 further smooths updates

and prevents overly aggressive switching when Δnts = 0.

To prevent MSFuzz from stalling during the exploitation stage, SSCS introduces a

fallback switching mechanism. When the time elapsed since the last discovery of a new

path exceeds a predefined threshold Tmax, i.e., Tnew > Tmax, MSFuzz forcibly switches

back to the exploration stage. This mechanism ensures that fuzzing continues to make

progress even in the presence of local stagnation.

4 Evaluation

4.1 Experiment Setup

This section aims to answer the following three research questions:

• RQ1: How efficient is MSFuzz in reproducing crashes?

• RQ2: How good is the ability of MSFuzz in reaching target code locations?

• RQ3: Can MSFuzz find vulnerabilities in read-word programs?

Compared fuzzers. We compare MSFuzz to several widely used open source fuzz-

ers, including AFL++[17], AFLGo, and Entropic[19]. First, we select AFL++, an ac-

tively maintained community-driven extension of AFL, which integrates a variety of

advanced fuzzing techniques. Second, we include AFLGo as a reference for DGF,

given its widespread use and established role as a benchmark in DGF research. Lastly,

we select Entropic, a state-of-the-art fuzzer with advanced energy scheduling strategies,

to highlight the performance differences among various energy allocation mechanisms.

Benchmarks. We evaluate MSFuzz on the Magma[18] and UniBench[20] bench-

mark suites. To evaluate the ability to reproduce crashes, we use the Magma dataset.

Magma is a widely used fuzzing benchmark suite that contains a set of carefully se-

lected real-world programs with complex input parsing and computation logic. Uni-

Bench is a comprehensive open-source benchmark designed specifically for fuzzing

research. The test programs we selected from UniBench are shown in Table 2.

Table 2. The selected programs in UniBench.

Program Version Input format Test instruction

exiv2 0.26 image @@

lame 3.99.5 audio @@ /dev/null

pdftotext 4.00 text @@ /dev/null

tcpdump 4.8.1 network -e -vv -nr @@

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Real-world target programs. To evaluate the effectiveness of MSFuzz in detecting

previously unknown vulnerabilities, we selected two real-world software projects as

target programs: Bento4 and libming. We used the latest available branches-v1.6.0-641

of the Bento4 codebase and v0.4.8 of the libming codebase.

Configuration. To reduce randomness and ensure the reliability of experimental re-

sults, each experiment was conducted for 24 hours and repeated 10 times. All experi-

ments were performed on a machine equipped with an Intel Xeon(R) Silver 4210 CPU,

128 GB of RAM, running Ubuntu 22.04.1.

Table 3. Comparison of crash reproducibility in Magma.

Bug ID

 AFLGo AFL++ Entropic

MSFuzz
 𝜇TTE Factor 𝜇TTE Factor 𝜇TTE Factor

PNG003 15s 1.00 21s 1.40 19s 1.27 15s

PNG006 T.O. N.A. 7m43s 0.20 22h26m 35.24 38m12s

PNG007 18h57m 2.17 3h19m 0.38 T.O. N.A. 8h44m

TIF002 T.O. N.A. 19h33m 0.88 22h29m 1.02 22h08m

TIF007 6m05s 1.87 4m42s 1.45 19m21s 5.95 3m15s

TIF009 14h13m 0.63 21h45m 0.96 18h16m 0.81 22h43m

TIF012 11h9m 11.84 1h26m 1.52 1h28m 1.56 56m31s

TIF014 19h04m 20.02 4h07m 4.32 3h42m 3.88 57m09s

PDF010 5h42m 1.66 2h35m 0.75 T.O. N.A. 3h26m

PDF016 53m40s 13.76 T.O. N.A. 2h13m 34.10 3m54s

PDF021 T.O. N.A. T.O. N.A. T.O. N.A. 19h25m

PHP004 35m04s 15.14 T.O. N.A. T.O. N.A. 2m19s

PHP009 3h53m 8.09 10h19m 21.49 T.O. N.A. 28m48s

PHP011 52m12s 7.07 59m 7.99 1h57m 15.85 7m23s

SQL002 6h53m 1.38 5h17m 1.06 22h32m 4.52 4h59m

SQL014 21h47m 2.69 6h59m 0.86 8h02m 0.99 8h06m

SQL018 T.O. N.A. 13h45m 4.85 T.O. N.A. 2h50m

4.2 Efficiency in Reproducing Crashes (RQ1)

One of the core applications of directed fuzzing is the efficient reproduction of software

crashes, which plays a critical role in vulnerability analysis and remediation. In real-

world scenarios, due to data sensitivity or limited logging, crash reports submitted by

users may lack the original input that triggered the vulnerability. In such cases, devel-

opers must rely solely on limited stack trace information. Directed fuzzing tools help

address this challenge by guiding execution toward the suspected vulnerable region and

generating test cases that reproduce the same crash, thereby assisting in debugging,

patch validation, and root cause analysis.

Table 4. Comparison of target site reaching capability of different fuzzers.

Program Target
 AFLGo AFL++ Entropic

MSFuzz
 𝜇TTT Factor 𝜇TTT Factor 𝜇TTT Factor

exiv2

actions.cpp:194 5h24m 1.33 4h57m 1.22 4h38m 1.14 4h04m

types.cpp:398 11h23m 1.07 8h21m 0.79 8h56m 0.84 10h39m

basicio.cpp:1031 12h52m 0.92 13h46m 0.98 13h07m 0.93 14h02m

image.cpp:492 1h38m 0.61 5h12m 1.99 3h15m 1.19 2h40m

types.cpp:157 16h26m 0.89 18h53m 1.02 19h22m 1.05 18h31m

basicio.cpp:1281 14h23m 1.12 13h32m 1.06 13h41m 1.07 12h48m

tiffvisitor.cpp:1299 4h21m 1.43 12h45m 4.19 11h24m 3.76 3h02m

image.cpp:700 1h46m 1.07 3h03m 1.85 3h54m 2.36 1h39m

value.cpp:302 4h54m 0.94 6h24m 1.23 6h45m 1.29 5h13m

lame

util.c:608 9m39s 0.99 30m12s 3.09 10m27s 1.07 9m46s

util.c:606 1m37s 0.55 27m18s 9.36 10m30s 3.60 2m55s

vbrquantize.c:184 42m12s 1.85 56m44s 2.49 53m18s 2.34 22m47s

get_audio.c:1452 9h51m 1.09 11h23m 1.26 11h16m 1.25 9h02m

util.c:688 13m56s 0.65 35m42s 1.67 45m21s 2.13 21m21s

mpglib_inter-

face.c:332
 6h38m 1.02 6h13m 0.96 5h59m 0.92 6h29m

get_audio.c:1289 8h37m 0.93 11h24m 1.24 10h23m 1.12 9h14m

pdftotext

XRef.cc:1074 2h08m 0.77 4h37m 1.67 8h42m 3.14 2h46m

Function.cc:193 4h24m 1.54 3h43m 1.30 2h40m 0.94 2h51m

JPXStream.cc:329 4h36m 0.83 4h51m 0.87 6h09m 1.11 5h33m

JPXStream.cc:1184 6h13m 1.34 9h48m 2.12 8h34m 1.85 4h38m

AcroForm.cc:271 5h45m 1.63 4h26m 1.25 5h02m 1.42 3h32m

GfxState.cc:3550 9h24m 1.21 5h57m 0.76 7h43m 0.99 7h48m

JPXStream.cc:419 5h21m 1.02 8h09m 1.54 7h28m 1.41 5h17m

XFAForm.cc:665 14h02m 0.69 20h44m 1.03 18h01m 0.90 20h12m

Stream.cc:3051 19h26m 1.03 15h18m 0.81 18h14m 0.97 18h53m

Stream.cc:3662 19h58m 0.97 20h01m 0.97 20h47m 1.01 20h35m

tcpdump

print-arp.c:210 4h47m 1.26 4h42m 1.24 4h55m 1.29 3h47m

print-sl.c:65 9h21m 1.41 6h36m 0.99 7h23m 1.12 6h38m

print-atm.c:405 14h15m 0.98 13h26m 0.93 13h34m 0.94 14h24m

print-llc.c:233 14h13m 0.67 15h52m 0.75 19h53m 0.95 21h20m

print-ppp.c:1662 5h57m 1.25 6h23m 1.34 6h11m 1.30 4h46m

print-udp.c:160 10h08m 1.42 8h05m 1.13 8h38m 1.21 7h09m

print-udp.c:367 13h33m 1.05 13h04m 1.01 13h29m 1.04 12h56m

print-bootp.c:281 17h58m 0.94 19h26m 1.01 17h37m 0.92 19h10m

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

To evaluate the crash reproduction efficiency of MSFuzz, we conducted compara-

tive experiments using the Magma dataset. We compared MSFuzz against three fuzz-

ers: AFLGo, AFL++, and Entropic. Each tool was executed independently for 10 runs,

with each run lasting 24 hours. We measured the average time-to-exposure (𝜇TTE)

required to reproduce a crash, and calculated the acceleration factor relative to MSFuzz.

The results summarized in Table 3 show that MSFuzz significantly outperforms all

baselines in crash reproduction efficiency. On average, MSFuzz achieved a 6.72× im-

provement over AFLGo, a 9.56× improvement over Entropic, and a 3.44× improvement

over AFL++.

4.3 Target Site Reaching Capability (RQ2)

To evaluate the target site reaching capability of MSFuzz, we conducted comparative

experiments on the test programs listed in Table 2. To construct representative fuzzing

targets, we queried the CVE vulnerability database to extract function names and cor-

responding line numbers for each known vulnerability, and used these locations as the

target positions for directed fuzzing.

Table 5. List of vulnerabilities discovered by MSFuzz.

Program Vulnerability Type Vulnerable Function CVE ID

Bento4 Memory Leaks
AP4_DescriptorFactory::CreateDescr

iptorFromStream
2025-25945

Bento4 Memory Leaks SampleArray::SampleArray 2025-25942

Bento4 Memory Leaks AP4_Processor::Process 2025-25946

Bento4 Buffer overflow AP4_RtpAtom::AP4_RtpAtom 2025-25944

Bento4 Segmentation fault AP4_AtomParent::RemoveChild 2025-25947

Libming Memory Leaks parseSWF_PLACEOBJECT3 2025-29486

Libming Memory Leaks parseSWF_INITACTION 2025-29488

Libming Memory Exhaustion parseABC_NS_SET_INFO 2025-29484

Libming Memory Exhaustion parseABC_STRING_INFO 2025-29487

Libming Segmentation fault decompileCALLMETHOD 2025-29490

Libming Segmentation fault decompileSETVARIABLE 2025-29492

Libming Segmentation fault decompileGETPROPERTY 2025-29493

Libming Segmentation fault decompileDUPLICATECLIP 2025-29496

We also selected AFL++, AFLGo, and Entropic as baseline tools to compare their

performance in terms of target-guided efficiency. Each fuzzer was executed for 10 in-

dependent runs, with each run lasting 24 hours, to ensure the stability and reproducibil-

ity of the results. The experiments recorded the average time-to-target (𝜇TTT)—i.e.,

the time required to reach the target line number in each run—and the acceleration

factor relative to MSFuzz.

According to the results shown in Table 4, MSFuzz achieved an average improve-

ment in target-guided efficiency of 1.07×, 1.43×, and 1.62× over AFLGo, Entropic, and

AFL++, respectively. These results demonstrate that MSFuzz can reach vulnerability-

related locations in significantly less time, validating the effectiveness of its target-

guided mechanism in multi-target directed fuzzing.

4.4 Vulnerability Discovery Capability (RQ3)

To evaluate the effectiveness of MSFuzz in discovering previously unknown vulnera-

bilities, we selected two real-world software projects as target programs: Bento4 and

libming. We used the latest branches of their respective codebases—v1.6.0-641 for

Bento4 and v0.4.8 for libming—to ensure that the experimental results reflect

MSFuzz's applicability and performance on up-to-date software versions.

During the experiments, all crash instances were deduplicated and thoroughly ana-

lyzed. MSFuzz successfully detected 27 unique crash cases, covering a variety of vul-

nerability types, including memory leaks, buffer overflows, heap overflows, and seg-

mentation faults. Among them, 13 vulnerabilities were previously undisclosed, demon-

strating MSFuzz's capability in discovering unknown bugs. As confirmed by the CVE

assignment authority, 13 of these vulnerabilities have been officially assigned CVE

identifiers (see Table 5).

5 Conclusion

We present MSFuzz, a directed greybox fuzzing framework that integrates two novel

approaches: a multi-target sensitivity-based energy scheduling strategy and a state-

aware stage coordination strategy. Empirical results demonstrate that in crash repro-

duction experiments, MSFuzz’s average performance is 6.57× faster than baseline

counterparts; in multi-target directed fuzzing experiments, it achieves an average per-

formance improvement of 1.32× over baseline tools. Additionally, MSFuzz success-

fully detected 27 unique crashes in real-world programs, 13 of which have been as-

signed CVE identifiers, proving its practical effectiveness in discovering previously

unknown vulnerabilities.

References

1. 2021. American Fuzzy Lop. https://github.com/google/AFL.

2. Böhme M, Pham V T, Nguyen M D, et al. Directed greybox fuzzing[C]//Proceedings of the

2017 ACM SIGSAC conference on computer and communications security. 2017: 2329-

2344.

3. Huang H, Guo Y, Shi Q, et al. Beacon: Directed grey-box fuzzing with provable path prun-

ing[C]//2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022: 36-50.

4. Sharma A, Cadar C, Metzman J. Effective Fuzzing within CI/CD Pipelines (Registered Re-

port)[C]//Proceedings of the 3rd ACM International Fuzzing Workshop. 2024: 52-60.

https://github.com/google/AFL.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5. Huang M, Lemieux C. Directed or Undirected: Investigating Fuzzing Strategies in a CI/CD

Setup (Registered Report)[C]//Proceedings of the 3rd ACM International Fuzzing Work-

shop. 2024: 33-41.

6. Chen H, Xue Y, Li Y, et al. Hawkeye: Towards a desired directed grey-box fuzzer[C]//Pro-

ceedings of the 2018 ACM SIGSAC conference on computer and communications security.

2018: 2095-2108.

7. Du Z, Li Y, Liu Y, et al. Windranger: A directed greybox fuzzer driven by deviation basic

blocks[C]//Proceedings of the 44th International Conference on Software Engineering.

2022: 2440-2451.

8. Zheng H, Zhang J, Huang Y, et al. FISHFUZZ: Catch deeper bugs by throwing larger

nets[C]//32nd USENIX Security Symposium (USENIX Security 23). 2023: 1343-1360.

9. Xiang Y, Zhang X, Liu P, et al. Critical code guided directed greybox fuzzing for com-

mits[C]//33rd USENIX Security Symposium (USENIX Security 24). 2024: 2459-2474.

10. Österlund S, Razavi K, Bos H, et al. ParmeSan: Sanitizer-guided greybox fuzzing[C]//29th

USENIX Security Symposium (USENIX Security 20). 2020: 2289-2306.

11. Zhu X, Liu S, Li X, et al. Defuzz: Deep learning guided directed fuzzing[J]. arXiv preprint

arXiv:2010.12149, 2020.

12. Liang H, Jiang L, Ai L, et al. Sequence directed hybrid fuzzing[C]//2020 IEEE 27th Inter-

national Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,

2020: 127-137.

13. Li S, Li Y, Chen Z, et al. TransferFuzz: Fuzzing with Historical Trace for Verifying Propa-

gated Vulnerability Code[J]. arXiv preprint arXiv:2411.18347, 2024.

14. Liang H, Zhang Y, Yu Y, et al. Sequence coverage directed greybox fuzzing[C]//2019

IEEE/ACM 27th International Conference on Program Comprehension (ICPC). IEEE Com-

puter Society, 2019: 249-259.

15. Lyu C, Liang H, Ji S, et al. SLIME: program-sensitive energy allocation for fuzzing[C]//Pro-

ceedings of the 31st ACM SIGSOFT international symposium on software testing and anal-

ysis. 2022: 365-377.

16. Liang H, Yu X, Cheng X, et al. Multiple targets directed greybox fuzzing[J]. IEEE Trans-

actions on Dependable and Secure Computing, 2023, 21(1): 325-339.

17. 2025. AFLplusplus. https://github.com/AFLplusplus/AFLplusplus.

18. Hazimeh A, Herrera A, Payer M. Magma: A ground-truth fuzzing benchmark[J]. Proceed-

ings of the ACM on Measurement and Analysis of Computing Systems, 2020, 4(3): 1-29.

19. Böhme M, Manès V J M, Cha S K. Boosting fuzzer efficiency: An information theoretic

perspective[C]//Proceedings of the 28th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering. 2020:

678-689.

20. Li Y, Ji S, Chen Y, et al. UNIFUZZ: A holistic and pragmatic Metrics-Driven platform for

evaluating fuzzers[C]//30th USENIX Security Symposium (USENIX Security 21). 2021:

2777-2794.

https://github.com/AFLplusplus/AFLplusplus.

