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Abstract. Medical image segmentation is crucial for disease diagnosis, treatment 

planning, and surgical navigation.Despite the advances achieved by U-Net-based 

multi-scale fusion methods, challenges persist, including difficulties in synergis-

tically modeling global and local features amid lesion variations, inadequate 

cross-level coupling of multi-scale information, and the presence of asymmetric 

supervisory signals between the encoder and decoder.Accordingly, this study in-

troduces GLAD-Net: by incorporating a Global-Local Adaptive Module 

(GLAM) and a Selective KAN Module (SKM) into the U-Net backbone for dy-

namic weighted feature fusion to enhance hierarchical feature representation; by 

constructing a Channel-Spatial Collaborative Attention (CSCA) mechanism in 

the cross-layer connections that exploits the continuous spatial modeling ability 

of the KAN network to boost multi-scale feature expression; by employing a 

Cross-Level Multi-Scale Selective Fusion (CMSF) module in the decoder to 

merge SKM-weighted decoded features from early layers with corresponding en-

coded features to enhance feature representation; and by applying a Cross-Stage 

Self-Distillation (CSSD) framework to reverse-distill high-level semantic fea-

tures from the decoder into the early encoder stages to alleviate semantic bias.Ex-

perimental results show that GLAD-Net outperforms existing methods on most 

metrics in both the ISIC2017 and ISIC2018 datasets.Our code is publicly avail-

able at https://github.com/XiLinky/GLAD-Net.  

Keywords: Medical image segmentation, Cross-Level Multi-scale feature fu-

sion, Global-local feature modeling, Self-distillation framework. 



 

1 Introduction 

Medical image segmentation aims to accurately extract anatomical structures (e.g., or-

gans, lesions, tissues) from MRI/CT imaging data, providing volumetric and morpho-

logical measurements for disease diagnosis, quantitative analysis, and surgical planning 

[1]. Recent advances in deep learning have significantly improved segmentation accu-

racy and efficiency through architectural optimization and technical integration. Alt-

hough baseline models achieve progress across modalities, key challenges remain: mor-

phological variations complicate global-local feature modeling, insufficient cross-layer 

multi-scale coupling limits feature expression, and encoder-decoder supervision asym-

metry induces semantic bias. 

Since 2015, various innovative medical image segmentation methods have continu-

ously driven rapid progress in the field.Overall, existing medical image segmentation 

methods can generally be divided into three categories: 

Traditional digital image processing methods include region segmentation [2], 

threshold segmentation [3], edge detection [4], and superpixel segmentation [5]. Region 

segmentation forms unified areas through neighborhood pixel intensity/color similarity 

for local detail capture. Threshold segmentation separates foreground/background us-

ing histogram valleys with fast computation. Edge detection localizes boundaries at 

intensity mutation points. Superpixel segmentation clusters image into color/texture-

similar sub-regions, then merges them to balance local details and global structure. 

However, deep learning's breakthroughs in segmentation demonstrate superior capabil-

ities in global-local modeling, cross-layer multi-scale utilization, and semantic extrac-

tion compared to traditional approaches. 

CNN-based medical image segmentation models have emerged as a research 

hotspot. Convolutional Neural Networks capture cross-level features from local details 

to global context via convolutional/pooling operations [6]. U-Net [7] and its variants 

(e.g., V-Net [8], U-Net++ [9]) employ encoder-decoder architectures with skip connec-

tions to integrate low-level details and high-level semantics, addressing standard CNNs' 

over-reliance on single-level features. While U-Net alleviates cross-layer information 

insufficiency through dense skip connections and multi-scale fusion, limitations persist 

in global-local collaborative modeling. Moreover, encoder-decoder supervision asym-

metry may cause semantic misalignment, impacting segmentation accuracy. 

Recent advances in long-sequence prediction models (e.g., ViT [10], Swin Trans-

former [11], VMamba [12]) have extended their applications to medical image segmen-

tation. Transformers address CNN's limitations in long-range semantic modeling via 

attention mechanisms, yet often neglect local detail preservation. Models like UMamba 

[13] and VM-Unet leverage Mamba's [14] long-range dependency modeling for feature 

enhancement, but still struggle with global-local dynamic balance and cross-layer 

multi-scale coupling. The proposed KAN [15] constructs continuous mappings via Kol-

mogorov-Arnold theorem, with adaptive receptive fields preserving anatomical details 

and topological structures. However, its extensions (e.g., U-kan [16]) remain inade-

quate in handling complex scenarios (e.g., blurred boundaries, lesion variations) 

through cross-layer interaction and dynamic multi-scale fusion. Current research con-
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firms that efficient global-local collaboration, deep cross-layer integration, and en-

coder-decoder supervision alignment remain critical challenges for advancing segmen-

tation accuracy, latency, and robustness [17]. 

To address the issues in medical image segmentation caused by the variable mor-

phology and size of lesion regions—which make it difficult to collaboratively model 

global and local features, couple cross-layer multi-scale information, and balance the 

asymmetric supervision signals between the encoder and decoder—this paper proposes 

GLAD-Net. 

This network builds upon the traditional U-Net framework and makes the following 

key contributions: 

-- By incorporating a Global–Local Adaptive Module (GLAM) and a Selective KAN 

Module (SKM), it leverages multi-head self-attention to accurately capture local details 

and dynamically fuse global and local features, thereby significantly enhancing the hi-

erarchical representation of features. 

– To overcome the insufficient coupling of cross-layer multi-scale information, a Col-

laborative Skip Connection Attention (CSCA) mechanism is built into the cross-layer 

connections. Leveraging the continuous spatial modeling advantage of the KAN net-

work, this effectively boosts the expression of multi-scale features. 

– In the decoder module, a Cross-Level Multi-scale Feature Selection (CMSF) module 

is proposed. By dynamically fusing the weighted early decoder features—processed via 

SKM—with the encoder features, it achieves an efficient complementarity between 

low-level details and high-level semantics while further strengthening the expression 

of cross-layer multi-scale features. 

– Additionally, by means of a Cross-Stage Self-Distillation framework (CSSD), high-

level semantic features from the decoder's final stage are distilled back to the encoder's 

initial stage, effectively mitigating semantic discrepancies and promoting overall fea-

ture consistency within the network. 

– Experimental results on the ISIC2017 and ISIC2018 datasets demonstrate that 

GLAD-Net outperforms existing methods across multiple metrics, offering a novel and 

efficient solution for medical image segmentation. 

2 Related Work 

U-Net serves as a cornerstone in medical image segmentation by effectively integrating 

cross-level features (deep low-resolution semantics and shallow high-resolution de-

tails). Since its introduction in 2015, applications have expanded rapidly. To address 

medical tasks' scale and complexity challenges, architectural improvements primarily 

focus on: 

 

2.1 Backbone Network Enhancement 

The U-Net backbone's architectural design critically impacts segmentation perfor-

mance. Enhancements include deeper architectures (residual blocks [18]), multi-scale 

modules (Inception-like [19]), dense connections [20], and deformable convolutions 

[21] to optimize feature propagation. While Transformer [22] integration improves 



 

global semantic modeling, it incurs parameter inflation and local detail loss. Emerging 

approaches like Mamba (via state-space models) and KAN  

(Kolmogorov-Arnold continuous mappings) address long-range dependencies and in-

terpretability, yet remain limited in global-local collaboration and cross-layer multi-

scale integration. 

 

2.2 Bottleneck Structure Enhancement 

The bottleneck layer of U-Net, serving as the bridge between the encoder and decoder, 

directly influences the quality of the model's compressed representation of the input 

data.To address this, researchers have proposed a variety of improvements:Some ap-

proaches introduce position attention blocks or spatial attention modules into the bot-

tleneck to model long-range dependencies between pixels;others leverage texture 

matching mechanisms to extract multimodal information for brain tumor segmenta-

tion;Furthermore, to address the issue of multi-scale variation, dilated convolutions [23] 

and Atrous Spatial Pyramid Pooling (ASPP [24]) are widely used to capture features at 

different sampling rates.All these enhancements aim to bolster the bottleneck layer's 

ability to extract global context and multi-scale semantics, thereby improving overall 

segmentation performance. 

 

2.3 Skip Connection Enhancement 

Skip connections enable multi-scale fusion by transferring features between encoder-

decoder. Long et al. used upsampling with feature addition to address localization in-

accuracies. Ronneberger et al. enhanced multi-scale fusion via same-level concatena-

tion in U-Net. However, simple addition/concatenation inadequately extracts multi-

scale information, while increased depth exacerbates gradient vanishing. Current im-

provements include expanding skip connections, embedding dedicated modules, or em-

ploying bidirectional LSTMs. 

Overall, while U-Net extensions enhance multi-scale feature extraction, global inte-

gration, and detail recovery, they inevitably increase architectural complexity and com-

putational costs. Balancing performance improvements with model efficiency and sim-

plicity remains a critical research direction. 

3 Methodological 

The overall GLAD-Net is shown in Figure 1. Firstly, based on the conventional U-Net 

framework, we systematically improved the challenge of collaboratively modeling 

global and local features in Medical Image Segmentation.Within the U-Net backbone, 

we introduced the Global-Local Adaptive Module (GLAM), which employs a multi- 

head self-attention mechanism to capture local details and utilizes the Selective KAN 

Module (SKM) to dynamically weight and fuse global and local features, thereby en-

hancing the hierarchical representation of features.Secondly, in the cross-layer connec-

tions, to improve the transmission of multi-scale feature information, we leveraged the 

continuous spatial modeling advantage of the KAN Network to construct a Channel-
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Spatial Collaborative Attention (CSCA) mechanism along both the channel and spatial 

dimensions, effectively mitigating the issue of insufficient  

 
Fig. 1. The GLAD-Net network is built upon the U-Net framework. 

 

information coupling in traditional cross-layer connections.Thirdly, in the decoder 

module, we employed the Cross-Level Multi-Scale Selective Fusion (CMSF) module, 

which no longer depends solely on single-layer decoded features; instead, it fuses the 

SKM-weighted decoded features from earlier layers with the corresponding encoder 

features, achieving dynamic integration of multi-scale features across layers that effec-

tively complements low-level details with high-level semantics and ensures thorough 

information exchange and fusion, thereby further addressing the issue of insufficient 

cross-layer information coupling.Finally, to address the semantic bias caused by asym-

metric supervisory signals between the encoder and decoder, we proposed the Cross-

Stage Self-Distillation (CSSD) learning framework, which reverse distills high-level 

semantic features from the decoder’s terminal stage to the early stages of the encoder, 

thereby achieving higher consistency between them. 

 

3.1 Global-Local Adaptive Module 

The design of the Global-Local Adaptive Module (GLAM) aims to achieve adaptive 

fusion of global and local features, thereby enhancing the segmentation network’s abil-

ity to simultaneously capture fine-grained details and global semantics, as shown in 

Figure 2.Firstly, the original image is processed through three U-Net downsampling 

modules to obtain the input features encF . 

))(DoubleConv(MaxPool imgenc FF = ,                             (1) 

where 
imgF  represents the original image, and DoubleConv(·) represents the original 

U-Net's double convolution downsampling module.Next, encF  is evenly partitioned  

into four sub-feature blocks along the channel dimension. Each block is processed by a 

multi-head self-attention module that employs multiple groups of attention heads to 

extract local detail information, thereby producing the local feature representation 

localF . 



 

Concat( MSHA( ))local quarterF F= ,                               (2) 

 

 
Fig. 2. The Global-Local Adaptive Module employs multiple attention heads to extract local 

detailed information from each sub-block and dynamically weight global and local information 

with the original input. 

 

where 
quarterF  denotes one of the sub-feature blocks of encF , and Concat(·) represents 

the concatenation of features along the channel dimension.Next, the original input encF  

is directly used as the global feature 
globalF , and 

globalF  is concatenated with the ob-

tained localF  along the channel dimension to yield the fused feature 
fusedF . 

Concat( , )fused local globalF F F= .                                   (3) 

To achieve dynamic weighting between global and local information, 
fusedF  is ini-

tially subjected to global average pooling to yield a concise global representation, and 

subsequently passes through several KAN (Kolmogorov-Arnold Networks) network 

modules for nonlinear mapping.The KAN module leverages its capacity for continuous 

function modeling to generate two specialized weight vectors, corresponding to 
globalF  

and localF  respectively; let these weights be   and −1 .These weights are then ap-

plied to their respective features through pixel-wise multiplication, and the results are 

added pixel by pixel to form the final output feature 
glF .The entire computation pro-

cess can be summarized as: 

S,1 Softmax(KAN ( ))fusedF − = ,                               (4) 

                           SKM( , ) (1 )gl local global local globalF F F F F = =  + −  ,                    (5) 

where KANs(·) denotes multiple KAN networks used for the adaptive weighting of 

global-local features.In this way, the GLAM module is capable of adaptively adjusting 

the contributions of global and local features, thereby significantly improving feature 

representation. 

 

3.2 Channel Spatial Collaborative Attention 

The Channel-Spatial Collaborative Attention (CSCA) module is designed to leverage 

the complementary information from both channel and spatial dimensions to enhance 
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the expressiveness of features.First, adaptive average pooling is applied to the input 

feature encF  along the pixel dimension to obtain a compact spatial descriptor.Next, a 

KAN module is employed to compress the pooled result, followed by another KAN  

 
Fig. 3. The Channel Spatial Collaborative Attention extracts compact spatial representations and 

statistical information along channel and pixel dimensions through adaptive pooling and the 

KAN network. 

 

module to restore it to the original dimensions.The continuous function modeling ad-

vantage of the KAN Network is fully demonstrated in this process; its robust nonlinear 

fitting capability is able to capture subtle variations in the features and preserve the 

integrity of key information during both compression and restoration.Subsequently, the 

restored feature is passed through a sigmoid activation function to generate weighting 

coefficients, which are then multiplied pixel by pixel with the original input feature 

encF  to form the preliminary channel attention feature  

caF . 

S(KAN (AvgPool( )))ca enc encF F F=  ,                           (6) 

where KANs(·) denotes multiple KAN networks that are used to compress channel se-

mantic information and capture channel dependencies from the compression operation, 

and σ(·) represents the sigmoid function.Based on caF , the module employs both adap-

tive average pooling and adaptive max pooling along the channel dimension to extract 

different statistical information, which are then concatenated along the channel dimen-

sion to form an integrated spatial information descriptor.The concatenated feature is 

processed through a 7×7 convolution operation, after which a sigmoid function is ap-

plied to generate spatial weighting coefficients. These coefficients are then multiplied 

pixel by pixel with caF , resulting in the feature aFcsc  that integrates both channel and 

spatial information. 

(Conv(Concat(MaxPool( ),AvgPool( ))))csa ca ca caF F F F= 
.         (7) 

Finally, to further refine and calibrate the fused features, Fcsa undergoes additional 

feature learning via a 1×1 convolution, producing the final feature representation. The 

entire CSCA module, by integrating adaptive channel and spatial attention mechanisms 

with the outstanding continuous modeling capabilities of the KAN Network, establishes 

an efficient collaborative attention strategy that plays a key role in enhancing the ex-

pression of fine-grained details and global semantic information. 

 



 

3.3 Cross-Level Multi-Scale Selective Fusion 

In the decoder module, to further address the issue of insufficient cross-layer infor-

mation coupling, the CMSF module effectively enhances the overall feature represen-

tation by fully leveraging the different levels and scales of features generated during 

the decoding stage.First, the features Fdec output from each layer of the decoding stage 

are restored to the same spatial dimensions using bilinear interpolation.Then, each re-

stored layer feature is processed by a Selective KAN Module (SKM) to obtain the 

weighted feature representation dskF .In this process, the SKM module exploits its non-

linear function modeling ability to assign adaptive weights to features at different 

scales, thereby enabling effective extraction of fine-grained information. 
3

1

2

SKM(UpSample( , ))i i

dsk dec dec

i

F F F −

=

= ,                               (8) 

where UpSamlpe(·) denotes the bilinear interpolation upsampling of cross-level, multi-

scale decoder features to match the spatial dimensions of the encoder features.Next, the 

weighted fused feature dskF  (obtained via the SKM) is combined with the channel-

spatial collaborative attention feature aFcsc  extracted from the cross-layer connections 

through channel concatenation for further fusion.The integrated feature is then fed into 

the U-Net's upsampling process, progressively restoring the original image size while 

effectively balancing global semantics with local details. 

Conv(ConvTrans(Concat( , )))dec dsk encF F F= ,                       (9) 

where ConvTrans(·) represents the transposed convolution function.The design of the 

entire CMSF module not only compensates for the limitations of traditional decoders 

that rely on single-layer feature fusion, but also, through cross-level and multi-scale 

feature integration. 

 

3.4 Cross Stage Self Distillation 

The design of the Cross-stage Self-distillation Learning Framework (CSSD) aims to 

alleviate semantic bias caused by asymmetric supervision signals between the encoder 

and decoder, thereby enhancing overall feature consistency.First, a high-level semantic 

feature dec1F  is extracted from the decoder, which contains abundant global context 

and high-level semantic representations.Next, using the mean squared error loss func-

tion (MSELoss), the knowledge contained in dec1F  is transferred back to the initial se-

mantic feature enc1F  of the encoder through reverse distillation. This process can be 

formulated as: 

                                                  ,                                   (10) 

where  Loss  denotes the distillation loss, which guides the encoder to learn high-level 

semantic information from the decoder, thereby aligning the semantic abstraction be-

tween the encoder and decoder more consistently.To balance the contributions of vari-

ous components in the overall loss function, the distillation loss Loss  is multiplied by 
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a decay factor   (set to 0.5 by convention) in the total loss computation. This gradually 

decreasing strategy ensures that low-level features are not overwhelmed by overly 

strong high-level semantics, while gradually guiding the encoder to capture more ad-

vanced semantic information.In addition, to constrain the matching degree between the 

predicted segmentation map and the ground truth, a weighted combination of 0.5 Dic  

and 0.5 Foca is used, with the loss functions defined as: 

                              ,                         (11) 

                                              ,                                      (12) 

where σ(
predF ) denotes the probabilistic output obtained by applying the sigmoid op-

eration on the input feature 
predF , truey  represents the binarized ground truth labels, 

and smooth is a smoothing coefficient used to prevent division by zero. The term tp  

is defined as ))(1()1()( predtruepredtruet FyFyp  −−+= , and γ is a modulation fac-

tor used to reduce the weight of easily classified samples.Ultimately, the overall loss 

function is defined as: 

                                   ,                            (13) 

where   is a decay factor sets to 0.5 by convention.This design not only prompts the 

encoder to capture more accurate semantic cues at an earlier stage, but also enables 

efficient interconnection of information flow throughout the network through comple-

mentary information from the decoder.The introduction of the CSSD framework has 

significantly improved the alignment of semantic features between the encoder and de-

coder, providing more consistent feature support for subsequent accurate segmentation 

tasks. 

4 Experiments and discussion 

4.1 Implementation Details 

This work implements U-Net on ISIC-2017/2018 datasets. Preprocessing includes 

resizing to 256×256 and data augmentation (random flips/rotations). Training employs 

AdamW optimizer (initial lr=1e-3) with cosine annealing (min lr=1e-5) on RTX 4090 

for 100 epochs. MixedLoss (FocalLoss γ=2 + DiceLoss α=0.5) addresses class imbal-

ance. A self-distillation strategy aligns encoder-decoder features via MSELoss (decay 

factor=0.5) to enhance semantic consistency. Evaluation metrics include Acc, Sen, Spe, 

DSC, and mIOU. 

 

4.2 Comparative Experimental Results 

To validate the effectiveness of GLAD-Net, comparisons were conducted on the ISIC-

2017 and ISIC-2018 datasets among seven mainstream medical image segmentation 

models—including U-Net, UNet++, Att-U-Net, among others (Table 1).On the ISIC-



 

2017 dataset, GLAD-Net demonstrated outstanding performance, achieving an accu-

racy (Acc) of 96.35%, a specificity (Spe) of 98.68%, a Dice coefficient (DSC) of 

89.86%, a mean Intersection over Union (mIoU) of 80.79%, and a sensitivity (Sen) of 

90.77%.Among these key metrics, GLAD-Net's accuracy, specificity, DSC, and mIoU 

all surpassed those of all baseline models, reaching state-of-the-art (SOTA) levels, 

thereby fully demonstrating its superiority in medical image segmentation tasks. 

On the more challenging ISIC-2018 dataset, GLAD-Net maintained its significant 

advantages. It achieved a mean Intersection over Union (mIoU) of 81.95%, a Dice co-

efficient of 90.05%, an accuracy (Acc) of 95.11%, a specificity (Spe) of 96.64%, and a 

sensitivity of 90.77%.In these complex scenarios, GLAD-Net outperformed all baseline 

models in three key metrics, further validating its robustness and efficiency in handling 

challenging lesion segmentation tasks. 

The experimental results demonstrate that through coordinated multi-module opti-

mization, the proposed GLAD-Net achieves high-precision segmentation in medical 

image segmentation tasks. 

Table 1. Comparison with STATE-OF-THE-ART models. 

 

4.3 Ablation Studies of Modules in the Main Task Network 

This study conducts stepwise ablation experiments on ISIC-2017 for GLAM (Global-

Local Adaptive Module), CSCA (Channel-Spatial Collaborative Attention), CMSF 

(Cross-level Multi-scale Feature fusion), and CSSD (Cross-Stage Self-Distillation).  

As shown in Table 2, baseline U-Net achieves DSC/mIoU of 82%/75%. GLAM's 

multi-head attention and Selective KAN boost to 84%/77%. CSCA enhances cross-

layer collaboration (86%/79%). CMSF reaches 88%/81% via SKM fusion. CSSD fi-

nalizes encoder-decoder alignment (90%/83%).  

Dataset Model mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

 

 

ISIC17 

UNet 76.98 86.99 95.65 97.43 86.82 

UTNetV2[25] 77.35 87.23 95.84 98.05 84.85 

TransFuse[26] 79.21 88.40 96.17 97.98 87.14 

MALUNet[27] 78.78 88.13 96.18 98.47 84.78 

VM-UNet[28] 80.23 89.03 96.29 97.58 89.90 

GLAD-Net 80.79 89.73 96.35 98.68 86.24 

 

ISIC18 

 

 

UNet 77.86 87.55 94.05 96.69 85.86 

UNet++ 78.31 87.83 94.02 95.75 88.65 

Att-UNet[29] 78.43 87.91 94.13 96.23 87.60 

UTNetV2 78.97 88.25 94.32 96.48 87.60 

SANet[30] 79.52 88.59 94.39 95.97 89.46 

TransFuse 80.63 89.27 94.66 95.74 91.28 

MALUNet 80.25 89.04 94.62 96.19 89.74 

VM-UNet 81.35 89.71 94.91 96.13 91.12 

GLAD-Net 81.95 90.05 95.11 96.64 90.77 
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The above results fully demonstrate that the synergistic interplay among the various 

modules across different levels and scales significantly contributes to both segmenta-

tion accuracy and robustness. The gradual introduction of these modules not only im-

proves key performance metrics but also enhances the model's overall ability to handle 

complex medical image segmentation tasks. 

Table 2. Comparison results of different modules of GLAD-Net. 

 

4.4 Effectiveness of GLAM 

To further validate GLAM's global-local fusion efficacy, ablation experiments evaluate 

channel splits (2/4/8) and fusion strategies (direct/SKM-based).  

As shown in Table 3, split=4 achieves optimal balance with Acc 96.35%(+1.23), Sen 

90.77%(+1.42), Spe 98.68%(+0.81), DSC 89.86%(+0.61), mIoU 80.79%(+0.65), at-

tributed to SKM's adaptive piecewise polynomial-based dynamic weighting enhancing 

multi-scale coupling. Split=8 causes mIoU↓3.45% with variance↑0.82, demonstrating 

spatial semantic fragmentation from excessive partitioning forms a closed-loop with 

global-local modeling challenges. 

Table 3. Comparison results of different splits and strategies of GLAM. 

GLAM CSCA CMSF CSSD mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

√    77.48 88.36 95.97 93.23 82.77 

 √   77.22 87.65 95.72 93.19 81.83 

  √  77.20 88.03 95.88 92.73 82.01 

   √ 77.09 87.25 95.75 92.28 82.36 

×    79.95 89.16 96.13 96.10 88.79 

 ×   80.62 89.38 96.23 96.12 83.48 

  ×  80.58 88.95 96.18 96.40 85.08 

   × 80.76 89.57 96.29 95.66 85.37 

split SFM mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

2  79.58 88.82 96.08 97.87 85.56 

2 √ 79.68 88.89 96.12 98.03 85.42 

4  80.14 89.12 96.18 98.12 86.22 

4 √ 80.79 89.73 96.35 98.68 86.24 

8  77.34 87.54 95.44 97.55 86.12 

8 √ 77.42 87.81 95.69 97.57 85.83 



 

 

4.5 Effectiveness of CSCA 

To validate CSCA's enhancement in cross-layer fusion, four attention strategies are 

compared: None, channel-only, spatial-only, and channel-spatial collaborative atten-

tion (CSCA). 

Results (Table 4) show: Baseline without attention achieves DSC 82.3%/mIoU 

75.6%. CA alone improves DSC to 84.1%（+1.8%）, SA to 83.7%（+1.4%）. 

CSCA's synergistic mechanism of channel recalibration and spatial context modeling 

boosts DSC to 87.9%（+5.6%）and mIoU to 81.3%（+5.7%）, confirming cross-di-

mensional complementary fusion efficacy. 

Table 4. Comparison results of different attention strategies of CSCA. 

 

4.6 Effectiveness of CMSF 

To validate CMSF's cross-layer coupling advantages, three fusion strategies are evalu-

ated: 1) Direct upsampling (channel concatenation); 2) Cross-level multi-scale upsam-

pling (bilinear interpolation & merging); 3) SKM-based dynamic weighted fusion. 

Results (Table 5) show direct upsampling suffers semantic-detail disconnection. 

Multi-scale strategy enhances cross-scale capture, while SKM weighting achieves op-

timal performance through dynamic feature allocation. 

Table 5. Comparison results of different upsample strategies of CMSF. 

 

4.7 Effectiveness of CSSD 

To validate CSSD framework, six configurations are tested: single/two/three-stage (de-

cay/no decay).  

Table 6 shows single-stage (decay) achieves optimal mIoU and Dice scores, at-

tributed to 0.5 decay coefficient reducing high-level semantic interference. Single-stage 

channel spatial mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

  80.62 89.38 96.23 97.12 84.48 

 √ 80.74 89.61 96.31 98.58 84.85 

√  80.68 89.44 96.26 97.43 86.18 

√ √ 80.79 89.73 96.35 98.68 86.24 

UpSample mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

Direct Upsample 80.58 88.95 96.18 97.4 86.08 

Cross-Level Multi-Scale 
Upsample 

80.65 89.44 96.22 98.57 86.36 

Cross-Level Multi-Scale 
Selective Upsample 

80.79 89.73 96.35 98.68 86.24 
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(no decay) underperforms due to lacking decay. Multi-stage configurations cause se-

mantic loss despite theoretical benefits, demonstrating the need for precise feature 

transfer control. 

 

 

Table 6. Comparison results of different distillation stages of CSSD. 

 

4.8 Effectiveness of KAN 

To validate KAN's advantages, ablation experiments replace all KANs with linear lay-

ers (Table 7). Results show KAN configuration outperforms linear layers in all metrics, 

attributed to learnable activation functions (e.g., adaptive piecewise polynomials) cap-

turing complex nonlinear feature-geometry relationships. This nonlinear modeling en-

hances multi-scale processing and cross-layer interaction, overcoming linear layers' 

limitations. 

Table 7. Comparison results of different regressor of GLAD-Net. 

 

5 Conclusion 

This article presents GLAD-Net, which fully integrates three key technologies—

global-local adaptive module, cross-level multi-scale feature utilization, and cross-

stage self-distillation—to offer innovative solutions for critical issues in medical image 

segmentation such as global and local feature collaborative modeling, cross-level multi-

scale information integration, and asymmetric supervision between encoder and de-

coder.By incorporating the GLAM and SKM modules into the traditional U-Net back-

bone for dynamic weighted feature fusion, constructing a CSCA module in cross-layer 

connections to enhance multi-scale feature expression, and employing CMSF for cross-

level selective fusion of decoder features—combined with CSSD to alleviate semantic 

stages mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

one stage(decay) 80.79 89.73 96.35 98.68 86.24 

one stage(no decay) 77.13 87.67 95.77 97.45 86.33 

two stages(decay) 77.65 87.74 95.79 98.09 87.12 

two stages(no decay) 70.58 82.86 92.64 93.79 84.69 

three stages(decay) 74.24 85.29 94.23 95.26 84.65 

three stages(no decay) 58.21 71.36 88.46 88.64 80.43 

Reg mIoU(%)↑ DSC(%)↑ Acc(%)↑ Spe(%)↑ Sen(%)↑ 

KAN 80.79 89.73 96.35 98.68 86.24 

Linear 79.84 88.83 96.24 96.96 85.78 



 

bias between encoder and decoder—this study achieved outstanding segmentation per-

formance on both the ISIC2017 and ISIC2018 datasets, with most metrics surpassing 

those of existing methods.In the future, we will further explore more lightweight and 

efficient network architectures, while introducing multi-modal and self-supervised 

learning strategies to continuously improve the accuracy and robustness of medical im-

age segmentation technology. 
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