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Abstract. Privacy-preserving inference (PPI) has become a critical demand in 

Machine Learning as a Service (MLaaS), where both user inputs and model pa-

rameters and architecture are sensitive assets. Existing cryptographic-based ap-

proaches, such as those relying on homomorphic encryption or secure multi-party 

computation (MPC), often suffer from substantial computational and communi-

cation overhead, making them impractical for large-scale deep learning models. 

In this paper, we propose a novel and efficient framework that protects model 

and input privacy while significantly improving inference efficiency. The core of 

our approach is Shadow Model Craft, a structural model decomposition strategy 

inspired by secret sharing. Instead of encrypting model parameters, we distill the 

original model into multiple lightweight shadow models with disjoint function-

ality and distribute them across non-colluding servers. Each server performs in-

ference over secret-shared inputs using plaintext model fragments, thus eliminat-

ing the need for encrypted model parameters. Our design allows local execution 

of linear operations, further reducing inference latency. Experiments on CIFAR-

10 and ImageNet demonstrate that our framework achieves strong privacy guar-

antees with up to 90% model compression and over remarkable speedup com-

pared to other sota works, while maintaining competitive inference accuracy. 

This work offers a practical and scalable solution for secure deep learning infer-

ence in real-world deployments. 

Keywords: Privacy-Preserving Inference,Machine Learning as a Service 

(MLaaS), Multi-Party Computation. 

1 Introduction 

1.1 A Subsection Sample 

Machine Learning as a Service (MLaaS) [1] has rapidly gained popularity, with cloud 

servers such as Amazon and Google enabling model providers to deploy neural net-

works in the cloud and deliver inference services to customers. By offloading storage 

and computing management to cloud platforms, MLaaS significantly reduces service 

delivery costs for vendors, and also simplifies customers' access to advanced AI capa-

bilities. However, this business model raises significant privacy concerns, as both user 



data and critical model information are highly valuable and sensitive. For example, 

some sensitive input data—including facial images, financial records, or medical 

scans—must be protected from unauthorized access. Strict regulations, such as the [2] 

and China’s Data Security Law [3], restrict how such data can be used, making direct 

cloud-based inference potentially risky. In addition, deployed models constitute valua-

ble intellectual property for providers. To achieve high-performance neural networks, 

providers must invest heavily in curated datasets, intensive computation, and repeated 

optimization. Disclosure of critical model details can undermine proprietary value and 

expose providers to legal or commercial threats.  

There is a growing need to protect the privacy of both input data and models in 

MLaaS environments. Many studies have explored cryptographic techniques to address 

this challenge, particularly in the context of convolutional neural networks (CNNs) [4]. 

These approaches commonly rely on cryptographic primitives such as homomorphic 

encryption [5] and multi-party computation (MPC) [6], with MPC generally offering 

better efficiency than HE in practice. Several representative systems, including 

GryptGPU [7] CrypTFlow [8] and [9], leverage MPC-based secret sharing to protect 

model parameters and user input. In these frameworks, model providers and clients act 

as separate data sources, while the cloud platform functions as computing party. This 

solution theoretically safeguards model parameters and user inputs, ensuring that only 

data sources have access to them. However, it offers limited protection for the model’s 

architecture (including the number, types, and sizes of layers). This architectural design 

is considered proprietary and confidential [10]. Its disclosure may lead to significant 

risks for both intellectual property and commercial interests. Moreover, cryptographic 

methods inherently involve high computational complexity and communication over-

head. These challenges are particularly pronounced when dealing with large-scale mod-

els containing billions of parameters in real-time applications. For example, state-of-

the-art MPC solutions [7] take approximately 9 seconds to process a single image on a 

ResNet-50 model [11]. 

In this paper, we propose a novel and efficient framework for the MLaaS paradigm 

to mitigate security risks while maintaining inference accuracy. Our approach provides 

comprehensive privacy protection for both models and input/output data. Unlike exist-

ing cryptographic-based methods that uniformly apply expensive encryption tech-

niques to both inputs and model parameters, our framework adopts customized protec-

tion strategies based on the nature of each component. Fully encrypting both the model 

and input significantly degrades inference performance, making such methods imprac-

tical in real-world scenarios. In contrast, our approach performs inference on a plaintext 

model, while preserving model confidentiality through decomposition and distributed 

deployment. Consequently, no single party involved in the process can independently 

access the model’s function to reconstruct it’s parameters or architecture.Our main con-

tributions are summarized as follows: 

1. Efficient Privacy-Preserving Inference. We present an efficitive privacy-pre-

serving inference framework specifically designed for convolutional neural net-

works (CNNs), aiming to safeguard both user data and the proprietary aspects of 
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the model, including its parameters and architecture. Compared to existing pri-

vacy-preserving inference (PPI) approaches, our method significantly reduces in-

ference latency while maintaining privacy guarantees. 

2. Shadow Model Craft. We introduce a novel strategy inspired by secret sharing 

to structurally protect the model. By fragmenting the model’s predictive behavior 

across multiple lightweight shadow models, this approach allows inference to be 

performed using plaintext models while ensuring that no single party can recon-

struct the original model. The method also reduces the parameter size by up to 

90%, greatly improving deployment and computation efficiency. 

3. Extensive Evaluation. We conduct comprehensive experiments on CIFAR-10 

and ImageNet using multiple CNN architectures. Results show that our frame-

work achieves high inference accuracy and efficiency while significantly reducing 

the risk of model leakage during inference. 

2 Related work 

Privacy-preserving inference (PPI) has been extensively explored in recent years. One 

prominent line of work leverages cryptographic primitives, including differential pri-

vacy (DP) [12], homomorphic encryption (HE) [13], and multi-party computation 

(MPC) [14]. State-of-the-art systems such as SecureML [15], CrypTFlow2 [16], Se-

cureNN [17], SSNet [18]  and ABY3 [19] apply these techniques to encrypt both model 

parameters and user inputs, enabling secure computation via homomorphic operations 

or secret-sharing protocols. 

Some studies seek to reduce inference latency by modifying model structures in PPI. 

Techniques such as minimal splitting [20], weight scaling [21], and matrix permutation 

[22] aim to construct MPC-friendly or privacy-preserving model variants. Ditto [23] 

proposes a quantization-aware distillation approach tailored to MPC protocols, while 

Private Model Compression via Knowledge Distillation explores distillation as a means 

to compress large models into lightweight student models, thereby improving inference 

efficiency. While knowledge distillation is traditionally used for model compression 

[24], it can also serve as a privacy-enhancing mechanism: by training student models 

to mimic the outputs of a private teacher model, the teacher model can remain undis-

closed. However, the distilled student model often encapsulates a significant portion of 

the teacher's behavior and thus may itself become a valuable proprietary asset.  

Compared to the above approaches, this work takes a fundamentally different direc-

tion by adopting knowledge distillation as the core mechanism for privacy-preserving 

inference. We introduce Shadow Model Craft, a strategy that fragments the predictive 

behavior of the original model across multiple lightweight shadow models. This design 

not only compresses the original model to improve inference efficiency, but also ena-

bles the model to be distributed across multiple servers for parallel execution. Most 

importantly, since each shadow model is functionally incomplete and structurally dis-

tinct from the original, model parameters can be transmitted in plaintext without com-

promising confidentiality. As a result, the inference protocol only needs to encrypt the 

input, allowing linear operations such as convolution and fully connected layers to be 



computed locally by each server. This significantly reduces inference latency compared 

to fully encrypted inference schemes, making it suitable for practical secure inference 

scenarios that demand high efficiency and low response time. 

3 Preliminaries 

3.1 Secret Sharing 

To enable secure computation, we adopt a replicated secret sharing scheme designed 

for 3PC settings. All arithmetic operations are performed over the ring ℤ𝑛, where 𝑛 =
264 in our implementation. a private value 𝑥 is encoded as a triple of additive shares 

such that 𝑥 = 𝑥1 + 𝑥2 + 𝑥3 mod 𝑛. Each party receives two out of the three shares in 

an overlapping pattern, ensuring that no single party can reconstruct the original value 

independently. For example, if the shares are (𝑥1, 𝑥2, 𝑥3), then party 𝑃1 holds (𝑥1, 𝑥2), 

𝑃2  holds(𝑥2, 𝑥3), and 𝑃3 holds (𝑥3, 𝑥1). and we denote that. This 2-out-of-3 sharing 

strategy offers two key benefits: it preserves data confidentiality under a semi-honest 

model, and it allows for efficient local computation with minimal communication over-

head. We refer to this representation as ⟦𝑥⟧, which satisfies REC( ⟦𝑥⟧) = 𝑥. 

 

3.2 MPC Arithmetic 

Linear components of CNNs, including convolution and dense layers, can be imple-

mented efficiently using the aforementioned primitives. Let(𝑎, 𝑏) be public constants 

and ⟦𝑥⟧, ⟦𝑦⟧ be secret-shared values under replicated secret sharing. Operations such 

as ⟦𝑧⟧ = 𝑎 ⟦𝑥⟧ + 𝑏⟦𝑦⟧ only involve addition and scalar multiplication by public con-

stants, and can be performed locally by each party. For example, given share triplets 

(𝑥1, 𝑥2, 𝑥3) and (𝑦1 , 𝑦2, 𝑦3), the resulting share of (𝑎𝑥 + 𝑏𝑦) is locally computed as 

(𝑎𝑥1 + 𝑏𝑦1, 𝑎𝑥2 + 𝑏𝑦2, 𝑎𝑥3 + 𝑏𝑦3). In contrast, multiplying two secret-shared values 

requires interaction among parties. To compute ⟦𝑥 ∙ 𝑦⟧, each party locally expands the 

dot product (𝑥1 + 𝑥2 + 𝑥3) ⋅ (𝑦1 + 𝑦2 + 𝑦3) mod 𝑛, which is split into three partial 

terms (𝑧1 + 𝑧2 + 𝑧3) mod 𝑛 . Each term is computed as 𝑧𝑖 = 𝑥𝑖𝑦𝑖 + 𝑥𝑖𝑦𝑖+1 +
𝑥𝑖+1𝑦𝑖) mod 𝑛. These local products are then re-shared among the parties to obtain a 

fresh secret sharing of the result. In our implementation, we only perform scalar multi-

plications between secret-shared values and public constants, and do not involve mul-

tiplications between two secret-shared values. 

4 Methodologies 

4.1 Overview 

The primary objective of this work is to propose an efficient and secure private infer-

ence scheme for the MLaaS paradigm, addressing the critical challenge of model ex-

traction attacks. Our scheme effectively protects both the model's privacy (parameters 

and architecture) and client information (inputs and outputs) while maintaining high 
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inference performance. Our proposed approach comprises two main components: 

Shadow Model Craft and a Secure Multi-party Inference Framework. 

In the Shadow Model Craft, we introduce a novel scheme that transforms the original 

private model into an ensemble of shadow models. The correct inference result can only 

be obtained by aggregating the outputs from the entire ensemble. Secure multi-party 

inference Framework is based Three-party computation (3PC) setting, which is widely 

adopted as it offers stronger security guarantees than 2PC protocols while being more 

efficient than general n-party constructions. By distributing the shadow models across 

three computing entities and executing an MPC protocol in online inference stage, our 

method meets the required security guarantees and get higher performance. Detailed 

descriptions of each stage are provided in the following sections. 

 

4.2 System model 

We consider three types of entities in our framework: 

⚫ Provider: Owns a trained convolutional neural network (CNN) and deploys it 

across three cloud servers. The provider offers inference services while ensuring 

that the model remains confidential. 

⚫ Servers: A group of three non-colluding cloud servers that collaboratively exe-

cute the inference protocol through mutual interaction. 

⚫ Client: Submits input data to the cloud and receives the final prediction result. 

 

Threat model. Similar to previous work, we assume a classical outsourced MPC par-

adigm. In this setting, providers and clients each submit their confidential data (model’s 

parameters and architecture, inference queries and results) to non-colluding servers. 

These parties expect that their secrets remain secure and are not exposed to any unau-

thorized entity during computation. Inference results are also treated as sensitive, as 

repeated access can enable black-box attacks that extract the provider’s model. The 

servers jointly run a MPC protocol. They perform computations over secret-shared data 

and return the secret-shared result only to the client. No server should learn anything 

about the confidential data. We assume a semi-honest adversary, all parties follow the 

protocol but may try to infer extra information from the messages they observe. 

 

4.3 Shadow Model Craft 

Design Motivation. We are inspired by the principle of distributed trust and the concept 

of secret sharing. Rather than splitting confidential model parameters into multiple 

shares, we aim to protect the model through structural decomposition. The central idea 

of Shadow Model Craft is to fragment the model’s predictive behavior into multiple 

components, such that the correct inference result can only be obtained when the out-

puts of all components are available. 

During online inference, the original model is securely held by the provider, while 

different servers control separate components. The model is not merely partitioned but 

restructured through ensemble knowledge distillation. Each resulting component is 

functionally incomplete and architecturally distinct from the original, preventing any 



single party from inferring the original model, even with full access to their assigned 

part. 

After decomposition, all components can remain in plaintext, enabling efficient and 

privacy-preserving inference. As demonstrated empirically, this structure-based protec-

tion significantly reduces the overhead compared to traditional MPC approaches. 

 

Ensemble Knowledge Distillation. As shown in Algorithm 图 1 , the private model 

acts as a teacher to train an ensemble of lightweight shadow models {𝑀1, 𝑀2, …  , 𝑀𝑛}. 

The teacher first processes the training dataset to generate soft labels, which contain 

richer information than hard labels and help guide the student models to approximate 

its output distribution more accurately. 

Each shadow model is initialized independently and adopts a lightweight architec-

ture that differs from the teacher. To enhance privacy, we also apply label-space slicing 

during initialization: the overall set of class labels is partitioned into disjoint subsets, 

and each shadow model is trained to predict only the classes within its assigned subset. 

As a result, no single model has access to the full label space, which limits its ability to 

approximate the teacher model independently. 

Every shadow model is assigned a fixed aggregation coefficient 𝑐𝑖, where ∑ 𝑐𝑖
𝑛
𝑖=1 =

1. These coefficients determine the relative contribution of each model to the final en-

semble output, similar to assigning voting weights in a committee. 

All shadow models are trained simultaneously over multiple rounds of distillation 

until they converge on the soft labels. During training, each model independently pro-

cesses the same input samples. Their predictions are aggregated using a weighted sum 

based on the coefficients {𝑐𝑖}, resulting in the final ensemble output: 

𝑀(𝑥) = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑀𝑖(𝑥) 

The ensemble output is then compared to the teacher model prediction using the 

Kullback–Leibler (KL) divergence. The distillation loss is defined as: 

 

ℒ = ∑ (∑ 𝑐𝑖

𝑖

𝑀𝑖(𝑥)𝑘)

𝑘

log
∑ 𝑐𝑖𝑖 𝑀𝑖(𝑥)𝑘

𝑀teacher(𝑥)𝑘

 

This objective allows the ensemble to closely mimic the teacher’s behavior, while 

ensuring that each individual shadow model remains incomplete and unable to make 

accurate predictions on its own. The provider can adjust both the number of models 𝑛 

and the aggregation {𝑐𝑖}𝑖=1
𝑛  to to flexibly balance inference performance and privacy at 

different levels. A larger number of models generally improves the overall accuracy of 

the ensemble, while also enhancing privacy by distributing knowledge more sparsely 

across components. By adjusting the aggregation weights{𝑐𝑖}𝑖=1
𝑛 , the provider can fur-

ther control the contribution of each model to the final output. For instance, assigning 

equal weights to all 𝑐𝑖 gives each model the same influence during inference, which 

increases privacy by preventing any single model from dominating the prediction. 
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图 1 

Deployment and Security Implications. All trained shadow models are deployed 

across distinct computing parties. Since the correct prediction can only be reconstructed 

when all models contribute, any subset of models reveals only partial and insufficient 

information. This design significantly protects the confidentiality of original model, 

and also reduces the risk of model extraction by any single party. 

 

4.4 Secure Multi-party Inference 

We now present the full secure inference process, based on the MPC protocol and the 

shadow model structure. Although this work adopts a three-server configuration, the 

underlying design is readily extensible to support more parties with minimal modifica-

tions. 

 

Secure Module. In neural networks, linear layers transform input representations into 

new dimensions, typically through dense or convolutional operations. In our secure in-

ference setting, these computations are represented as ⟦𝑦⟧ =



Dense(⟦𝑥⟧, 𝑤) and ⟦𝑦⟧ = Conv2D(⟦𝑥⟧, 𝑤) , where  𝑤  denotes plaintext model 

weights. Since these operations involve only linear combinations between secret-shared 

inputs and public constants, they can be performed locally by each party without re-

quiring interaction. 

Beyond linear layers, CNNs also incorporate non-linear functions such as ReLU, 

comparisons, and fixed-point truncation. These are treated as black-box primitives pro-

vided by existing MPC frameworks [25] and are used directly in our implementation 

without modification. 

 

Offline Phase. Using the confidential model𝑀and a selected set of aggregation coeffi-

cients {𝑐1, 𝑐2, 𝑐3} , the provider invokes Protocol 1 to generate three shadow mod-

els{𝑀1, 𝑀2, 𝑀3}.   

To emulate replicated secret sharing, the models are distributed as follows: 𝑃1 →
(𝑀1, 𝑀2), 𝑃2 → (𝑀2, 𝑀3), and 𝑃3 → (𝑀1, 𝑀3). The aggregation coefficients are sent to 

the client for later reconstruction. No single server can access the complete predictive 

behavior of 𝑀, as all three components and their corresponding coefficients are re-

quired to recover the final result. 

 

Protocol 1 

Online Phase. Built upon replicated secret primitives as introduced in Section 2. In 

particular, the client first applies replicated secret sharing to split its input 𝑥 into three 

shares {𝑥1, 𝑥2, 𝑥3} , and distributes them to the computing parties as follows: 𝑃1 →
(𝑥1, 𝑥2), 𝑃2 → (𝑥2, 𝑥3), 𝑃3 → (𝑥1, 𝑥3). 

Each server uses the secure module to evaluate its assigned shadow models on the 

received input shares. As previously discussed, all computations in linear module are 

performed locally by each server, without requiring communication. Communication 

is only required for non-linear operations such as ReLU and fixed-point truncation. For 

example, to jointly compute the output share of 𝑀1(𝑥), servers𝑃1 and 𝑃3 must engage 

in a secure protocol during the non-linear layers. Similarly, 𝑃1 communicates with 𝑃2 

to obtain its portion of the output from 𝑀2(𝑥). 

After the joint computation phase, each server holds partial outputs as follows: 
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⚫ 𝑃1 holds {𝑀1(𝑥1), 𝑀1(𝑥2), 𝑀2(𝑥1), 𝑀2(𝑥2)} 

⚫ 𝑃2 holds {𝑀2(𝑥2), 𝑀2(𝑥3), 𝑀3(𝑥2), 𝑀3(𝑥3)} 

⚫ 𝑃3 holds {𝑀1(𝑥1), 𝑀1(𝑥3), 𝑀3(𝑥1), 𝑀3(𝑥3)} 

 

These partial results are then sent back to the client, who performs reconstruction 

and aggregation to obtain the final prediction. The output of each shadow model is 

shared secret between the parties, so the client must first reconstruct the full output of 

each model by summing the received shares. For example, to reconstruct 𝑀1(𝑥), the 

client computes 𝑀1(𝑥) = 𝑀1(𝑥1) + 𝑀1(𝑥2) + 𝑀1(𝑥3). After obtaining 𝑀1(𝑥), 𝑀2(𝑥) 

and 𝑀3(𝑥), the final prediction is computed by weighted aggregation: 𝑀(𝑥) = 𝑐1 ⋅
𝑀1(𝑥) + 𝑐2 ⋅ 𝑀2(𝑥) + 𝑐3 ⋅ 𝑀3(𝑥). 

 

5 Experiments and Results 

5.1 Setup 

Our experiments are built upon the CrypTen [25] and CryptGPU [26]  framework, 

whose data security has been theoretically verified within the framework. And we con-

ducted in a local area network (LAN) setting. Each device is equipped with one 

NVIDIA RTX 3090 GPU with 24 GB of memory. We evaluate our method on two 

widely used benchmark datasets, CIFAR-10 and ImageNet, using ResNet-50, ResNet-

101, ResNet-152, VGG-16, and VGG-19 as orginal models. All parties run under Ub-

untu 20.04 with PyTorch 2.0.1 installed. 

 

5.2 Inference Analysis 

We set the number of shadow models to 3, with each model assigned an equal weight 

of 𝑐𝑖 =
1

3
. To verify the generality of our method, each shadow model is constructed as 

a lightweight network composed of randomly selected residual blocks. We begin by 

evaluating the inference accuracy of the ensemble of shadow models. As shown in  

Table 1. Comparison of confidential models and shadow models (* indicates shadow 

models. ¹ denotes the evaluation results on CIFAR-10, and ² corresponds to those on 

ImageNet)., the ensemble can maintain the inference performance of the original 



teacher model with only a slight drop in precision. Notably, model distillation results 

in a substantial reduction in parameter size—achieving up to 90% compression com-

pared to the original model. This significantly reduces both storage requirements and 

the computation overhead in the MPC setting. Therefore, in terms of inference perfor-

mance, the student ensemble can effectively replace the original model. 

Table 1. Comparison of confidential models and shadow models (* indicates shadow models. ¹ 

denotes the evaluation results on CIFAR-10, and ² corresponds to those on ImageNet).  

Network Params (M) Test Acc.¹ (%) Test Acc.² (%) 

ResNet-50 25.6 94.1 76.2 

ResNet-50* 2.4 93.6 ± 0.12 73.4 

ResNet-101 44.6 95.1 77.4 

ResNet-101* 3.1 94.8 ± 0.08 74.2 

ResNet-152 60.2 95.6 78.6 

ResNet-152* 2.8 94.6 ± 0.21 74.9 

VGG-16 132 93.2 71.8 

VGG-16* 5.1 92.7 ± 0.33 70.5 

VGG-19 143 94.2 72.6 

VGG-19* 4.4 93.8 ± 0.14 71.2 

Table 2. Test accuracy under different numbers of Shadow Models 

Network 1-Shadow Acc. (%) 2-Shadow Acc. (%) 3-Shadow Acc. (%) 

ResNet-50 18.6 17.6 93.6 

ResNet-101 12.5 17.1 94.8 

ResNet-152 14.5 12.2 94.8 

VGG-16 15.2 16.6 92.7 

VGG-19 15.5 16.9 93.8 

 

 

5.3 Security Analysis 

We further conduct inference experiments on CIFAR-10 using either a single shadow 

model or any pair of shadow models. As shown in Table 2, when only one or two 

shadow models participate in the inference, the prediction accuracy is nearly indistin-

guishable from random guessing. This is due to the effect of our knowledge-slicing 

technique, which ensures that each student model learns only a partial subset of the 

teacher model's functionality. In contrast, when all three models are involved, the sys-

tem achieves high prediction accuracy thanks to our ensemble distillation mechanism. 

These results demonstrate that in our 3PC inference setting, any two shadow models 

are deployed in plaintext on arbitrary servers, compromising any single server reveals 

no meaningful information about the inference functionality of the original secret 

model. As a result, model extraction attacks and other potential security breaches can 

be effectively prevented. 
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5.4 Efficiency Analysis 

 

Fig .1. Inference time comparison across different models using SSNet [18], CrypTFlow [8], 

CryptGPU [26], ABY3 [19], and OurMethod. 

As shown in  

Table 1, our method significantly reduces inference time overhead by replacing the original large 

models with shadow models. These student models are randomly generated and have similar 

sizes, leading to nearly consistent inference times across different teacher networks after distil-

lation. In other words, the inference cost of our method is independent of the size and structure 

of the original models. Furthermore, to evaluate the inference efficiency of our method, we com-

pare it with several state-of-the-art secure inference approaches, as Fig .1. Inference time com-

parison across different models using SSNet [18], CrypTFlow [8], CryptGPU [26], ABY3 [19], 

and OurMethod. Fig .1, Since our method employs lightweight student models and does not re-

quire encryption of model parameters, it significantly reduces the time overhead of secure infer-

ence while still achieving state-of-the-art results. 

5.5 Ablation Study 

To understand the trade-off between model ensemble size and inference accuracy, we 

conduct an ablation study by varying the number of shadow models used in the infer-

ence. We investigate the impact of the number of shadow models 𝑛 on inference accu-

racy. Specifically, we extract between 2 and 7 student models from a ResNet-50 and 

evaluate their ensemble inference accuracy under non-encrypted settings on CIFAR-

10. As shown in Fig. 2 , increasing the number of student models consistently improves 



the overall prediction accuracy. However, this accuracy gain comes at the cost of in-

creased computational overhead, particularly during the online inference phase. 

 

 

Fig. 2. Inference accuracy of ensembles with different numbers of student models on CIFAR-10 

 

6 Conclusion 

In this work, we present a novel privacy-preserving inference framework that effec-

tively balances security, efficiency, and accuracy in the MLaaS setting. Unlike tradi-

tional cryptographic approaches that encrypt both model parameters and input，often 

resulting in significant inference latency, we introduce Shadow Model Craft, a struc-

ture-aware defense mechanism that protects model confidentiality without requiring 

parameter encryption. By decomposing the model’s predictive behavior into multiple 

lightweight shadow models and distributing them across non-colluding servers, our 

method ensures that no single party can reconstruct or infer the original model. Mean-

while, the client-side input remains protected via secure multi-party computation. Ex-

perimental results on CIFAR-10 and ImageNet demonstrate that our framework signif-

icantly reduces inference latency while maintaining high prediction accuracy. Overall, 

our design provides a practical and scalable solution for CNN inference in real-world 

deployment environments. 
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