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Abstract. With the increasing complexity of software development environ-

ments, identifying and fixing vulnerabilities has become a key aspect of software 

maintenance. One way to improve the efficiency and effectiveness of vulnerabil-

ity-fixing is to classify vulnerability-fixing commits. However, the existing vul-

nerability-fixing classification methods are limited to code language, code length, 

commit dataset, ambiguous and domain specialized commits, which leads to low 

precision. In this paper, we propose a user-guided classification method for vul-

nerability-fixing commits. For ambiguous and domain specialized commits, we 

incorporate human involvement and timely intervention in the process of fine-

tuning the BERT model. Furthermore, a large language model (LLM) is em-

ployed to address the challenges posed by the variant code language and length. 

Experiment results show that our approach significantly improves the perfor-

mance of commit classification. The user-guided BERT message classifier accu-

racy increases by 2～5% compared with baseline methods after 10 iterations of 

human participation. Based on the TensorFlow dataset, the patch classifier using 

LLM outperforms HERMES by 11.6% in terms of F1-score. In summary, our 

overall classification which combined the results of message classifier and patch 

classifier outperforms the HERMES by 14.6% and VulCurator by 5.6%.  

Keywords: commit classification, user-guided, LLM. 

1 Introduction 

As the world's largest open-source project hosting platform, GitHub has 100+ million 

developers, 4+ million organizations, and 420+ million repositories so far [1]. Commits 

in GitHub, which record changes in code, documentation, or other assets, play a signif-

icant role in software maintenance and development [2]. As software systems grow 

rapidly in complexity, the likelihood of encountering bugs also grows. Consequently, 

identifying and fixing these bugs has become a critical aspect of software maintenance. 

Detecting vulnerability-fixing commits aids in analyzing root causes and repair strat-

egies for vulnerabilities, which in turn enables the development of enhanced testing 

frameworks, improved coding practices, and more efficient debugging processes.  
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However, it is not enough to only analyze the commit text information [3,4]. Commit 

messages can be ambiguous, incomplete, or misleading. For example, some messages 

contain keywords like “CVE” but only describe textual changes, while others lack suf-

ficient detail, such as “minor fix” or “updated dependencies” [5]. Moreover, silent 

patches, which intentionally conceal their vulnerability-fixing purpose to prevent ex-

ploitation by attackers, further complicate detection [6,7]. Therefore, it is very neces-

sary to add the analysis of code-change in the vulnerability-fixing classification prob-

lem. Existing work [8,9] also proves the necessity of adding code-change to commit 

classification. 

Despite the incorporation of code-change analysis in certain existing methods, sig-

nificant challenges persist. First, BERT-based classification models encounter difficul-

ties with code language and length constraints [8,10], making it difficult to generalize 

across different languages or process lengthy code changes. Second, ambiguous and 

domain-specific commits require a level of expertise and contextual understanding 

that current automated systems often lack. These limitations reduce the effectiveness 

of existing approaches in accurately identifying vulnerability-fixing commits. 

The emergence of large language model (LLM) provides a new way to solve this 

issue. However, directly using LLM to process commit messages and code changes 

simultaneously presents several challenges. Our experiments have shown that LLM ex-

hibits limited capacity to manage complex, lengthy contextual information. When both 

commit messages and code changes are input simultaneously, the accuracy drops by 

34% compared to analyzing code changes alone. In the application of LLM, processing 

excessive information in a single stage or running multiple stages presents two signifi-

cant challenges: first, the understanding of the information may be inadequate [11,12], 

and second, it can lead to substantial resource consumption during the token calculation 

process [13,14]. 

To address these challenges, we propose an innovative user-guided classification 

framework that integrates the strengths of both small and large models. This framework 

leverages human expertise and incorporates human feedback into the fine-tuning of a 

BERT-based model, enabling it to more effectively handle ambiguous and domain-

specific commit messages. Additionally, we utilize LLMs to overcome limitations re-

lated to code language diversity and input length, providing a robust solution for pro-

cessing complex code changes. By combining the results from small and large models, 

our approach significantly conserves resources while enhancing prediction accuracy.  

To evaluate the efficacy of our approach on the message classifier, we use the dataset 

[15] which contains 9269 commit messages of C/C++ language to train the BERT 

model. The results show that, after 10 rounds of user-guided refinement, resampling 

and smoothing methods improve the accuracy by 2.2% compared with no participation. 

To avoid overfitting, we validate the trained classifier on five real-world datasets [16-

18], and the accuracy, precision, recall, and F1-score are significantly improved. For 

code changes, the patch classifier leveraging LLM (Qwen), which is tested on the Ten-

sorFlow [10] dataset, has an accuracy of 85% and is 11.6% higher than HERMES [19] 

in F1. By integrating the user-guided message classifier and the LLM-based patch clas-

sifier, our method achieved state-of-the-art performance, surpassing HERMES by 

14.6% and VulCurator [10] by 5.6% in terms of F1 score. 
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In this paper, we make the following contributions: 

- We propose a user-guided BERT framework to improve vulnerability-fixing com-

mit message classification performance.  

- Our proposed LLM-aided vulnerability-fixing code-change classifying method 

outperforms HERMES by 11.6% in F1-score, based on the TensorFlow dataset. 

- By combining user-guided and LLM-based approaches, our method achieves su-

perior performance compared to HERMES and VulCurator.  

- We offer a reproduction package to facilitate the reproduction and future research 

at https://zenodo.org/records/14189550. 

The rest of the paper is organized as follows: Section II describes our motivation; 

Section III describes our methodology; Section IV describes the experiments and re-

sults; Section V introduces the related work; Section VI concludes the paper. 

2 Motivation 

Figure 1 presents a detailed example of a message description associated with a vul-

nerability-fixing commit, specifically related to CVE-2019-12904. This commit mes-

sage has been repeatedly misclassified by machine learning algorithms [10,20] and 

LLM (Qwen) as not vulnerability-fixing. Upon closer examination of the content within 

the message, it becomes evident that it contains numerous proper nouns and exhibits a 

high level of technical jargon, making it challenging for automated systems to accu-

rately interpret its relevance. "Move look-up table to .data section and unshare between 

processes." This statement alone involves specific terminology such as "look-up table," 

".data section," and "unshare between processes," all of which require domain-specific 

knowledge to fully comprehend. The presence of these terms, along with other similar 

phrases throughout the message, underscores the complexity involved in understanding 

the nuances of software development documentation. 

Fig. 1. CVE-2019-12904 commit message. 

As a result, there exists a clear need for human intervention when analyzing such 

messages. While machine learning models can certainly provide valuable insights into 

large datasets, they often struggle with highly specialized language and context-de-

pendent information. In cases like this one, only a skilled developer or expert reviewer 

would be able to accurately assess whether the changes described constitute a genuine 

bug fix or merely represent routine maintenance activities. 



Figure 2 illustrates a vulnerability-fixing patch derived from CVE-2018-7999, which 

notably includes both code modifications and alterations to text files. This dual nature 

of the patch poses significant challenges for existing models [10,19,21] that are primar-

ily designed to analyze source code. Specifically, the incorporation of textual changes, 

such as comments and documentation, introduces essential context for understanding 

the rationale behind the code revisions. However, these elements often do not conform 

to the structural patterns expected by traditional code-focused analysis methods. 

Fig. 2. CVE-2018-7999 patch. 

Furthermore, the composition of this patch surpasses the input limitations of certain 

machine learning frameworks, such as BERT, which are constrained to processing se-

quences of up to 512 tokens. The mixed-language aspect of the patch, combined with 

the substantial amount of data it contains, exacerbates the difficulty in effectively cap-

turing the comprehensive scope of the modifications using conventional approaches. 

Given these challenges, there is a compelling argument for the adoption of LLM that 

is capable of handling extensive and varied inputs. These advanced models can poten-

tially address the intricacies present in complex patches more accurately. Consequently, 

utilizing such models could significantly enhance our capacity to identify meaningful 

patterns and derive valuable insights from a wide array of software artifacts, ultimately 

contributing to improved software security and reliability. 

3 Methodology 

We aim to classify whether a commit is related to vulnerability-fixing or not. Figure 

3 illustrates our proposed vulnerability-fixing commit classification framework, where 

the input consists of the commit text description and its code changes, and the output is 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

the classification result of the commit. If a commit doesn't involve vulnerability fixing, 

it outputs "no"; otherwise, it outputs "yes". 

Fig. 3. The overview of vulnerability-fixing commit classifier. 

Specifically, our proposed framework consists of three components: 

User-Guided Message Classifier: A DistilBERT-based classifier that has been fine-

tuned iteratively with human feedback to identify commit messages related to vulnera-

bility fixes. We add human involvement to enhance the model's predictions for ambig-

uous or challenging cases. 

LLM-Aided Patch Classifier: We opt for Qwen-max-longcontext (2000 token) [22] 

to evaluate the relevance of code changes to vulnerability-fixing. LLMs are effective 

in handling diverse programming languages and lengthy contexts. 

Joint Decision: A stacking-based meta-classifier that combines the outputs of the 

message and patch classifiers to produce the final judgment. 

3.1 Message Classifier 

Fig. 4. The framework of user-guided fine-tuning BERT model. 

User-guided BERT framework 

Initial Training: As shown in Figure 4, A base BERT classification model is trained 

on an existing labeled dataset. This model provides initial predictions for vulnerability-

fixing classification. 

Confidence Assessment and Sample Selection: During the testing phase, the model 

outputs a confidence score (the predicted probability of being a vulnerability-fixing 

commit message) for each sample. Given that this is a binary classification problem, 

we set a confidence threshold of 0.5. If the model's confidence in a particular sample 

falls below this threshold, it indicates that the prediction for this sample is unreliable, 

marking it as a high-uncertainty sample. These uncertain samples are then added to a 

review queue and submitted for human verification to enhance the quality of data la-

beling. 



Human-Machine Interaction Feedback Loop: Human feedback is primarily ap-

plied to low-confidence samples (0-0.5), which typically fall into two overlapping cat-

egories: domain-specific descriptions and ambiguous expressions. These samples rep-

resent cases where the classifier struggles to resolve the underlying semantics or con-

textual nuances due to a lack of prior knowledge or insufficient clarity in the input data. 

Upon human review of uncertain samples, three types of feedback outcomes are pro-

vided: 

-Accept Model Prediction: If the human reviewer confirms the accuracy of the 

model’s prediction, the label of the sample remains unchanged, and the confidence 

score is updated to reinforce the model's correct judgment. 

-Label Correction: If the human reviewer identifies an error in the model’s predic-

tion, the sample label is corrected. This corrected label is then used to improve the 

model’s handling of similar samples during subsequent training. 

-Sample Removal: Remove samples that are too ambiguous or lack sufficient infor-

mation for meaningful classification. (1) The description is very ambiguous, for exam-

ple, the commit message of CVE-2017-14166 is: "Do something sensible for empty 

strings to make fuzzers happy." (2) The description does not contain any information, 

such as "...". Removed samples are excluded from both training and testing sets to avoid 

biases that could unfairly enhance performance metrics. 

Model Update and Iterative Training: The updated dataset, incorporating human 

feedback, is reused for further training and testing. Over successive iterations, the 

model adapts to challenging cases, reducing its dependence on human intervention. 

The user-guided updating message classifier 

When a human confirms that the prediction is correct, we can treat the sample as a 

"high confidence" sample, and by increasing the weight or adjusting the learning rate 

of the model on this sample, the model can increase the prediction confidence when it 

encounters similar samples in the future, thereby reducing the manual dependence on 

similar samples in the future. 

We use sample resampling or confidence smoothing update techniques to update the 

dataset. Both techniques are not always applied simultaneously. Resampling is used to 

reinforce the importance of high-confidence samples, while confidence smoothing ad-

justs model outputs incrementally to avoid drastic fluctuations. The choice of technique 

depends on the specific needs of the training phase. For example, resampling may be 

prioritized in earlier iterations to address rare patterns, while confidence smoothing is 

more effective in stabilizing predictions during later stages. 

Resampling: A sample is added to the training set multiple times to strengthen the 

model's ability to predict this sample and similar samples. By learning the same exam-

ple multiple times, the model will become more sensitive to its features, thus increasing 

its confidence in similar examples. 

Confidence Smoothing Update: We directly adjust the confidence score of the 

model output to perform a "smoothing" update using a weighted average for a specific 

sample. Assuming that the original confidence is 𝐶′, the confidence after manual con-

firmation can be updated as:𝐶 = 𝛼 ∙ 1 + (1 − 𝛼) ∙ 𝐶′. Where 𝛼 is a small weight that 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

indicates the strength of the confidence smoothing. Through this method, the confi-

dence score of the model on the sample will be improved, and the drastic fluctuation of 

the confidence score is avoided. 

3.2 Patch Classifier 

LLMs possess strong contextual understanding capability and extensive applicability 

across programming languages. The adaptability of LLMs to different programming 

languages also ensures that LLM-based evaluation works across different code syntaxes 

and structures. 

To effectively leverage LLMs’ contextual understanding capability, we craft a task-

specific prompt to evaluate the relevance of code changes to the corresponding vulner-

ability-fixing, as depicted in Figure 5. This prompt consists of three components:  

(1) System prompt [23]: The LLM acts as an expert, analyzing code bugs and their 

corresponding fixes.  

(2) Answer prompt: The LLMs evaluate the relevance of code changes to vulnera-

bility-fixing in the file and output "YES" or "NO" indicating whether the code change 

is related to vulnerability-fixing. Given a confidence score within 0-100. 

(3) Code Change: The specific code changes made in the file. 

Fig. 5. A sample prompt for LLMs evaluating the relevance of a code change to the vulnerability-

fixing. 

3.3 Joint Decision 

We use two classifiers, each focusing on a distinct aspect of the commit. Individually, 

each classifier can capture information about one aspect of a commit. We enhance clas-

sification performance by combining the outputs of the message classifier and the patch 

classifier. Through this fusion method, we effectively combine the features of message 

and patch, and can more robustly cope with the performance differences of each model 

in different situations. 

Similar to previous studies [19], we employ a stacking-based method [24]. Stacking 

methods use a meta-classifier that learns how to combine the outputs of each base clas-

sifier to produce a more accurate final prediction. Specifically, we obtain the confidence 

of whether a commit is vulnerability-fixing from the message classifier and the patch 

classifier. We then convert the confidence into probabilities to process this information 

uniformly in the stacking process.  

The stacking-based joint decision method can be divided into five implementation 

steps. The processing procedures are described below according to the characteristics 

of base classifiers: 



Step 1: Base Classifier Output Acquisition. 

- Text Information Classifier: Directly outputs probability values through softmax:   

𝑃𝑡(𝑥) = 𝑓𝑡(𝑥) ∈ [0,1] (1) 

Where 𝑓𝑡  denotes the trained Distil-BERT model, outputting probabilities via softmax. 

- Patch Classifier: Obtains raw confidence scores through LLM prompt engineering:   
𝑆𝑝(𝑥) = 𝐿𝐿𝑀(𝐶𝑜𝑑𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) ∈ {0,1, … ,100} (2) 

Step 2: Confidence Standardization: Apply linear scaling only to the patch classifier. 

𝐶𝑝(𝑥) =
𝑆𝑝(𝑥)

100
⇒ 𝐶𝑝(𝑥) ∈ [0,1] (3) 

Step 3: Meta-Feature Construction: Combine heterogeneous outputs into a two-di-

mensional feature vector. 

𝐹(𝑥) = [𝑃𝑡(𝑥), 𝐶𝑝(𝑥)] ∈ 𝑅2 (4) 

Step 4: Meta-Classifier Training. 

- Define a regularized logistic regression model:   

𝑔(𝐹(𝑥)) = 𝜎(𝑤0 + 𝑤1𝑃𝑡 + 𝑤2𝐶𝑝) (5) 

Where 𝜎(𝑧) = 1/(1 + 𝑒−𝑧) is the sigmoid function. 

- Optimization objective (cross-entropy loss + L2 regularization):   

ℒ = − ∑[𝑦𝑖 ln 𝑔𝑖 + (1 − 𝑦𝑖) ln(1 − 𝑔𝑖)] + 𝜆||𝑤||
2

2
𝑁

𝑖=1

(6) 

- Parameter learning process:  Update via gradient descent:   

𝑤𝑗 = 𝑤𝑗 − 𝜂 (∑(𝑔𝑖 − 𝑦𝑖)𝐹𝑖,𝑗 + 2𝜆𝑤𝑗

𝑁

𝑖=1

) (7) 

where 𝜂 is the learning rate, and 𝐹𝑖,𝑗 denotes the 𝑗 − 𝑡ℎ feature of the 𝑖 − 𝑡ℎ sample. 

Step 5: Joint Decision 

𝑦̂(𝑥) = {
1  𝑖𝑓𝑔(𝐹(𝑥)) ≥ 𝜏

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
, 𝜏 ∈ (0,1) (8) 

The threshold 𝜏 is determined by maximizing the F1-score on the validation set. 

Calculation Example:  1. Input code commit x: "A patch fixing an SQL injection 

vulnerability";  2. Text classifier analyzes commit message "Fix parameterized query 

vulnerability" → 𝑃𝑡 = 0.95;  3. LLM evaluates code changes → outputs score 90 

→𝐶𝑝 = 0.90;4. Meta-feature construction:𝐹(𝑥) = [0.95,0.90];  5. Learned parame-

ters: 𝑤0 = −0.2, 𝑤1 = 1.1, 𝑤2 = 0.9 ;6. Linear combination: −0.2 + 1.1 × 0.95 +
0.9 × 0.90 = 1.655;7. Sigmoid transformation: 1/(1 + 𝑒−1.655) = 0.839;8. Decision: 

0.839 > 𝜏(0.6)𝑦̂(𝑥) = 1. 

4 Evaluation 

Our experiments are driven by these research questions: 

RQ1: How effective is the user-guided approach for optimizing the dataset and 

improving the vulnerability-fixing classification model?  

RQ2: How efficient is a large language model in handling code changes?  
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RQ3: How efficient is the method proposed in this paper compared to previous 

work?  

4.1 Experimental Setting 

Dataset 

To evaluate the proposed method, we utilize multiple datasets tailored for different 

components of the framework. 

-User-Guided Message Classifier: We use the C/C++ language part of the dataset 

proposed by Reis et al. [15], which comes from 370 open-source projects. The number 

of data used for fine-tuning is 9269, including 3013 positive data and 6256 negative 

data. In addition, we validate the trained classifier on five real-world datasets [16-18]. 

-LLM-Aided Patch Classifier and Overall Method Validation: We use the Ten-

sorFlow dataset introduced by Nguyen et al. [10] which is specifically designed for 

vulnerability-fixing classification. Unlike the Reis dataset, the TensorFlow dataset in-

cludes both commit messages and corresponding code-change information, which is 

essential for patch-level analysis and evaluating the overall method. 

Fine-tuning BERT model 

We split the dataset into 80%, 10%, and 10% as train set, validation set, and test set. 

We use the distil-BERT model to classify commit messages. Distil-BERT is a light-

weight variant of the BERT model. Compared with traditional BERT, distill-BERT 

runs 60% faster while maintaining 97% performance, but only has 60% parameters 

[25]. We add a dense layer with 2 neurons and sigmoid activation at the end. We trained 

on the original dataset with batches 8 and 16, and the results are shown in Figure 6. By 

comparing loss and accuracy, the results with batch 16 are slightly better than those 

with batch 8. It is optimal when the epoch is 5. Similarly, we used a learning rate of 

(1e-5, 5e-5), which is optimal at 2e-5. Therefore, we trained the model for 5 epochs 

with a learning rate of 2e-5, and a batch size of 16. 

Fig. 6. Loss and Accuracy over Epochs. 

User selection and label judgment standard 

To ensure the accuracy of manual verification, users participating in this user boot-

strap process should meet the following criteria: (1) Software development experi-

ence: Users should have at least two years of practical programming or software devel-

opment experience to ensure their understanding of code changes and commits. (2) Fa-

miliarity with version control systems: Users should be familiar with a version con-

trol system such as Git, especially with the semantics of commit history and code 

changes. (3) Understand the definition and characteristics of vulnerability-fixing: 



Users should have a grasp of common vulnerability-fixing patterns and be able to rec-

ognize different types of commits. (4) Have participated in the bug tracking and fix 

process: Users should have participated in at least one complete software bug tracking, 

fix process, and be able to identify typical vulnerability-fixing commits during devel-

opment. To prevent subjective bias, the criteria defined in Table 1 should first be fol-

lowed during manual confirmation. Second, double audit is used for samples with very 

low confidence, requiring at least two users to independently confirm the label, and 

then the label is updated after consensus. 

Table 1. Standards for manual processing of labels. 

Judgment Standard 

Accept (1) Explicit vulnerability-fixing description: Contains obvious bug fix key-

words or statements (e.g.,"fix bug", "resolve issue", "correct error", etc.). 

(2) Have a direct impact: The code change section has a direct impact on the 

program logic or functionality, fixing known problems with specific function-

ality or modules. 

(3) The actual logic of the code change is consistent with the commit descrip-

tion. 

(4) Commits follow the common vulnerability-fixing pattern. 

Reject (1) Lack of explicit vulnerability-fixing instructions. 

(2) The code changes are only enhancements, performance improvements, 

code refactoring, or documentation updates, not vulnerability-fixinges. 

(3) Description does not match code change. 

Delete (1) Commits are too vague or short to judge the actual purpose of the commit. 

(2) Commits are empty or contain no actual code changes. 

4.2 Experiment Results 

RQ1-Effectiveness of User-Guided Approach 

We conducted 10 rounds of experiments. The dataset is updated in each round, and 

the training, validation, and test sets are generated randomly. In each round, users re-

viewed the samples identified by the model as having high uncertainty. As shown in 

Figure 7, when giving feedback to people for verification, we provided URL references 

for negative data, and CVE information for positive data in addition to the URL. Multi-

source information enables users to process data more efficiently and reduces reliance 

on a single source. 

Analysis of Feedback Rounds: Figure 8 shows the trend in validation and intervention 

over 10 rounds. Early rounds required more user interventions, while later rounds 

showed a gradual decline, indicating the model’s increasing ability to classify samples 

independently. However, after 8 rounds, performance improvements became marginal, 

as shown in Figure 10. This suggests diminishing returns after sufficient iterations. 

Over-intervention in later rounds could lead to overfitting or dependence on specific 

patterns, which we address by capping the number of iterations. In each round of vali-

dation, no more than ten minutes were spent manually. However, this assessment is 

subjective. 
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Fig7. A user-guided example: the input text represents the commit message. After the model 

makes a prediction, it will provide predicted probabilities and predicted labels, along with a URL 

for the user to reference in order to make a judgment. 

Analysis of Resampling and Smoothing: Figure 9 illustrates the effect of different 

resampling counts and smoothing factors on the model performance metrics after one 

round of user guidance. In Figure 9 (a), when the count of resampling is 0, the four 

metrics of the model are at a low level. When the count of resampling increases to 10, 

the metrics improve significantly, especially the improvement of accuracy and preci-

sion is more significant. However, as the count of resampling increases, the model per-

formance starts to level off with slight fluctuations. This result indicates that moderate 

resampling can effectively improve the classification performance of the model. Still, 

excessive resampling does not further improve the performance and may lead to over-

fitting of the model or increased dependence on the training data. In this experiment, 

the model performs best when the count of resampling was 10.  Figure 9 (b) examines 

the effect of varying smoothing factors on the performance of the model. With the in-

crease of smoothing factor, the accuracy of the model is gradually improved, but the 

changes of precision, recall, and F1 are more complex, and some metrics fluctuate or 

decline. When the smoothing factor is low, such as 0.05, precision and recall are low, 

while accuracy is relatively high. As the smoothing factor increases to 0.10, the accu-

racy reaches the highest value, but the other indicators do not show significant improve-

ment. After further increasing the smoothing factor to 0.20, the accuracy remained at a 

high level, but the precision and F1 decreased slightly. 

 

Fig. 8. The number of samples to be validated for each round of user guidance, after ten rounds 

of interaction. Update indicates the number of samples to update the confidence. Correct indi-

cates the number of sample labels changed, which is the wrong sample label. Delete indicates the 

number of samples deleted. 



According to the analysis in Figure 9, we chose the resampling number as 10 and the 

smoothing factor as 0.01 to conduct 10 rounds of user-guided vulnerability-fixing com-

mit message classification experiments, and the results are shown in Figure 10. As the 

number of user-guided rounds increases, the resampling and smoothing update methods 

show an upward trend in general. In smoothing, the performance of the model fluctuates 

a lot in the initial rounds, especially the recall and F1. This fluctuation is due to the 

uncertainty of labels caused by the smooth update of confidence, which affects the 

training of the model. Resampling improves model performance more consistently. 

Fig. 9. The effect of varying resampling counts and varying smoothing factors, after one round 

of user-guided. 

Fig. 10. The performance of the message classification model after ten rounds of user-guided 

resampling and confidence smoothing updating. 

 

Fig. 11. Comparison results of resampling and smoothing in four dimensions of accuracy, preci-

sion, recall, F1 after ten rounds of user guided. 
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Figure 11 shows the comparison between resampling and smoothing in terms of ac-

curacy, precision, recall and F1. In the user-guided scenario, resampling is generally 

better than smoothing update in various indicators, especially in accuracy and F1. How-

ever, resampling causes large fluctuations in the number of original datasets. 

In general, the overall accuracy of the model is on the rise, and the tenth round has 

increased by 2.6% compared with the first round. To avoid overfitting to the same da-

taset, we additionally selected five real-world datasets and directly tested the model 

with user-guided fine-tuning. As shown in Table 2, the models which used resampling 

after 5 rounds and 10 rounds have higher accuracy than the original model, with a max-

imum increase of 5%. 

Analysis of Noisy Labels: In the process of user-guided, we found the Reis dataset 

[15] has a label error rate of 14%, while the TensorFlow dataset [10] has a rate of 9.4%. 

The label error rate refers to the proportion of samples incorrectly labeled by automated 

methods. These errors were later corrected by human reviewers. According to the sta-

tistics of the wrong labels, we found that 95% came from negative data, and the reason 

was analyzed, which was because during data collection, positive data could be pointed 

to through other information sources, while the process of collecting and labeling neg-

ative data was relatively simple. In addition, we find that 60% of the samples with 

wrong prediction by the model have clear CVE URL pointing, but their commit mes-

sage description are hardly vulnerability-fixing related. 

Table 2. Results on real-world datasets for the user-guided fine-tuned model. 

Dataset(number) Model Accuracy Precision Recall F1 

Zafar et al. [16] (324) 

distilBERT 69.14% 56.14% 29.91% 39.02% 

User-guided5 70.06%  58.33% 32.71% 41.92% 

User-guided10 72.22%  64.91% 34.58% 45.12% 

Zafar et al. [16] 

(1831) 

distilBERT 66.90%  40.21% 21.31% 27.86% 

User-guided5 67.12%  42.04% 25.50% 31.75% 

User-guided10 68.49%  46.17% 30.78% 36.94% 

Liven et al. [17] 

(1149) 

distilBERT 58.40%  72.92% 7.00% 12.77% 

User-guided5 59.44%  81.48%  8.80% 15.88% 

User-guided10 59.79%  80.65% 10.00% 17.79% 

Berger et al. [18] 

(374) 

distilBERT 65.24%  69.23% 12.86% 21.69% 

User-guided5 66.84%  76.67% 16.43% 27.06% 

User-guided10 69.25%  85.71% 21.43% 34.29% 

Berger et al. [18] 

(subset) (270) 

distilBERT 71.48%  84.21% 17.78% 29.36% 

User-guided5 72.96%  86.96% 22.22% 35.40% 

 User-guided10 74.44%  88.89% 26.67% 41.03% 

 

RQ2-Effectiveness of LLM 

Table 3 shows a comparison of the performance of three models on the task of clas-

sifying vulnerability-fixing code changes. The SVM and BERT results come from re-

producing the papers [19] and [10].  



Table 3. Comparison of the performance of models on the task of classifying vulnerability-fixing 

code changes. 

Model Mixed-form Accuracy Precision Recall F1 

SVM no 0.82 0.74 0.66 0.69 

BERT no 0.96 0.94 0.78 0.85 

LLM (message+code-

change) 

yes 0.51 0.82 0.51 0.51 

LLM (code-change) yes 0.85 0.63 1.00 0.77 

 

The BERT model achieves the highest accuracy (0.96) and F1 (0.85), with a preci-

sion of 0.94 and a recall of 0.78. This strong performance can be attributed to the fact 

that BERT was specifically fine-tuned on the dataset used for this task, allowing it to 

learn task-specific features and effectively balance precision and recall. 

LLM (message+code-change) and LLM (code-change) indicate that the same prompt 

was input into the LLM, but with different levels of commit. The results show that the 

performance of LLM (code-change) is better. Although LLM (message+code-change) 

theoretically combines two sources of information, the noise in the message component 

may weaken the clear signal provided by code-change due to the uneven importance 

and reliability of message and code-change. When LLM focuses solely on code-change, 

it can fully leverage its ability to understand the logic and semantics of the code. The 

Recall of LLM (code-change) reaches 1.0, indicating that it can completely encompass 

vulnerability-fixing commits and mitigate the risk of false negatives. Although the Pre-

cision of LLM (code-change) is low, it can be enhanced by combining with message 

classifier to achieve a more balanced overall performance. 

RQ3-Effectiveness of Our Method 

The "message" column in Table 4 shows that our user-guided message classifier out-

performs HERMES by 5.7% and VulCurator by 13.6%.  The "ensemble" column in 

Table 4, which represents the final results, shows that our method achieves 14.6% im-

provement over HERMES and 5.6% improvement over VulCurator.  

Table 4. F1 score of Previous work and our methodology on TensorFlow dataset. 

Baseline Method Message Patch Ensemble 

HERMES[19] SVM 0.87 0.69 0.82 

VulCurator[10] RoBERT+CodeBERT 0.81 0.85 0.89 

LLM(only) Qwen 0.83 0.77 0.51 

Our Method User-guided-

BERT+LLM 

0.92 0.77 0.94 

 

The F1-score of the LLM in commit message classification is 0.83, which is lower 

than HERMES (0.87) and our method (0.92). Commit messages are often succinct and 

lack informative language, which poses a challenge for LLMs that rely on contextual 

understanding. Although LLMs have advantages in processing natural language, they 

struggle to accurately capture signals related to vulnerability fixes without proper train-

ing or fine-tuning. Our work excels due to the improved message classification enabled 

by the user-guided approach and the scalability of LLM. The message classifier con-
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centrates on domain-specific and ambiguity in commit messages, while the LLM fo-

cuses on the logical and semantic analysis of code changes. By employing a stacking 

method that combines the strengths of both modules, we achieve a final F1-score of 

0.94. Additionally, our approach demonstrates enhanced language independence and 

adaptability. 

5 Related work 

The research on commit classification is mainly divided into two types. One [8,9,26-

29] is to follow Swanson [30] and divide commit into three categories: "Corrective", 

"Perfective" and "Adaptive". Another category is vulnerability-fixing-related commits 

[10,16,19,21,31,32]. Existing studies have automatically classified commits into re-

spective categories, ranging from searching indicative keywords to complex machine 

learning models based on a wide range of features, with limited success. 

Using static keywords or any other embedding method that does not consider the 

context of each word in the commit message will lead to a misclassification of ambig-

uous commit messages, that is, messages containing words that can be used in commit 

messages belonging to different maintenance categories. The context was well captured 

using BERT, but some of the content had to be discarded due to BERT's 512 token 

length limit. 

Most of the existing methods use BERT model in processing text and code. Different 

from previous work, this paper uses distil-BERT model in processing text and LLM in 

processing code. Compared with the BERT model, LLM breaks through the limitation 

of the code language and input length. It features a greater number of parameters, en-

hanced generative capabilities, and superior advantages in understanding and pro-

cessing code. 

6 Conclusion 

We propose a user-guided classification method for vulnerability-fixing commits. 

We use stacking method to combine the message classifier based on user-guided distil-

BERT and the patch classifier based on LLM. We use the existing dataset to train the 

model, and through the user-guided method, verify the wrong labels in the dataset, and 

iteratively optimize the dataset and the model. Our model achieves an F1 score of 94%, 

outperforming HERMES by 14.6% and VulCurator by 5.6%. Our work improves anal-

ysis techniques that provide better insight and visibility into the development process 

and reduce the likelihood of errors. 
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