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Abstract. Pedestrians, classified as Vulnerable Road Users (VRUs) due to their 

lack of protective equipment, face high risks in traffic collisions. While crossing 

roads, VRUs frequently use communicative gestures such as raising a hand with 

the palm outward-to signal drivers to stop. Although human drivers can intui-

tively interpret these gestures, autonomous and driver-assistance systems still 

lack robust dynamic gesture interpretation, contributing to safety-critical failures. 

Despite progress in human-vehicle interaction for autonomous driving, prior re-

search has largely emphasized on traffic police signal recognition, pedestrian tra-

jectory prediction, or movement-based intent analysis, neglecting VRUs’ explicit 

gesture-based interactions. To address this gap, we present a systematic taxon-

omy of pedestrian gesture behaviors, grounded in real-world observations along 

with a custom dataset. We propose a robust recognition framework that combines 

spatial feature extraction and deep learning to interpret these gestures. Our 

method leverages geometric relationships in body keypoints to model spatial pat-

terns, while temporal dynamics are captured using a Long Short-Term Memory 

(LSTM) network. This architecture processes sequential geometric features to 

identify distinctive spatiotemporal characteristics of pedestrian gestures. Experi-

ments on our proposed custom dataset and the public CTPG dataset demonstrate 

a recognition accuracy of 95.18% with near real-time inference speeds, surpas-

sing existing vision-based approaches for VRU gesture recognition. 

Keywords: Autonomous driving, Vulnerable Road User, Spatiotemporal fea-

tures, long-short term memory (LSTM). 

1 Introduction 

    The latest Global Road Safety Report 2023 reveals an annual toll of 1.19 million road 

traffic deaths, highlighting both the scale of the issue and advancements in safety 

measures [1]. According to global health statistics, road traffic injuries are the leading 

cause of death among individuals aged 5–29 and rank as the 12th leading cause of death 

across all age groups [1]. Among these incidents, vulnerable road users (VRUs) account 

for 21% of fatalities, while cyclists contribute 5% [1]. In urban environments, safe nav-

igation relies on effective interaction between vehicles, pedestrians, and traffic officers 

[2]. In traditional driving scenarios, such interactions heavily depend on nonverbal cues 

[3]. For instance, a pedestrian (VRU) crossing the road may raise one hand-typically 



with the palm facing outward-to signal vehicles to stop before proceeding. Similarly, a 

VRU may perform a stop gesture in near-collision situations or use a waving gesture to 

attract a driver’s attention. While human drivers can usually interpret these cues, mis-

understandings or failures in recognition can lead to serious accidents. Integrating a 

system that enables autonomous vehicles to accurately interpret pedestrian gestures 

could significantly reduce fatal road incidents. However, current autonomous driving 

systems still struggle to recognize dynamic human gestures, posing a major challenge 

to achieving seamless human–vehicle interaction. Hence, it is urgent to develop a reli-

able human-vehicle interaction system that can accurately recognize VRU gesture to 

reduce the casualties and injuries caused by road accidents. 

Current research on human behavior recognition in the context of autonomous driving 

predominantly focuses on three key areas: traffic police gesture recognition, pedestrian 

trajectory prediction, and binary intent classification (e.g., “cross” vs.“not cross”) using 

body pose analysis. However, significant gaps remain in these approaches. Most studies 

on traffic police command gesture recognition [4–9] significantly differ from general 

pedestrian gestures in both context and purpose. On other hand, pedestrian trajectory 

prediction models [10, 11] often treat pedestrians as rigid objects, relying solely on 

motion history while overlooking crucial contextual factors such as body language and 

multi-agent interactions. Similarly, intent recognition frameworks [12–15] frequently 

neglect subtle non-verbal communication cues, including group dynamics and the use 

of hand gestures in scenarios like sudden road crossings [16]. 

Although some VRU gesture-based behavior recognition systems have been proposed 

in recent years, these systems primarily adopt human action recognition methods to 

predict pedestrian behavior from gestures [3, 17–21]. However, most of these methods 

overlook important real-world factors such as the presence of multiple individuals in 

the scene [17], body orientation [21], and the challenge of detecting specific gestures 

within cluttered environment [3]. Furthermore, some approaches have been evaluated 

on pre-segmented video clips, [7, 20], which lack timestamp information. This omis-

sion is critical, as real-time autonomous driving systems require continuous video 

streams with temporal context to make immediate and informed decisions. A major 

challenge in pedestrian gesture recognition is the lack of comprehensive datasets cap-

turing real-world pedestrian-vehicle interactions. Ethical constraints and the rarity of 

natural gestures in traffic limit data collection, while existing datasets like JAAD [22] 

and TASI [23] focus on pedestrian intention prediction but lack active gestures. While 

staged datasets attempt to address this by simulating gestures in controlled environ-

ments, their generalizability to real-world scenarios remains unproven. Bridging this 

synthetic-to-real gap is essential for developing robust and reliable pedestrian gesture 

recognition systems. 

To address these issues, we propose a real-time system for vulnerable road user (VRU) 

behavior recognition via gesture analysis. Our framework first identifies gesture per-

formers in a scene, then preprocess the human skeletal data leveraging pose estimation 

algorithm. We construct spatial geometric feature on extracted skeletal data, and applies 

a custom Long Short-Term Memory (LSTM) network to model temporal dynamics. By 

excluding lower-body and facial features, we minimize noise and enhance discrimina-

tive spatial-temporal learning. A tracker maintains performer identity across frames, 
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ensuring continuity. We evaluate our approach on a custom multi-performer dataset 

(indoor/outdoor settings) and the CTPG dataset [24], which shares gesture classes with 

traffic police commands. Experiments demonstrate robust performance, highlighting 

the method’s adaptability to pedestrian gesture recognition despite training on staged 

data. In short, the key contributions of this work are summarized as follows: 

• To enhance road safety, research on pedestrian behavior using a gesture 

recognition system is carried out. This system classifies interactive gesture 

user on road and interpret their non-verbal gesture-based behaviors, bridg-

ing the gap in human-autonomous driving interaction. 

• Our lightweight architecture resolves prior limitations by tracking multiple 

performers in dynamic scenes, achieving 95.18% recognition accuracy with 

minimal computational resources, even in outdoor settings. 

• we introduce a behavior taxonomy derived from real-world observations 

and a custom dataset capturing diverse environments. Cross-validation on 

our dataset and public benchmarks CTPG, demonstrates superior generali-

zability. 

The remainder of this paper is organized as follows: Section 2, reviews related work. 

Section 3, defines the problem. Section 4, details the proposed method. Section V pre-

sents the behavior taxonomy, dataset, experimental setup, evaluation metrics, results, 

limitations and future Finally, Section 6, concludes the paper. 

 

2 Related Work 

    The autonomous driving industry has greatly benefited from advancements in deep 

learning and computer vision in recent years. Despite these advancements, pedestrian 

behavior recognition still faces challenges due to the dynamic nature of pedestrians and 

frequent occlusions, which result in lost information. While many robust studies have 

focused on pedestrian trajectory prediction [10, 11] and intention prediction [12–16] 

based on movement, the inability to account for early gestures at intersections and 

yield/non-yield signs in uncontrolled areas remains a critical gap in ensuring safety. 

This gap is particularly significant because gestural communication during road cross-

ing represents a fundamental psychological and cultural practice [25, 26]. Recent ex-

perimental research [27, 28] also raises concerns about the effectiveness of systems that 

disregard pedestrian gestures at intersections or uncontrolled areas, suggesting that con-

sidering pedestrians’ actions and gestures in studies is crucial for enhancing safety 

measures. In early efforts, Y. Zheng et al. [18] developed a k-nearest neighbor approach 

with a pyramid residual module, achieving 92% accuracy on the Udacity dataset. This 

outperformed conventional HOG methods but lacked temporal analysis. Yang et al. 

[21] expanded beyond binary pedestrian behavior classification to a more refined nine-

category gesture classification using 2D pose estimation and Random Forest, improv-

ing performance by 5%. Q. Deng et al. [19] employed Part Affinity Fields for head and 

neck tracking, effectively recognizing behaviors like path clearing and hand waving in 

the TASI [23] and JAAD [22] datasets, though performance declined in the presence 



of occlusion. Fang and López [29] combined monocular 2D pose estimation and CNNs 

to predict pedestrian and cyclist intentions through gestures. Xu et al. [20] used a dy-

namic adaptive graph convolutional network (DAGCN) on 3D pose data for multi-ob-

ject interaction recognition but faced response time delays. Wiederer et al. [2] intro-

duced a 3D skeleton-based dataset for European traffic control gestures, benchmarking 

eight deep neural networks across cross-subject (CS), cross-view (CV), and real-world 

(RW) validations. Bi-LSTM achieved the highest accuracy in CS (87.24%) and CV 

(87.37%), while LSTM performed best in RW (77.88%). However, their dataset lacks 

original video sequences. S. Wang et al. [5] proposed a two-stage framework combin-

ing upper-body geometric and keypoint co-occurrence features, achieving 89.67% ac-

curacy. Wang et al. [6] later optimized processing time by removing redundant skeletal 

features, improving LSTM-based methods by 8%. J. He et al. [24] used convolutional 

pose machines (CPM) with handcrafted features and LSTMs, reaching 0.956% edit ac-

curacy with a 1063 ms response time. Building on previous research demonstrating the 

effectiveness of Long Short-Term Memory (LSTM) networks in classifying temporal 

patterns from spatial skeleton keypoints for dynamic gesture recognition, we have 

adopted LSTM architectures in our work. 

3 Problem Formulation 

This study aims to enhance the safety of Vulnerable Road Users (VRUs) by enabling 

autonomous vehicles to recognize and interpret their intent-expressive gestures. 

Through real-world observations in Wuhan, China, we identified two primary gesture 

categories directed toward vehicles: yielding gestures (e.g., “Clear”: hand position near 

hip with palm directed to direction of vehicles, signaling clear to pass) and non-yielding 

gestures (e.g., “Stop”: vertical arm extension with palm outward, “Slow-down”: 

straight arm outward, and “Wave”: repetitive waving motion, hand position up shoulder 

level). later, we have adopted one type of yielding gesture “good” from virtual reality-

based experiment [28]. While gestures observed in natural interactions, we note that 

VRUs consistently orient their body and face toward target vehicles during gesture ex-

ecution, as illustrated in Fig. 1. A gesture G(t) at time t is represented by a set of skeletal 

keypoints 𝑃𝑡. For each frame t, we extract geometric features, Spatial relationships be-

tween these keypoints are encoded through geometrically normalized features (length 

and angle). which collectively model spatiotemporal gesture dynamics. These features 

are concatenated into a unified vector and processed by LSTM network to capture tem-

poral dependencies and classify gestures. It is important to note that; our gesture tax-

onomy reflects regional behavioral patterns observed in Wuhan and may not generalize 

universally. Cultural and contextual factors could influence gesture semantics across 

cities or regions. This formulation provides a foundational framework for context-

aware gesture recognition in autonomous driving systems. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 
Fig. 1: VRUs gesture instance while crossing the road in uncontrolled area. the black 

and red point denote current and end position of VRU, black, blue and purple dash line 

denote the VRU motion, vehicles motion and camera coverage 

 

We formalize the interaction between pedestrian gestures and vehicle control as fol-

lows. The pedestrian’s position 𝑥𝑝(𝑡) at time 𝑡 is given by: 

 

𝑥𝑝(𝑡) = 𝑥𝑝(0) + 𝑣𝑝𝑡 ,                                                        (1) 

Where 𝑋𝑝(0) is the initial position and 𝑣𝑝 is the pedestrian’s constant walking velocity. 

The vehicle’s position 𝑋𝑣(𝑡) is dynamically adjusted based on recognized pedestrian 

gestures: 

 

𝑥𝑣(𝑡) = 𝑥𝑣(0) + ∫ 𝑣𝑣(𝜏)𝑑𝜏 ,                                             (2) 
𝑡

0

 

Where 𝑣𝑣(𝜏) is the vehicle’s time-dependent velocity. This velocity is modulated by 

gesture recognition outcomes: 

 

𝑣𝑣 = {
𝑣𝑣

reduced ,  if a VRU perform crossing gesture, 

𝑣𝑣
normal ,  otherwise ,

                          (3) 

with 𝑣𝑣
reduced < 𝑣𝑣

normal . A pedestrian is deemed to have safely crossed the road when 

their trajectory satisfies: 

𝑥𝑝(𝑡) ≥ 𝑥end                                                                   (4) 

where 𝑥end  denotes the pedestrian's target position beyond the vehicle's path. The ve-

hicle's velocity adjustment Δ𝑣𝑣  is triggered by gesture recognition within a reaction 

time Δ𝑡 : 

Δ𝑣𝑣 = −𝑘𝐼(𝐺(𝑡)),                                                      (5) 

 

Where 𝑘 is a safety margin constant, and 𝐼(∙) is an indicator function activated by 

non-yielding gestures. Note: We did not experiment with the decision-making pro-



cess in field tests or simulations integrating our framework with autonomous vehi-

cles. The decision-making model is presented here solely to clarify the intention of 

our proposed framework. 

4 Methodology 

Pedestrian behavior recognition based on gestures in the real world is a complex and 

challenging task. The overall end-to-end pipeline of our proposed model is shown in 

Fig. 2. 

 

 
Fig. 2: The overall architecture of our proposed framework based on human skeleton 

pose estimation. Object detector detect the VRUs, pose estimation algorithm extract 

skeletal coordinates, skeletal feature construction is performed on each pedestrian in 

scene for input vector. After feature construction, it passes through the tracker to obtain 

the bounding box and unique tracker id, inside the bounding box pedestrian gesture is 

determined. Finally, our LSTM network recognize and classify the gesture based on 

trained data. 

4.1 Pedestrian Detection, Classification and Tracking 

Pedestrian Detection: Our framework begins by detecting individuals in the input 

monocular RGB frame sequences using YOLOv8, a state-of-the-art single stage detec-

tor. Known for its effectiveness in detecting small objects and robust performance in 

real-time applications, YOLOv8 is well-suited for autonomous driving scenarios, 

where both accuracy and efficiency are critical. Its ability to handle complex environ-

ments makes it the preferred choice for our object detection needs. 
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Pedestrian Classification: Beyond pedestrians, other road actors (e.g., traffic police, 

cyclists) perform context-specific gestures with distinct semantic meanings. To prevent 

misinterpretation, we retrain YOLOv8 with three specialized classes: 

• Traffic Police: Uniformed personnel directing traffic, 

• Cyclists: Individuals on bicycles, 

• Pedestrians: VRU in urban street scenes. 

 

Tracking Process: To track VRUs in frame, we use DeepSort[30] algorithm in object 

detector to ensure precise identification and continuous monitoring. This algorithm lev-

erages a Kalman filter for prediction and a Hungarian algorithm for data association, 

assigning each pedestrian a unique tracker ID. 

4.2 Skeleton Spatial Feature Construction 

    Skeletal Data Preprocessing: To extract skeletal data for gesture analysis, this work 

employs OpenPose [31], an open-source pose estimation framework optimized for 

multi-person detection. Unlike conventional pose estimators, OpenPose demonstrates 

robust performance in challenging conditions such as partial occlusion, motion blur, 

and low-resolution imagery. The robustness of OpenPose is shown in Fig. 5 (c). The 

pose estimation pipeline follows the MS COCO 2D 18-keypoint (0-17) format, which 

generates a sparse skeletal representation of body configuration. 

 

Spatial Geometric Feature Encoding: Gestures are predominantly characterized by 

upper-body kinematics, specifically arm movements and torso orientation, with negli-

gible influence from the lower limbs or facial expressions [5]. Therefore, inspired from 

previous work [6, 24] we select seven upper-body keypoints from the MS COCO [32] 

(0-17) keypoint model: nose, left and right shoulders, elbows, and wrists to encode the 

geometric features of the gesture region. Spatial relationships between these keypoints 

are encoded through geometrically normalized features (length and angle), ensuring 

translation and scale invariance for robust gesture recognition. Three connection types 

define the inter-keypoint relationships, as shown in Fig. 3 (c). These connection types 

are: 

1. Adjacency: Direct links between physiologically adjacent joints (e.g., 

shoulder → elbow → wrist) 

2. Arm End: Connections between arm extremities (wrist ↔ ipsilateral shoul-

der) 

3. Chain End: Cross-body links between contralateral keypoints (e.g., left 

wrist → right wrist) 

For each connection c, a directional vector is computed: 

 

𝐕𝑐 = 𝐾𝑐1𝐾𝑐2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑥𝑐2 − 𝑥𝑐1, 𝑦𝑐2 − 𝑦𝑐1),                                 (6) 

 

Where 𝐾𝑐1 and 𝐾𝑐2 denote connected keypoints. 

Feature Derivation: Two normalized features are extracted per connection: 



1. Length Feature: Scale-invariant limb length normalized by the reference dis-

tance 𝑑0 (nose-to-shoulder midpoint): 

𝑓𝑙(𝐕𝑐) =
‖𝐕𝑐‖2

𝑑0

, 𝑑0 = ‖𝐊nose −
𝐊LShoulder + 𝐊RShoulder 

2
‖

2
               (7) 

2. Orientation Features: Angular components relative to the vertical axis 𝐧 = 

(0,1) : 

𝑓cos(𝐕𝑐) =
𝐕𝑐⋅𝐧

‖𝐕𝑐‖2
, 𝑓sin(𝐕𝑐) =

det(𝐕𝑐,𝐧)

‖𝐕𝑐‖2
                                    (8) 

where det(𝐚, 𝐛) = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 computes the 2D pseudo-cross-product. 

 

Feature Vector: Concatenating features across all connections yields a 30-dimensional 

vector (10 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ×  [1 𝑙𝑒𝑛𝑔𝑡ℎ +  2 𝑎𝑛𝑔𝑙𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] ). This encoding pre-

serves limb configuration semantics while remaining invariant to absolute position and 

body scale, enabling reliable distinction between intent-driven gestures (e.g., “Stop” vs. 

“Wave”). 

 
Fig. 4. (a) Generated 18 skeleton coordinates start from 0-17, where nose-0, left ear-17 

in each frames, (b) Focused contour of human body where most gestures occur. (c) 

Connections. black, green, purple lines are three types of connection (d) Feature skele-

ton vectors are used to calculate the relative length and angle to the unit normal vector 

(0,1). 

4.3 Temporal Feature Classification 

We employ Long Short-Term Memory (LSTM) network [33] to model temporal de-

pendencies in gesture recognition using spatial geometric features. The LSTM pro-

cesses sequential feature vectors while maintaining memory of long-range contextual 

patterns for continuous gesture interpretation. 

 

Input Feature Structure Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} represent a sequence of 𝑇 frames, 

where each frame's feature vector: 

𝑥𝑡 = [𝑓𝑙
(1)

, 𝑓cos
(1)

, 𝑓sin
(1)

, … , 𝑓𝑙
(10)

, 𝑓cos
(10)

, 𝑓sin
(10)

] ∈ 𝑅30                           (9) 
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encodes normalized length and orientation features from all 10 kinematic connections 

(Fig. 3d). 

 

Network Architecture The LSTM implementation consists of two layers with 128 

hidden units each, governed by the following operations: Forget Gate: Regulates reten-

tion of prior cell state 𝐶𝑡−1 : 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),𝑊𝑓 ∈ 𝑅128×(128+30)                        (10) 

 

Input Gate & Candidate State: Control state updates: 

𝑖𝑡  = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                      (11)

𝐶̃𝑡  = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                             (12)
 

 

Cell State Update: 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡                                                    (13) 

Output Gate: Generates hidden state ℎ𝑡 : 

𝑜𝑡  = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                       (14)

ℎ𝑡  = 𝑜𝑡 ⊙ tanh(𝐶𝑡)                                                                      (15)
 

Where: 𝜎 is the sigmoid activation function, ⊙ denotes element-wise multiplication, 

𝑊(⋅) ∈ 𝑅128×(128+30) are learnable weight matrices, and 𝑏(⋅) ∈ 𝑅128 are bias terms. 

Gesture Classification The final hidden state ℎ𝑇 ∈ 𝑅128 encodes the complete spatio-

temporal gesture context. This is processed through: Feature Projection: 

𝑧 = ReLU(𝑊𝑓𝑐ℎ𝑇 + 𝑏𝑓𝑐),𝑊𝑓𝑐 ∈ 𝑅𝑐×128                                   (16) 

Softmax Activation: 

𝑦̂ = softmax(𝑧)                                                               (17) 

yielding a probability distribution 𝑦̂ ∈ 𝑅𝑐 over 𝑐 gesture classes. 



5 Experiments 

5.1 Pedestrian Interactive Gestures Taxonomy and Proposed Dataset 

    Pedestrian Interactive Gestures Based Behavior Taxonomy: Existing benchmark 

datasets like JAAD [22] and TASI [23] focus on pedestrian-vehicle interactions, par-

ticularly joint attention between pedestrians and drivers. However, they lack compre-

hensive representation of interactive gestures, making them insufficient for training or 

evaluating gesture-based behavior recognition systems. To address this gap, we propose 

a taxonomy of pedestrian interactive gestures, shown in Table 1, developed through 

real-world observations. 

Table 1: Pedestrian Interactive Gesture Based Behavior Taxonomy. 

Gesture Type Gesture Class Description 

Good Yield to Vehicle Permission to pass 

Clear Yield to Vehicle Path is clear to go 

Stop Non-yield to Vehicle Requesting to stop 

Slow-down Non-yield to Vehicle Requesting reduced speed 

Wave Non-yield to Vehicle Gesture to move forward 

Proposed Dataset: Our custom video dataset is built based on the proposed gesture 

taxonomy and consists of recordings made in both indoor and outdoor settings. The 

recordings were captured using a Nikon video camera and a Samsung cell phone. Seven 

actors participated in performing gestures, with one actor directing gestures towards the 

camera while other actors were present in the scene at varying distances. The outdoor 

environment included both crosswalk and non-crosswalk settings. In the indoor setting, 

two volunteers performed the gestures. The resulting dataset comprises a total of 1,400 

interactive gesture incidents, with each video clip having an image resolution of 

1920 × 1080 pixels and a frame rate of 25 fps. The total number of frames in the da-

taset amounts to 210,000. On average, each video clip containing a gesture incident 

lasts for 150 frames, equivalent to approximately 6 seconds. The dataset splitting for 

training and testing has presented in Table. 2. 

Table 2. Pedestrian Interactive Gesture Based Behavior Taxonomy. 

Description Training Testing Total 

Videos 5 5 10 

Frames 180,000 105,000  285,000 

Gesture Instances 1,200 700 1,900 
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5.2 Evaluation Metrics and Experimental Setup 

Evaluation Metrics Following previous work on VRU gesture-based studies [2, 3, 18, 

20], we selected three evaluation metrics: accuracy, F1-score, and the confusion matrix. 

Accuracy is defined as the ratio of the number of correctly classified samples to the 

total number of samples: 

 

 Accuracy =
 Number of correct classifications 

 Total number of samples 
,                         (18) 

 

F1-score is defined as the harmonic mean of precision and recall: 

 

𝐹1 =
2 ×  Precision ×  Recall 

 Precision +  Recall 
                                           (19) 

 

where precision is the ratio of true positives (TP) to the sum of true positives and false 

positives (FP): 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                                                    (20) 

 

and Recall is the ratio of true positives to the sum of true positives and false negatives 

(FN): 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                    (21) 

 

Experimental Setup: An overview of the dataset, including the training and testing 

distributions, is presented in the proposed dataset section and in Table 2. After investi-

gating various combinations of LSTM layers, hidden unit layers, batch sizes, and learn-

ing rates, the hyperparameters used for model training are listed below. The input snip-

pet length is 6 seconds, containing 150 frames, with a batch size of 16. The initial learn-

ing rate is set to 0.001, the ReLU activation function is used, and the Adam optimizer 

is applied. The number of hidden units in the LSTM layer is 128. The model is trained 

for 50 epochs, with an initial exponential decay rate for the learning rate of 0.02. Cate-

gorical cross-entropy loss with L2 regularization is employed to prevent overfitting. 

Additionally, a softmax activation function is used in a fully connected layer to enhance 

the accuracy of the model’s predictions. Validation is performed after each epoch, and 

the model achieving the highest per-frame accuracy on the validation set is selected. 

Plots of training-validation accuracy and training-validation loss are presented in Fig. 

4. The model, implemented using the TensorFlow 2.16.1 framework, has a size of 9.2 

MB. In our experiments, an NVIDIA GeForce RTX 3080 GPU and an AMD Ryzen 7 

5800H with Radeon graphics were used to train and test the model. With these param-

eter settings, the average response time of the system was approximately 1 second dur-

ing online evaluation. Details of the results and time computation are provided in the 

Experimental Results section. 



 
Fig. 4: Model training progress over time in custom pedestrian gesture dataset. 

5.3 Experimental Results 

    Experimental Result of the Object Detector: The first stage of our framework fo-

cuses on pedestrian detection to prioritize gesture recognition and avoid ambiguity with 

other road users performing gestures (e.g., cyclists or traffic police). While the original 

YOLOv8 model detects all human roles under the generic “person” class in the 

COCO2017 dataset [32], this aggregation limits gesture specific analysis. To address 

this, we retrained YOLOv8 using a custom dataset suitable for traffic scenarios. The 

dataset, curated via the RoboFlow platform, comprises hundreds of urban street images 

featuring pedestrians, cyclists, and Chinese traffic police (wearing yellow reflective 

vests). Each category-pedestrian, cyclist, and traffic police was manually labeled as 

distinct classes (Fig. 5b). After retraining, the model achieves precise detection of these 

roles in traffic scenes (Fig. 5c), unlike the baseline YOLOv8 (Fig. 5a), which detects 

all human targets as "person." 

 
Fig. 5: Comparative analysis of detection performance between the official YOLOv8 

baseline model (a), Data annotation process (b) and our customretrained model on pro-

posed dataset video, where pedestrian, cyclist and traffic police are different class, fea-

turing enhanced spatial feature extraction using Openpose (c). 

 

Experimental Results of Pedestrian Gesture: The proposed method was evaluated 

on testing set from our custom dataset, where each gesture class contained an equal 

number of samples. As pedestrians typically face approaching vehicles frontally (with 
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head/body orientation aligned to the road), cross-view recognition is unnecessary and 

risks misinterpretation by unintended observers. Thus, we adopted a cross-subject eval-

uation protocol to assess generalization across performers. The details evaluation of our 

proposed method is presented in Table 3. 

 

Table 3: Performance Metrics for Different Classes 

Class Precision (%)  Recall (%) F1-Score (%) 

Good 92.85 97.40 95.07 

Clear 94.00 89.30 91.59 

Stop 94.26 98.60 96.38 

Slow-down 94.94 91.90 93.39 

Wave 100.00 98.70 99.35 

 

 
Fig. 6: Confusion matrix of both datasets. (a) custom pedestrian gestures, (b) CTPG 

dataset 

 

The model achieved an overall accuracy of 95.18%, and averaged F1-score of 95.16%. 

“Wave and stop” (F1 score above 96%) gesture has best performances due to high pre-

cision and recall. Weakest Performance: “clear” (F1 = 91%), due to confusion with 

other classes as shown in Fig. 6 (a). To verify the generalizability of our proposed 

method, we trained our model on publicly available Chinese traffic police dataset [24] 

with same experimental setup, and split dataset into five classes of gestures which orig-

inally has eight gesture class. The testing result in CTPG [24] dataset model achieved 

overall accuracy of 94.06% and average F1- score of 94.42%. the accuracy of model 

dropped in CTPG likely the changes of body direction during performing gestures, con-

fusion matrix of evaluation result presented in Fig. 6 (b). To validate the effectiveness 

of the proposed framework, we compare it with two state-of-the-art skeleton-based ac-

tion recognition algorithms [34, 35] under the same experimental setup and input fea-

tures. Additionally, we conduct a comparative analysis with existing VRU gesture-

based behavior recognition methods [3, 18, 20, 21]. The results of these comparisons 



are presented in Table 4. To the best of our knowledge, previous VRU gesture recog-

nition approaches do not follow similar pipeline as ours. As a result, we did not directly 

experiment with the methods proposed in [3, 18, 20, 21]. 

 

Table 4: Comparison of Methods Based on Modality, Dataset, and Accuracy 

 

Method Modality Dataset Accuracy 

Yolov8+OpenPose+LSTM (Ours) Skeleton Proposed 95.18% 

YoloV8+Openpose+ST-GCN [34] Skeleton - 93.87% 

YoloV8+Openpose+SGN [35] Skeleton - 94.42% 

GAST-net+DA-GCN [20] Skeleton 3D-HPT 95.47% 

GAST-net+DA-GCN [20] Skeleton Custom 83.21% 

CNN+PRM+KNN [18] Skeleton Udacity 92.00% 

OpenPifpaf+Random Forest [21] Skeleton Proposed 82.90% 

OpenPifpaf+SVM [3] Skeleton Proposed 94.00% 

 

Limitations of the Proposed Framework and Future Work: In this paper, we pro-

posed and demonstrated the feasibility of a pedestrian gesture-based behavior recogni-

tion framework for driving assistance systems in traffic environments. While our ap-

proach shows promise, its practical implementation still presents certain limitations, 

which are outlined below: 

• During our experiments on a self-constructed dataset, the object detection and 

tracking processes required an average of 34.2 ms per frame. Additionally, the 

gesture recognition network took approximately 10 ms to process gestures, 

resulting in a total processing time of 44.2 milliseconds per frame. although, 

this processing time satisfy process data in most traffic scenario. The pro-

cessing time might increase in highly cluttered environment. Higher compu-

tational setup will help normalize this limitation. 

• Detection error: Our framework leverages the advanced YOLOv8 algorithm 

for object detection, known for its efficiency and high accuracy in most cases. 

However, traffic environments present significant challenges due to their com-

plexity. In densely populated areas, the detector may occasionally miss objects 

or generate incorrect detections, which can impact the overall performance of 

action recognition. 

• Changes of gestures: The types of gesture we included in our taxonomy is 

typically appeared in real traffic scenario. Changes of gesture by angle lead to 

misclassification. 

In summary, our future work will focus on (1) Exploring more efficient algorithms to 

enhance computational speed while preserving accuracy. (2) Refining the object detec-

tion module to more accurately identify vulnerable road users (VRUs) both on and near 

the road. (3) Expanding the dataset to include a broader range of gestures with varying 

rotations in more complex scenarios, improving the framework’s robustness and adapt-

ability. 
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6 Conclusion 

    In this article, we prioritize pedestrian safety and propose a framework to enhance it. 

To this end, we developed a comprehensive taxonomy of pedestrian behavior and in-

troduced a custom dataset. Additionally, we designed a robust data-driven pedestrian 

recognition framework tailored for traffic environments. Our framework improves each 

module, from object detection and spatial geometric feature extraction in human pose 

estimation to gesture recognition by incorporating optimizations specifically suited for 

traffic scenarios. A key element of our approach is the spatial feature construction mod-

ule, which generates a robust feature vector. This refined representation enables our 

LSTM-based temporal model to achieve optimal performance in pedestrian behavior 

recognition. However, performance declines across different datasets have revealed 

certain limitations. Real-world traffic environments introduce additional challenges, in-

cluding inaccuracies in human pose estimation in complex urban settings and difficul-

ties in recognizing nonstandard pedestrian gestures. Variations in subject size, view-

point, and diverse gesticulation styles further complicate gesture recognition. Our fu-

ture research aims to address these challenges, enhancing the framework’s adaptability 

to real-world traffic scenarios. 
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