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Abstract. This paper addresses the critical challenge of supine human mesh re-

construction in clinical monitoring scenarios through an innovative knowledge 

distillation framework. Confronting the inherent limitations of pressure sensor 

data—including limb occlusion artifacts and limited 3D expressiveness—we pro-

pose a hierarchical teacher-student architecture that synergistically integrates 

cross-modal knowledge from visual domain expertise. Our method leverages a 

pre-trained CLIFF model as the teacher to guide pressure-map student networks 

(ResNet variants) in estimating SMPL body parameters. The framework 

achieved 2%~4% error reduction across key metrics. This work proposes a new 

solution to optimize pressure-based human body reconstruction and multimodal 

datasets utilization. 

Keywords: Human Body Reconstruction, Knowledge Distillation, Multi-

modal Data Fusion. 

1 Introduction 

The estimation and reconstruction of supine human postures are progressively estab-

lishing itself as a pivotal research frontier within the domain of computer vision and 

biomechanical modeling domains, driving a paradigm shift profoundly aligned with the 

escalating global exigencies for optimized clinical care protocols. Such developments 

are necessitated by demographic aging trajectories and epidemiological transitions to-

ward chronic disease predominance. Conventional optical modalities employing RGB-

D cameras[20], infrared imaging arrays[21], or depth-sensing apparatus[3] confront in-

trinsic limitations stemming from textile-induced occlusions and photometric variabil-

ity, compounded by non-trivial ethical considerations regarding psychological discom-

fort and confidentiality breaches inherent in continuous visual surveillance. Alternative 

monitoring paradigms leveraging wearable inertial measurement units, while opera-

tionally feasible, introduce iatrogenic risks including restricted mobility patterns and 

potential dermatological complications from prolonged device contact. These multifac-

eted constraints have precipitated scholarly investigations into unobtrusive pressure-

sensitive sensor matrices as viable instrumentation for biomechanical monitoring, 

wherein distributed piezoresistive transducers quantify interface pressure topography 

to generate spatiotemporal pressure maps serving as foundational datasets for subse-

quent volumetric anatomical reconstructions. 



Fig. 1. Workflow of the knowledge distillation architecture 

Despite the advancements, critical challenges persist regarding the inherent representa-

tional paucity of unidimensional pressure datasets. Singular pressure mappings merely 

encapsulate bidimensional contact force distributions at the mattress interface, inher-

ently incapable of resolving anatomical occlusions from limb superposition or captur-

ing three-dimensional musculoskeletal configurations. Monomodal training regimens 

confined to pressure datasets consequently engender model architectures deficient in 

holistic anatomical comprehension. Furthermore, the comparative scarcity of supine-

oriented pressure repositories contrasts markedly with the maturing of multiview pho-

togrammetric datasets within the computer vision research community. This dichotomy 

necessitates innovative cross-modal knowledge transfer methodologies, particularly 

given the complementary spatial perspectives afforded by ceiling-mounted optical sys-

tems (providing craniocaudal visual coverage) versus floor-embedded pressure grids 

(delivering ventrodorsal force measurements), thereby enabling synergistic data fusion 

to compensate for individual modality limitations. 

To address these challenges, we propose a knowledge distillation architecture with 

modularized components specifically engineered for supine human mesh recovery from 

pressure topology inputs. The framework implements a dual-stage processing pipeline: 

initially transforming bidimensional pressure tensors into latent pose and shape de-

scriptors through deep convolutional encoders, subsequently reconstructing differenti-

able human meshes via parametric body models. A hybrid teacher-student configura-

tion is integrated to facilitate cross-modal feature distillation, where the teacher net-

work, pretrained on other datasets, transfers geometrically enriched feature representa-

tions to the pressure-oriented student model through attention-guided regularization. 

This frame also integrates the SMPL (Skinned Multi-Person Linear) model, a differen-

tiable humanoid parameterization that algebraically maps pose θ  ∈ ℕ72 and shape β ∈
ℕ10 coefficients to vertex-wise mesh coordinates 𝑉 ∈ ℕ6890×3 with joints 𝐽 ∈ ℕ24×3, 

and finally generate a mesh to represent human body.  
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During training stage, the teacher and student work on the same dataset to extract 

pose and shape features, teachers' output {θ, β} and its corresponding human mesh 

{𝑉, 𝐽}form logits and is fed to the student as soft labels. The workflow is as shown in 

Fig.1, where global translation (𝑡 ∈ ℕ3) and rotation (𝑟 ∈ ℕ3) parameters are extracted 

for spatial calibration. 

This architecture is promisingly instructive in the field of human body reconstruction 

in special scenarios. Our main contribution is to propose a knowledge distillation ar-

chitecture to improve the performance of small and simple models by reducing error 

metrics up to 3.94% on MPJPE and 3.82% on V2V. 

2 Related Works 

2.1 Knowledge Distillation 

The knowledge distillation method was first proposed by Hinton et al.[7] as a funda-

mental paradigm for model compression. The methodology introduces temperature-

scaled soft targets from cumbersome teacher networks to guide lightweight student 

models, effectively transferring dark knowledge through softened probability distribu-

tions.  

Gou et al.[4] developed a comprehensive survey systematically where they catego-

rizes knowledge distillation approaches through four orthogonal dimensions: 

knowledge representation (response-based, feature-based and relation-based), training 

paradigms (offline, online and self-distillation), architectural configurations (multi-

teacher ensembles, teaching assistant networks, and cross-modal distillation) and opti-

mization strategies (adversarial distillation, curriculum-based scheduling, and quanti-

zation-aware training). The survey further identifies critical challenges including ca-

pacity mismatch and data scarcity, while outlining emerging directions such as data-

free distillation through generative adversarial networks and neural architecture search-

optimized student models. 

2.2 Human Mesh Recovery 

Human Body Models As a pioneering parametric human model, SCAPE[1] estab-

lished the first data-driven framework (based on 3D scan data) to correlate body mor-

phology with pose variations, laying the foundation for subsequent research. However, 

its triangle-based deformation approach suffered from computational inefficiency and 

joint distortion artifacts. SMPL[12] revolutionized the field by innovatively decoupling 

pose and shape parameters while adopting linear blend skinning, significantly improv-

ing real-time performance and geometric fidelity. Its modular design further spawned 

specialized variants like SMPL-II (hand-enhanced)[14] and SMPL-X (facial expression 

support)[13]. Building upon SMPL's parametric framework, SKEL[8] introduced a bio-

mechanically accurate skeletal system with anatomical constraints to optimize joint 

kinematics, addressing SMPL's limitations in applications requiring physiological plau-

sibility, such as medical rehabilitation and motion analysis. These parametric models 



collectively advanced human reconstruction from "geometrically plausible" to "physi-

ologically valid", marking a paradigm shift in the field. 

HMR Researches On the basis of SMPL and its derived models, researchers have ad-

vanced in HMR. CLIFF's[9] primary contribution in the field of 3D human reconstruc-

tion lies in resolving perspective ambiguity and scale indeterminacy in monocular im-

age-based reconstruction. The method significantly enhances pose and shape parameter 

estimation accuracy under single-view conditions by normalizing 2D image features 

into the 3D camera coordinate system and integrating global contextual information 

through feature fusion. Particularly effective in scenarios with severe occlusions and 

unconventional viewpoints, its innovative architecture mitigates limb distortions 

caused by projection ambiguities in conventional approaches, providing enhanced ge-

ometric consistency for monocular vision applications. Addressing the scarcity of an-

notated pressure data, PressureNet[2] leverages physics-based simulations to generate 

synthetic pressure maps correlated with SMPL body configurations. A temporal en-

coder-decoder architecture then maps pressure sequences to 3D meshes, enabling pose 

estimation without visual privacy intrusions. To mitigate artifacts in single-view recon-

struction, Zhang et al.[20] introduce a hierarchical feature fusion mechanism that pro-

gressively refines mesh predictions using multiscale contextual cues and propose 

PyMAF. Its iterative feedback loop between local feature pyramids and global mesh 

parameters effectively resolves ambiguities arising from self-occlusions and perspec-

tive distortions. Tandon et al.[15] proposed BodyMAP which addresses occlusion chal-

lenges in multiview reconstruction by integrating semantic segmentation masks with 

pose estimation. It employs adaptive feature alignment across viewpoints, dynamically 

weighting visual evidence based on per-joint visibility confidence, thereby improving 

reconstruction fidelity in cluttered environments. Wu et al.[16] pioneers a temporal 

pressure sensing framework for 3D human shape estimation in bedridden scenarios, 

addressing persistent occlusion challenges faced by visual modalities. By introducing 

a spatiotemporal convolutional network to model dynamic pressure sequences and in-

tegrating SMPL-based biomechanical constraints, the method infers anatomically plau-

sible poses even under severe bedding occlusion. To bridge the real-synthetic domain 

gap, it employs physics-guided pressure simulation paired with SMPL annotations, en-

abling robust training with limited clinical data. The release of synthetic pressure da-

tasets with biomechanical annotations further catalyzes research in tactile-based human 

reconstruction. Building upon SKEL, HSMR[17] incorporates biomechanical con-

straints into the optimization pipeline, including joint rotation limits and soft tissue col-

lision avoidance. This hybrid data-driven and physics-based approach enables applica-

tions requiring physiological plausibility, such as rehabilitation monitoring and ergo-

nomic assessment. Complementary works[5][18][19] explore the fusion of pressure 

data with visual modalities (RGB/depth) through knowledge distillation. By transfer-

ring geometric priors from vision-based teacher models to pressure-driven student net-

works, these methods alleviate information loss caused by limb occlusion in single-

pressure-map observations. 
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3 Method 

Our work proposes a knowledge distillation framework that enhances pressure map-

based student models by assimilating expertise from teacher models trained on multi-

modal data sources. The teacher-student architecture operates through coordinated pa-

rameter estimation pipelines: both models extract human pose and shape parameters 

from input data, which are subsequently fed into parametric human body models to 

generate corresponding 3D mesh representations. 

3.1 Teacher-Student Architecture 

Teacher Model Our framework employs a CLIFF model pre-trained on bedridden sce-

narios to process RGB inputs[10], extracting SMPL-compatible pose (θ ∈ ℕ72) and 

shape (β ∈ ℕ10) parameters through its optimized regression head. 

Student Model Constructed by established vision backbones (ResNet18/34/50[6], 

ConvNext[11]) with parallel feature extraction branches. These CNN-based architec-

tures process pressure maps to produce intermediate tensors, which are then trans-

formed through dedicated linear layers with ReLU activation functions into parameters 

matching SMPL's dimensional requirements and global translation (𝑡 ∈ ℕ3) and rota-

tion (𝑟 ∈ ℕ3)  parameters for spatial calibration. 

3.2 Human Body Model 

In this work we employ the SMPL model[12] for its established prevalence and sim-

plicity. The SMPL pipeline operates through two independent parameter vectors: pose 

parameter (𝜽 ∈ ℕ72) governing skeletal rotations, and shape parameters  (𝜷 ∈ ℕ10) en-

coding principal body morphology variations. These parameters are decoded from pres-

sure map inputs through our network, subsequently driving the SMPL skinning func-

tion: 

 ℳ(𝛉, 𝛃, 𝑔) = W(𝑇𝑃(𝛃, 𝛉), 𝐽(𝛃), 𝛉,𝒲, 𝑔)  (1) 

where 𝑊 denotes the skinning function, 𝑇𝑃 the pose-corrective blend shapes, 𝐽 joint lo-

cations, and 𝒲 blend weights, 𝛉  pose and 𝛃 shape parameters, and 𝑔 specify the gen-

der. 

3.3 Loss Design 

During the training stage, with the features ϕ = {θ, β, 𝑗, 𝑣} and ϕ̂ = {θ̂, β̂, 𝑗̂, 𝑣̂} respec-

tively from student and teacher we set the loss function ℒ as follows: 

 ℒ(𝜙, 𝜙̂) = λθ𝐿θ + λβ𝐿β + λ𝑗𝐿𝑗 + λ𝑣𝐿𝑣 (2) 

where 𝐿𝜃,  𝐿𝛽,  𝐿𝑗 are the MSE loss defined by 



 𝐿𝑖∈{𝜃,𝛽,𝑗} =
1

𝑁𝑖
∑(i − 𝑖̂)2 (3) 

and 𝐿𝑣 is the MAE loss defined by 

 𝐿𝑣 =
1

𝑁𝑣
∑|𝑣 − 𝑣̂| (4) 

The weights Λ = [λθ, λβ, λ𝑗 , λ𝑣] are [1.000,0.001,1.000,5.000]. 

4 Experiments 

4.1 Datasets 

We evaluate our framework on two benchmark datasets: 

BodyPressureSD[3]: A synthetic pressure-map dataset with SMPL-annotated human 

poses. 

SLP[10]: A real-world pressure sensing dataset exhibiting significant cross-modality 

discrepancies compared to synthetic counterparts. 

Given the absence of SMPL ground truth in SLP, we leverage existing SMPL pa-

rameter annotations from BodyPressureSD through cross-dataset label alignment[3]. 

Specifically, we establish biomechanical correspondence between pressure distribution 

patterns and SMPL pose parameters via inverse kinematics optimization. Our protocol 

is designed as follows: 

Training: 70 subjects from BodyPressureSD (synthetic domain).  

Testing: 22 subjects from SLP (real-world domain) 

4.2 Metrics 

We adopt two pairs of metrics during evaluation stage: MPJPE (Mean Per Joint Position 

Error), V2V (Vertex to Vertex) and their Procrustes-Aligned version (e.g., PA-MPJPE 

and PA-V2V). These widely used metrics align with SMPL's parametric design and 

clinical requirements. MPJPE directly quantifies pose parameter accuracy by measur-

ing joint position errors, while PA-MPJPE isolates geometric pose consistency after 

Procrustes alignment, critical for assessing biomechanical plausibility in variable pa-

tient orientations. V2V evaluates overall surface reconstruction quality influenced by 

both pose and shape parameters, capturing subtle anatomical details. PA-V2V further 

removes global transformations to focus on local anatomical fidelity, essential for pres-

sure-based applications where tissue deformation patterns determine clinical outcomes. 

This dual-pair metric strategy comprehensively addresses SMPL's disentangled param-

eter space (pose vs. shape) while balancing global alignment and local geometric pre-

cision. 
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4.3 Evaluation Results 

We devise two complementary experimental configurations to systematically evaluate 

the performance enhancement of our knowledge distillation framework across diverse 

student architectures. One group employs CLIFF as its teacher model and the other 

doesn't. The student model is selected from ResNet variants with different depths (Res-

Net18, ResNet34, ResNet50). We also evaluate ResNet34 with a Neutral SMPL model 

to investigate the interplay between anatomical priors and cross-modal knowledge 

transfer. In Table 1 we present the results. 

Table 1. Evaluations of various student model and SMPL model settings w/ or w/o knowledge 

distillation, (*) indicates the decrement of the corresponding error metric 

Teacher Student 
Metrics 

MPJPE V2V PA-MPJPE PA-V2V 

None 

ResNet18 97.29 121.65 88.83 111.67 

ResNet34 91.36 113.92 83.52 105.12 

ResNet50 83.88 105.53 76.01 97.22 

ResNet34 (Neu-

tral SMPL) 
74.57 95.14 68.48 88.96 

CLIFF 

ResNet18 93.46 

(3.94%) 

117.00 

(3.82%) 

85.08 

(4.22%) 

107.32 

(3.90%) 

ResNet34 89.32 

(2.23%) 

110.87 

(2.67%) 

80.60 

(2.67%) 

101.47 

(3.47%) 

ResNet50 81.48 

(2.86%) 

101.67 

(3.66%) 

73.41 

(3.42%) 

93.09 

(4.25%) 

ResNet34 (Neu-

tral SMPL) 

73.83 

(0.99%) 

93.85 

(1.36%) 

66.26 

(3.24%) 

86.25 

(3.05%) 

We can observe that knowledge distillation enhance these models by decreasing the 

error metrics around 2%~4%. 

5 Conclusion 

Prior pressure-based human mesh recovery (HMR) methods have been constrained by 

inherent performance limitations, significant cross-device variability in sensor config-

urations, and prohibitive hardware costs associated with high-resolution pressure sens-

ing systems. While multimodal approaches integrating pressure data with visual mo-

dalities (e.g., RGB/depth) attempt to mitigate these issues. Our work proposed an 

framework with knowledge distillation to enhance existing models' performance on 

pressure-based human body reconstruction tasks, restricted in in-bed scenarios. The 

knowledge distillation operation achieves 2%~4% decrement among selected metrics. 

Given the rapid advancements in knowledge distillation and biomechanical model-

ing, the teacher-student architecture, and its integrated human body model demand crit-

ical updates to maintain state-of-the-art performance. Our future work aims to system-

atically investigate cross-component adaptation efficacy—particularly parameter space 



alignment between evolving teacher models (e.g., vision-language foundation models), 

next-generation student architectures (neural implicit representations), and anatomi-

cally informed human models (biomechanically constrained SMPL variants). This re-

search trajectory works towards the establishment of an optimization protocol balanc-

ing model accuracy, computational efficiency, and clinical deploy ability, ultimately 

delivering an FDA-compliant, edge-computing-enabled product for real-world in-bed 

patient monitoring scenarios. 
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