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Abstract. Helmet detection is a critical component of road safety. However, ex-

isting detection algorithms face challenges in accuracy and recall, particularly 

when dealing with multi-scale objects in complex environments. To address these 

issues, this study proposes an improved YOLOv8-based model, denoted as BS-

YOLO. Firstly, drawing inspiration from StarNet, we propose two modules, 

namely StarFuseBlock and StarSPPF, to enhance the feature extraction capability 

of the model at shallow layers. Secondly, to mitigate the loss of texture features 

of small and medium-sized objects during the feature propagation process, we 

propose ResBiBlock, which captures global features through residual connec-

tions and Biformer Attention. Finally, MPDIoU is employed as a superior alter-

native to CIoU to enhance computational efficiency and provide greater robust-

ness in situations where predicted boxes do not align with ground-truth boxes. 

To validate the performance of the proposed model, a series of extensive experi-

ments were performed on the TWHD dataset.Results show that the BS-YOLO 

yields a 2.2% increase in precision, a 2.8% improvement in recall, and a 2.2% 

enhancement in mAP compared to the YOLOv8 baseline. The experimental re-

sults indicate that the proposed improvements effectively enhance the perfor-

mance of the baseline model, particularly in terms of robustness when dealing 

with multi-scale objects in complex scenarios. 

Keywords: YOLOv8, Object Detection, Star Operation, Biformer Attention. 

1 Introduction 

Road safety continues to be a critical issue. Helmets, as a fundamental component 

of personal protective equipment, play an essential role in enhancing personal safety. 

By effectively absorbing impact forces during collisions, helmets reduce the risk of 

head injuries. However, in practice, factors such as elevated temperatures and discom-

fort often lead individuals, particularly cyclists, to neglect wearing helmets. This com-

promises their protection in the event of a collision or fall, particularly at high speeds, 

thereby increasing the likelihood of injury. Consequently, efficient monitoring of hel-

met usage has become an urgent issue that requires attention. There are two primary 

approaches to helmet usage detection: manual monitoring and computer vision-based 



detection. The manual approach is hindered by challenges such as high costs, low effi-

ciency, and limited accuracy. Computer vision-based detection, while promising, faces 

several challenges: first, helmets are relatively small, and existing algorithms often 

struggle with detecting small objects; second, due to variations in the height and dis-

tance of monitoring equipment relative to the target, helmets appear at multiple scales 

in the captured images, complicating feature extraction; finally, the diversity of helmet 

colors and the complex nature of real-world road environments, which often involve 

occlusions and various types of interference, further complicate the algorithm's accu-

racy.  

With the advancement of computer vision, the maturation of related algorithms, and 

improvements in hardware performance, deep learning algorithms have increasingly 

been applied in engineering practice across various industries. The YOLO (You Only 

Look Once) series are prominent one-stage object detection models, renowned for their 

ability to balance detection speed and accuracy. YOLOv8 utilizes the Darknet-53 back-

bone for feature extraction and the CIoU loss function. Additionally, its anchor-free 

detection head reduces computational overhead, resulting in improved detection accu-

racy and faster inference speed. YOLOv8 also demonstrates excellent compatibility 

with various hardware platforms and superior robustness in complex scenarios. As a 

result, YOLOv8 has demonstrated strong performance in various computer vision tasks, 

including segmentation, tracking, object detection, classification, and pose estima-

tion[1].  

Therefore, this paper selects YOLOv8 as the baseline for the study. However, due 

to the small size of helmet targets, the presence of complex interference factors in de-

tection scenarios, and the multi-scale nature of the targets, directly applying YOLOv8 

fails to meet practical requirements. To enhance detection accuracy for helmet detection 

in real-world scenarios, several improvements have been made to YOLOv8. The main 

contributions of this paper are as follows: 

• Based on the efficient feature mapping to high-dimensional space provided by Star-

Net, the Star Operation is used to optimize the SPPF structure. Additionally, the 

StarFuseBlock is proposed to enhance feature extraction in shallow networks while 

maintaining computational efficiency. The StarModules partially alleviate the chal-

lenge of insufficient high-level semantic representation for small and medium-sized 

objects in shallow network layers, while also addressing feature degradation in 

deeper layers. 

• ResBiBlock is proposed, leveraging Biformer Attention to focus on global features, 

while residual connections are used to fuse global and local features, enhancing the 

network's ability to capture relevant features. 

• To simplify the computation process and improve the accuracy of bounding box re-

gression, MPDIoU is introduced as the loss function. 

2 Related Work 

Object Detection.  Object detection is a key application in computer vision, involv-

ing the classification and localization of visual objects. Early research on helmet 
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detection leveraged machine learning and computer vision techniques: Rubaiyat et al. 

combined frequency-domain information with the HOG human detection algorithm, 

using CHT (color-based features and Hough Transform) for helmet detection [2]; Pang 

et al. conducted feature extraction using the DOD framework and applied a linear SVM 

for image classification, achieving higher efficiency compared to traditional frame-

works[3].  

The advent of two-stage algorithms marked a significant breakthrough in object de-

tection. Algorithms such as R-CNN[4], Fast R-CNN[5], Faster R-CNN[6], R-FCN[7], 

and Mask R-CNN[8] raised detection accuracy to new levels. Two-stage object detec-

tion algorithms first extract Regions of Interest (ROIs) from the image, followed by 

classification of each ROI using a classifier, improving both classification and regres-

sion accuracy. However, the large number of overlapping proposal boxes generated 

during ROI extraction results in redundant feature computation, which significantly 

slows down detection speed. Despite improvements in detection speed with Fast R-

CNN and Faster R-CNN, two-stage algorithms still incur substantial computational 

overhead.  

To address the issues of redundant computations and slow detection speed, Joseph 

et al. introduced the You Only Look Once (YOLO) algorithm. As a pioneer in one-

stage algorithms, YOLO performs classification and regression on anchor boxes di-

rectly after a single feature extraction, significantly improving detection speed at the 

cost of some accuracy. Concurrently, Liu et al. [9]proposed the Single-Shot Multi-box 

Detector (SSD), another classic one-stage algorithm. SSD incorporates multi-reference 

and multi-scale detection techniques, enhancing both speed and accuracy, particularly 

for small object detection. Over the years, the YOLO series has made substantial ad-

vancements in computer vision, offering new research directions. 

Attention Mechanism.  In computer vision, the attention mechanism is a dynamic 

selection process that adaptively assigns weights to input features, enabling the model 

to focus on the most critical regions of the image. Early work by Mnih et al. introduced 

RAM[10], which used policy gradients to predict important regions and update the net-

work end-to-end. Jaderberg et al. proposed the spatial attention model STN[11], which 

used affine transformations to select important input regions. Hu et al. introduced SE-

Net[12], a classic channel attention model that computes feature map channel weights 

via fully connected layers. Woo et al. proposed CBAM[13], which considers both spa-

tial and channel information, enhancing feature extraction without increasing network 

complexity. The Transformer[14] architecture further advanced attention mechanisms 

by introducing self-attention, allowing the model to capture long-range dependencies 

across all elements of the sequence simultaneously. Subsequent models, such as 

ViT[15] and Swin Transformer[16], further extended attention mechanisms, advancing 

their application in vision tasks. 

3 Methods 

Overall Structure. This section will elaborate on the details of the proposed im-

provements. Our improvements are primarily based on the YOLOv8 network structure. 



The modified model structure is shown in Fig. 1. To enhance target feature capture, we 

integrate StarBlock into the SPPF module, forming StarNet, which improves the mod-

el's ability to extract complex features, particularly for helmets in complex scenarios. 

All C2f modules in the feature extraction network are modified by incorporating Bi-

former attention, enabling the model to focus on relevant regions and improving small 

object feature extraction while reducing background interference. Lastly, IoU is calcu-

lated based on the minimum point distance between bounding boxes, simplifying com-

putation while accounting for relevant factors from existing loss functions. 

Star Modules. SPPF is an efficient pooling structure inspired by spatial pyramid 

pooling, which captures multi-scale features by applying pooling at different scales. In 

SPPF, the input feature map is pooled three times with varying kernel sizes and then 

concatenated to retain both local and global information. 

 

Fig. 1. Overall Structure of BS-YOLO. 

However, constrained by image resolution, the features of smaller objects are typi-

cally retained only in the shallow layers of the network. Although repeated convolu-

tions can capture their edge details, this process often results in the loss of high-level 

semantic features. To enhance the model's ability to map inputs to high-dimensional 

non-linear features without adding extra computational burden, we introduce Star-

Net[17]. StarNet is a simple and efficient feature extraction network that leverages the 

Star Operation to project input features into a high-dimensional nonlinear space, 

thereby enhancing the network’s overall feature extraction capacity. Specifically, for 

small objects, the Star Operation(element-wise multiplication) enables the acquisition 
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of high-level semantic information prior to feature degradation, and facilitates its trans-

mission to deeper network layers. For one output channel, a star operation can be writ-

ten as (𝒘1
𝑇𝒙) ∗ (𝒘2

𝑇𝒙), where 𝒘1, 𝒘2, 𝒙 ∈ 𝑅(𝑑+𝟙)×𝟙. Through the statistical analysis of 

the quadratic and cross terms in the star operation, we obtain (𝑑 + 1) +
(𝑑+1)×𝑑

2
 distinct  

 

Fig. 2. Details of StarSPPF. In StarNet, the feature maps activated through fully connected lay-

ers are fused via star operation(element-wise multiplication). 

 

Fig. 3. Feature Transmission Path in StarFuseBlock 

combinations, which represent 
(𝑑+1)(𝑑+2)

2
 implicit feature dimensions in the high-di-

mensional space. When multiple layers of the Star Operation are stacked in a neural 

network, the implicit high-dimensional feature space increases exponentially. 
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Therefore, even in simple network structures, the Star Operation can lead to significant 

performance improvements.  

StarNet is formed by stacking multiple StarBlocks. In the SPPF, we insert 

StarBlocks at the head and tail of the structure to create a compact StarNet architecture, 

as shown in Fig. 2, StarBlock replaces the traditional ConvModule (Conv2d, 

BatchNorm,SiLU) convolution module with DWConv (Depth-Wise Convolution). 

DWConv significantly reduces both the parameter count and computational overhead 

through the use of grouped convolution. Subsequently, the feature maps are passed 

through two 1×1 convolutional layers, denoted as FC1 and FC2. Next, the feature map 

processed by FC1 is activated using the ReLU6 function and combined with the output 

of FC2 through the star operation. Finally, the initial input is fused with the result of 

the star operation via a residual connection. 

In StarFuseBlock, the input feature channels are equally split into two parts, as 

shown in Fig. 3. These two parts are processed via the Star Operation and then passed 

through n bottleneck layers for further transformation. Meanwhile, the other half of the 

original input is retained and merged with the processed features via a residual connec-

tion, followed by a convolutional layer for feature fusion. 

ResBiBlock. The attention mechanism is the core of the Transformer architec-

ture[14], enabling the model to focus more on the key features in the input. In the classic 

Transformer, self-attention is used, which involves applying a linear transformation to 

the same input and then using it to compute the attention matrix, expressed as: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑸𝑲𝑇

√𝐶
) 𝑽 (1) 

The queries Q, keys K, and values V are obtained by applying linear transformations 

to the same input X. The √C is introduced to mitigate the vanishing gradient problem. 

However, due to the need to compute attention weights between each pixel (query) and 

all other pixels (keys), the self-attention mechanism incurs high memory usage and 

computational cost. To address this, various improvements to Transformer attention, 

such as local window, axial stripe, dilated window, and deformable attention, have been 

proposed to compute sparse attention, thereby reducing both computational and storage 

overhead. 

Biformer[18] achieves dynamic and query-adaptive sparse attention computation 

through the Bi-Level Routing Attention (BRA) mechanism. The key idea is to filter out 

the majority of irrelevant query-key pairs in the input image, ensuring that each query 

attends only to a limited number of key-value pairs. 

As shown in Fig. 4, the input X is reshaped into S2equally sized regions. For the 

reshaped input Xr, linear transformations are applied using the matrices Wq,Wk,Wv, 

generating the initial Q,K,V matrices: 

 𝑸 = 𝑿𝑟𝑾𝑞 , 𝑲 = 𝑿𝑟𝑾𝑘, 𝑽 = 𝑿𝑟𝑾𝑟 (2) 

Subsequently, the region-wise averages of Q and K are computed, and the correla-

tion adjacency matrix Ar is obtained through matrix multiplication: 

 𝑨𝑟 = 𝑸𝑟(𝑲𝑟)𝑇 (3) 
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Fig. 4. Biformer Attention 

Based on the correlation between Q and K, the top-k regions are selected row-wise from 

Ar, denoted as Ir, which represent the regions that Q needs to focus on the most. The 

specific operation is as follows: 

 𝑰𝑟 = 𝑡𝑜𝑝𝑘𝐼𝑛𝑑𝑒𝑥(𝑨𝑟) (4) 

 

Fig. 5. Details of ResBiBlock. 

Subsequently, based on Ir, the corresponding keys and values from K and V within 

the selected regions are extracted to obtain Kg and Vg.Finally, by inputting Q, Kg and 

Vg into (1), the Biformer Attention is computed, as described in (5) and (6). 

 𝑲𝑔 = 𝑔𝑎𝑡ℎ𝑒𝑟(𝑲, 𝑰𝑟), 𝑽𝑔 = 𝑔𝑎𝑡ℎ𝑒𝑟(𝑽, 𝑰𝑟) (5) 

 𝐵𝑖𝑓𝑜𝑟𝑚𝑒𝑟 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲𝑔, 𝑽𝑔) (6) 
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As shown in Fig. 5, Biformer Blocks encode relative positional information via a 

3×3 Depth-Wise Convolution and apply the BRA module to compute attention, which 

is then fused with features through a two-layer MLP. Each submodule fuses the previ-

ous and current outputs to preserve multi-scale information. ResBiBlock partitions the 

input into two branches. One branch undergoes a convolutional operation before enter-

ing the Biformer Block to capture global context from shallow features, while the other 

branch is processed through multiple Bottleneck layers to extract high-dimensional se-

mantic features. Finally, the two branches are merged with the original input through 

residual connections and fused via a convolution operation. The long-range dependen-

cies inherent in the self-attention mechanism allow the network to effectively incorpo-

rate shallow-layer information, thereby ensuring a richer representation of semantic in-

formation. 

MPDIoU. BBR(Bounding Box Regression) is a crucial component in object detec-

tion, and a well-designed loss function can improve the convergence speed and accu-

racy of BBR. However, existing loss functions do not fully utilize the geometric prop-

erties of bounding box regression. Therefore, we introduce the Minimum Point Dis-

tance-Based IoU loss[19].  

MPDIoU Loss uses the minimum point distance to describe the similarity between 

the predicted and ground truth boxes. It incorporates all the relevant factors considered 

by existing loss functions, such as the overlap or non-overlap area, the center point 

distance, and the deviations in width and height, while simplifying the computation.Fig. 

6 illustrates the parameters of MPDIoU, where w and h represent the width and height 

of the input image, respectively. 

 

Fig. 6. MPDIoU 
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Based on the above definitions, the MPDIoU and MPDIoU Loss are defined as in 

(9) and (10): 

 𝑀𝑃𝐷𝐼𝑜𝑈 =
𝐴∩𝐵

𝐴∪𝐵
−

𝑑1
2

𝑤2+ℎ2 −
𝑑2
2

𝑤2+ℎ2 (9) 

 𝐿𝑀𝑃𝐷𝐼𝑜𝑈 = 1 − 𝑀𝑃𝐷𝐼𝑜𝑈 (10) 

4 Experiments 

4.1 Datasets and Evaluation Metrics 

 

Fig. 7. Data distribution of TWHD (a) and SHWD (b), showing the number of objects per cate-

gory (top-left), ground truth box sizes (top-right), center locations (bottom-left), and width-

height distribution (bottom-right). 

To verify the effectiveness of BS-YOLO, experiments are conducted on the TWHD 

and SHWD datasets. The TWHD dataset is a high-quality image collection for helmet 

detection in two-wheeled vehicle riders, containing 5,448 images. It includes 4,710 re-

annotated images from the OSF dataset and 738 images from the Bike Helmet dataset 

to enhance background diversity. Annotations follow the Pascal VOC format with three 

categories: two-wheeler, helmet, and without_helmet. The dataset covers diverse con-

ditions—weather, lighting, environment, and traffic—across various scenes with dif-

ferences in brightness, occlusion, density, camera angles, rider poses, and helmet ap-

pearances. The SHWD dataset is designed for safety helmet and human head detection, 

containing 7,581 images with 9,044 helmet-wearing (positive) and 111,514 non-helmet 

(negative) head instances. It is widely used for evaluating helmet detection performance 

due to its large scale and clear annotations. The statistical distributions of the TWHD 

and SHWD datasets are presented in Fig. 7. 

(a) (b)



In object detection tasks, model performance is primarily evaluated using metrics 

such as P (Precision), R (Recall), and Mean Average Precision (mAP). Precision (P) is 

the proportion of correctly predicted positive instances out of the total positive in-

stances, and is calculated as follows: 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

where TP represents the number of True Positive samples, and FN represents the num-

ber of False Negative samples. Recall (R) is the proportion of correctly predicted posi-

tive samples out of all the actual positive samples, and its formula is given as follows: 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

where FP represents the number of samples predicted as False Positive. Average Pre-

cision (AP) is calculated as the area under the Precision-Recall curve for each class, 

and mAP is used to evaluate the average precision across multiple classes, and is cal-

culated as follows: 

 𝐴𝑃 = ∫ 𝑃(𝑅)
1

0
 𝑑𝑅 (13) 

 𝑚𝐴𝑃50 =
∑ 𝐴𝑃𝑖
𝐶
𝑖=1

𝐶
 (14) 

where C represents the total number of categories in the labels. mAP@50 refers to the 

mAP calculated with an IoU threshold of 50, meaning a prediction is considered a valid 

detection only when the Intersection over Union (IoU) between the predicted box and 

the ground truth box is greater than or equal to 50. And mAP@50:95 represents the 

mean average precision across multiple IoU thresholds, ranging from 0.5 to 0.95. It 

provides a comprehensive evaluation of the model's performance under varying levels 

of matching strictness. 

4.2 Experiment Settings 

The experiment was conducted on an Ubuntu 22.04 operating system. The hardware 

configuration includes a 12-core CPU, 12GB RAM, and an RTX 3080Ti GPU with 

12GB of VRAM. The deep learning framework used is PyTorch version 2.1.0, with 

CUDA version 12.1. During the YOLOv8 training process, the input image size was 

set to 640×640, with a maximum of 300 epochs and a batch size of 16 images. No pre-

trained weights were used, and the training utilized the SGD optimizer with a learning 

rate of 0.01. 

4.3 Ablation Experiments 

To evaluate the effectiveness of each proposed improvement in this paper, an abla-

tion study was conducted on the baseline using the TWHD dataset. Table 1. provides 

a detailed description of the performance of different improvements and their 
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combinations. The experimental results indicate that each innovation contributes to per-

formance improvement to varying extents. When combined, these innovations lead to 

even more significant enhancements. The use of Star Modules (StarSPPF, StarFuse-

Block) enables the network to map shallow features to a high-dimensional feature 

space, resulting in a 1.1% increase in mAP. 

The introduction of the ResBiBlock module enhances the model's attention to im-

portant features through Biformer Attention, leading to a 0.6% improvement in mAP. 

The incorporation of MPDIoU fully leverages the geometric properties of bounding 

box regression, effectively handling both overlapping and non-overlapping cases be-

tween predicted and ground truth boxes, while simplifying the computation, which in-

creases mAP by 0.1%. Furthermore, combinations of these improvements lead to fur-

ther performance gains. In particular, when StarSPPF and ResBiBlock are combined, 

the multi-scale high-dimensional features generated by StarSPPF, together with the ex-

cellent long-range attention from Biformer, allow the model to focus more on the cru-

cial parts of the high-dimensional features, thus strengthening its feature extraction ca-

pability in complex scenarios. This combination results in a 1.8% improvement in 

mAP, which also demonstrates the feasibility of the proposed improvements. When 

these three improvements are integrated, ResBiBlock establishes long-range attention 

on the high-dimensional features generated within StarSPPF, while MPDIoU directs 

the model to mitigate biases in feature extraction, ultimately resulting in a 2.2% in-

crease in mAP. 

Table 1. Results of The Ablation Experiments 

YOLOv8 Star Modules ResBiBlock MPDIoU P R mAP50 

√    0.841 0.769 0.829 

√ √   0.843 0.792 0.840 

√  √  0.845 0.773 0.835 

√   √ 0.842 0.770 0.830 

√ √ √  0.856 0.797 0.847 

√ √  √ 0.847 0.776 0.842 

√  √ √ 0.841 0.769 0.837 

√ √ √ √ 0.863 0.797 0.851 

4.4 Comparison Experiments of Attention Mechanism 

To evaluate the impact of combining StarSPPF with ResBiBlock, experiments were 

conducted by substituting the Biformer Attention with alternative attention mechanisms 

at the same position,the results are presented in  Table 2. 

When the attention mechanism is replaced from Biformer Attention to CBAM, SE-

Net, or SaE, although the model performance improves relative to the baseline, it con-

sistently underperforms compared to ResBiBlock. This can be attributed to the self-

attention mechanism in Biformer Attention, which effectively captures long-range de-

pendencies between features, whereas the aforementioned attention mechanisms 



primarily focus on the importance of channel-wise or spatial information. However, the 

SE and SaE attention mechanisms focus solely on important features along the channel 

dimension. Although CBAM combines both channel and spatial attention, it still strug-

gles to capture long-range dependencies between distant features. Therefore, Res-

BiBlock captures a greater number of high-dimensional features generated by StarSPPF 

and StarFuseBlock compared to CBAM, SENet, and SaE, resulting in better precision, 

recall, and mAP. 

Table 2. Comparison Experiments of Attention Mechanism 

Attentions P R mAP 

StarModuels+CBAM[20]+MPDIoU 0.844 0.769 0.827 

StarModules+SENet[12]+MPDIoU 0.824 0.772 0.819 

StarModules+SaE[21] +MPDIoU 0.843 0.771 0.833 

StarModules+ResBiBlock+MPDIoU 0.863 0.797 0.851 

4.5 Comparison Experiments 

To demonstrate the advantages and effectiveness of the proposed improvements to 

the YOLOv8 model, we conducted multiple comparative experiments on the same da-

taset, comparing the proposed model with other well-known models. In terms of model 

selection, we first chose the classic One-Stage algorithm SSD[9] and the Two-Stage 

algorithm Faster R-CNN[6]. Additionally, we compared various models within the 

YOLO series, including YOLOv5, YOLOv8-v12, as well as the transformer based RT-

DETR[22] and recently published D-FINE[23].An overview of the experimental data 

is provided in Table 3. 

Table 3. Results of The Comparison Experiments on TWHD 

Models P R mAP Params(M) GFLOPs 

SSD 0.717 0.222 0.321 26.3 62.8 

Faster R-CNN 0.273 0.409 0.337 137.1 370.2 

YOLOv5 0.823 0.781 0.827 9.1 23.8 

YOLOv8 0.841 0.779 0.834 11.1 28.4 

YOLOv9 0.818 0.789 0.828 7.2 26.7 

YOLOv10 0.834 0.773 0.826 8.0 24.5 

YOLOv11 0.838 0.777 0.825 9.4 21.3 

YOLOv12 0.820 0.776 0.821 9.2 21.2 

RT-DETR 0.769 0.742 0.785 32.0 103.4 

D-FINE 0.797 0.762 0.813 10.0 25.0 

BS-YOLO 0.863 0.797 0.851 14.2 31.1 

SSD is an efficient and lightweight object detection model that uses the classic 

VGG16 as its backbone network, achieving good accuracy and speed under typical 



 

 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

scenarios. However, in complex scenes, SSD's feature extraction capability faces chal-

lenges, resulting in a decrease in both precision and recall. As a Two-Stage anchor-

based algorithm, Faster R-CNN has slower inference speed and lower precision but 

performs better in recall.YOLOv5 further improves model adaptability and detection 

accuracy in complex scenes by using Mosaic data augmentation and CIoU loss func-

tion, leading to significant improvements over traditional algorithms.YOLOv8, a high-

performance and widely used algorithm in the YOLO series, employs SPPF for multi-

scale feature pooling and fusion, and replaces C3 with C2f for enhanced feature extrac-

tion.  

The model proposed in this paper also uses YOLOv8 as the baseline, but demon-

strates significantly superior performance compared to other models on the same da-

taset. The proposed model enhances feature extraction in complex scenarios by gener-

ating additional high-dimensional space with StarModules(StarSPPF and StarFuse-

Block), while incorporating Biformer Attention in the Neck to improve the model's 

focus on important features. Both modifications enhance the model's ability to extract 

features of multi-scale objects in complex scenarios. However, when combined, the 

long-range attention mechanism of Biformer Attention and the high-dimensional fea-

tures extracted by StarModules synergistically improve detection performance. The in-

troduction of MPDIoU further enhances the model's robustness in complex scenarios, 

leading to improvements in both precision and recall. The performance gap between 

YOLOv5 and YOLOv8–v12 on the TWHD dataset is within 1.3%. YOLOv9, in par-

ticular, incorporates the PGI module to mitigate gradient loss and adopts the lightweight 

GELAN architecture. YOLOv10–v12 preserve lightweight characteristics while bal-

ancing speed and accuracy. The Transformer-based RT-DETR requires substantial 

computational resources and a large number of parameters, yet its ability to extract 

features in complex environments is limited, resulting in the poor effect. Although D-

FINE is relatively lightweight, its actual performance still falls short compared to the 

YOLO series. 

To further evaluate the performance of BS-YOLO, we conducted comparative ex-

periments on the SHWD dataset against several well-performing YOLO-series models 

and Transformer-based models. The results of the experiments are presented in Table 

4. Experimental results indicate that BS-YOLO outperforms algorithms such as 

YOLOv8 and D-FINE on the SHWD dataset. Among the evaluated models, BS-YOLO 

achieves the highest performance in terms of precision, mAP@50, and mAP@50:95, 

demonstrating its strong effectiveness on the SHWD dataset and highlighting its supe-

rior generalization capability. 

Table 4. Comparison Experiments on SHWD 

Models P R mAP50 mAP50:95 

YOLOv8 0.919 0.832 0.889 0.563 

YOLOv12 0.908 0.835 0.889 0.565 

D-FINE 0.893 0.791 0.856 0.512 

BS-YOLO 0.922 0.831 0.894 0.568 



4.6 Visual Results on the TWHD dataset 

BS-YOLO achieves a precision of 86.3%, recall of 79.7%, and mAP of 85.1% on 

the TWHD dataset. Fig. 8 presents the visualization results of the algorithm on the 

TWHD dataset, demonstrating its superior helmet detection capability. In the visuali-

zation results, a comparison is made between the performance of the best-performing 

YOLO model, YOLOv8, the recently released lightweight detector D-FINE, and BS-

YOLO. In the images, D-FINE and YOLOv8 exhibit varying degrees of missed and 

false detections, with D-FINE showing more severe false detections compared to 

YOLOv8. In contrast, BS-YOLO does not produce any false detections and demon-

strates higher confidence in the correct detections. It can be noted that, when confronted 

with complex environments (e.g., occlusion, lighting variations), BS-YOLO demon-

strates strong performance and robustness in detecting multi-scale objects. 

 

Fig. 8. Visual Results of D-FINE(a), YOLOv8(b), BS-YOLO(c) on TWHD 

5 Conclusion 

The helmet detection task presents various challenges, including but not limited to 

complex scenes and multi-scale targets. To address these challenges, this paper designs 

an innovative model based on YOLOv8 for helmet-wearing detection in complex traffic 

environments. In BS-YOLO, the SPPF structure is optimized based on the StarNet con-

cept, resulting in the proposed StarSPPF. Additionally, a feature fusion module, 

StarFuseBlock, is designed. Both modules adopt the Star Operation as the core 
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mechanism, enabling the mapping of low-dimensional features extracted from shallow 

layers to a higher-dimensional feature space. This effectively mitigates the insufficient 

high-level semantic representation of small and medium objects and alleviates the issue 

of feature loss in deeper layers of the network. In ResBiBlock, the input undergoes 

multi-path feature extraction with the integration of Biformer Attention, and is subse-

quently fused with the original input via residual connections. This design effectively 

enhances the network’s ability to focus on globally significant features. Moreover, the 

long-range modeling capability of self-attention enables the deep layers to retain aware-

ness of shallow-level features. Finally, the MPDIoU loss function is introduced to im-

prove the model's robustness in complex environments. Despite these improvements, 

the proposed model still has some limitations. Although the performance improvement 

of BS-YOLO is notable, it comes at the cost of increased parameters and computational 

complexity, with Biformer Attention contributing significantly to the overhead. Future 

work may explore approaches such as model pruning or knowledge distillation to re-

duce model size while maintaining performance. Alternatively, more efficient mecha-

nisms that retain the benefits of self-attention with substantially lower computational 

cost could be investigated.  
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