
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

DeCA: A Decomposition-Enhanced Framework for 

Query-Focused Table Summarization 

Luyi Wang1, Yake Niu1, Tiantian Peng1, Renjie Ci1, and Hui Zhao1,2() 

1 Software Engineering Institute, East China Normal University, Shanghai, China 
2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China 

{luyi.wang,yake.niu,tiantian.peng,cirenjie}@stu.ecnu.edu.cn, 

hzhao@sei.ecnu.edu.cn 

Abstract. Query-focused table summarization aims to generate personalized 

summaries by reasoning and analyzing tabular data in response to user queries. 

Existing large language models (LLMs) based methods enhance summarization 

by utilizing intermediate facts to support reasoning. However, their effectiveness 

is constrained by limited inference rules and the generation of erroneous or re-

dundant sub-queries, which can misguide the reasoning process and introduce 

misleading information into the summary. To address these issues, we propose 

DeCA, an innovative framework designed to generate non-repetitive and relevant 

sub-queries that support LLM reasoning and improve summary quality. Our 

framework comprises four modules: (1) Table Schema Extractor that interprets 

table structure and information; (2) Query Decomposer that recursively decom-

poses queries; (3) Sub-query Checker that verifies non-repetition, relevance, and 

dependencies among sub-queries; and (4) Answer Generator that generates sum-

maries employing a hint-based answering strategy. Furthermore, we construct 

CQTS, the first large-scale Chinese table dataset for query-focused table summa-

rization, consisting of 2,956 tables and 6,721 query-summary pairs. Extensive 

experiments on CQTS and two English datasets, QTSumm and FeTaQA, demon-

strate that DeCA enhances LLM reasoning and outperforms existing methods in 

summary generation and sub-queries formulation. 

Keywords: Query Decomposition, Query-Focused Table Summarization, 

Large Language Model Reasoning, Chinese Table Dataset. 

1 Introduction 

Tables provide a concise and structured representation of information, enabling effi-

cient data retrieval and analysis. Query-focused table summarization task [1] addresses 

the challenge of producing a tailored summary by reasoning over tabular content in 

response to a user query. Despite advancements in natural language understanding and 

generation, large language models (LLMs) still face substantial difficulties in generat-

ing faithful and comprehensive summaries. As shown in Fig. 1, when presented with a 

query containing rich semantic content and intricate conditions, LLMs must utilize 



reasoning abilities to identify relationships among data points within the table and gen-

erate a summary that satisfies the informational requirements of the query. 

 

Fig. 1. An example of query-focused table summarization. Given a table and a complex query, 

LLMs’ incorrect reasoning and analysis results in inaccurate summaries, with errors highlighted 

in red. We propose the DeCA framework to optimize the reasoning process of LLMs by decom-

posing and checking sub-queries before generating summaries with hints. 

Recent approaches [1, 2, 3] have utilized auxiliary information, referred to as facts 

or hints. By leveraging these facts, LLM can comprehend complex queries and generate 

high-quality summaries from tabular data. However, these facts come with certain lim-

itations. Rule-based facts [1] are constrained by a human-predefined inference type set, 

hindering flexibility and adaptability across diverse scenarios. Another type of fact [2] 

involves query-relevant cells extracted from the tables, potentially underutilizing the 

model’s reasoning capabilities. Additionally, using sub-queries and sub-answers as 

hints [3] introduces challenges, as uncontrolled decomposition may lead to repetitive, 

irrelevant, and erroneous sub-queries. Thus, these ineffective sub-queries fail to support 

the model’s reasoning process, leading to incorrect summaries. 

To address these issues in the query-focused table summarization task, we propose 

DeCA, a novel framework to enhance the reasoning capabilities of LLMs through 

structured query decomposition, sub-queries quality checking, and answer generation. 

DeCA consists of four modules. (1) Table Schema Extractor analyzes table infor-

mation and extracts the table schema. (2) Query Decomposer recursively decomposes 

the query into sub-queries until no further decomposition is possible. (3) Sub-query 

Checker evaluates each sub-query based on three criteria: non-repetition, relevance, 

and dependency. (4) Answer Generator generates summaries for each sub-query with 

its children, dependency, and ancestor queries as contextual hints. 

Furthermore, we observe a lack of query-focused table summarization datasets in 

Chinese. Current Chinese datasets over tabular data [4, 5] mainly focus on text-to-SQL 

and table question answering. Moreover, some Chinese table datasets [6, 7] are merely 

translations of English datasets, leading to inaccuracies in idiomatic expressions and 

language-specific phrases. Therefore, we construct CQTS, the first Chinese table da-

taset for query-focused table summarization, comprising 2,956 tables and 6,721 query-

summary pairs. This dataset contributes to advancing Chinese table processing and ad-

dresses the shortage of Chinese datasets in the query-focused table summarization task. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Prior works rely solely on automatic metrics. Automatic evaluation struggles to con-

sistently measure query-focused table summarization [1, 8], whereas LLM-based eval-

uation aligns more closely with human judgment [9]. Different from prior works, we 

incorporate automatic and LLM-based evaluation methods to assess summary quality 

in our experiments.  

Our main contributions are concluded as follows: 

• We propose DeCA, a novel framework for query-focused table summarization. By 

structured query decomposition, sub-queries quality checking, and a hint-based an-

swering mechanism, DeCA enhances LLM reasoning abilities to generate faithful 

and comprehensive summaries. 

• We develop the CQTS dataset, consisting of 2,956 tables and 6,721 query-summary 

pairs. To the best of our knowledge, CQTS fills a blank in Chinese data for query-

focused table summarization and contributes to developing methods for processing 

Chinese tables. 

• We conduct extensive experiments across our proposed CQTS and two English da-

tasets, QTSumm [1] and FeTaQA [10], on seven LLMs. The results indicate that 

DeCA surpasses existing methods in generating faithful and comprehensive sum-

maries and decomposing non-repetitive and relevant sub-queries. 

2 Related Work 

2.1 Question Decomposition 

Question decomposition effectively enhances the reasoning abilities of models by 

breaking down complex questions into sub-questions [11, 12]. For table-related tasks, 

Dater [13] and TaPERA [3] utilize LLMs to generate sub-queries and sub-answers to 

produce final results. However, most existing methods treat the LLM output as the final 

decomposition without checking the quality of sub-queries. A single-round decompo-

sition often fails to provide sufficient facts to resolve the original question. 

2.2 Table Related Dataset 

Most existing works focus on training language-specific models with various English 

table datasets [14, 15], while Chinese table datasets remain limited. Current Chinese 

table datasets primarily focus on text-to-SQL [6, 16] and table question answering [5, 

17]. Some researchers employ machine translation to convert English datasets into Chi-

nese [6, 7]. Nevertheless, these translated datasets often fail to capture Chinese linguis-

tic features, particularly idiomatic phrases and language-specific terms. 

3 Preliminary 

The query-focused table summarization task can be formulated as follows. Given a 

query Q and a table T, the table T = W ∪{ti,j | i ≤ RT, j ≤ CT} contains RT rows and CT 



columns. W represents the table title. ti,j indicates the textual content in the (i,j)-th cell. 

The task objective is to generate a paragraph-long textual summary Y = (y
1
, y

2
, …, y

n
) 

based on the query Q and table T: 

 Y = argmax ∏ P(y
i
 | y

<i
, Q, T; θ)n

i=1  (1) 

where θ denotes the parameters of a text generation model, and y
i
 denotes the i-th to-

kens in the generated summary. 

4 Dataset CQTS 

4.1 Dataset Construction 

In constructing the CQTS, we adhere to several principles that guide the collection of 

tables, queries, and summaries to ensure the quality and reliability of the CQTS dataset: 

• Informativeness: The table should be rich in comparisons, statistics, and analytical 

content. 

• Meaningfulness: The query should reflect practical, real-world information needs 

when analyzing tables. 

• Complexity: The query should involve multi-hop reasoning and diverse structures. 

• Fluency: Both the query and its corresponding table summary should be coherent 

and linguistically fluent. 

• Faithfulness: The summary should be factually consistent with the content in the 

source table. 

• Comprehensiveness: The summary should provide sufficient details and analyses 

of the source table to address the query fully. 

Table Source. The source tables in CQTS are derived from two Chinese table datasets: 

the text-to-SQL dataset TableQA [4] and the table QA dataset IM-TQA [5]. For 

TableQA, we randomly sample 2,815 tables and conduct manual modifications to ad-

dress several data quality issues. For IM-TQA, we select horizontal and vertical tables 

and merge small tables with identical schemas, yielding 141 tables. To address the ab-

sence of table titles in both datasets, we employ GPT-4o to generate concise and se-

mantically appropriate titles based on table content. All generated titles are manually 

reviewed and validated for accuracy and relevance. 

4.2 Data Annotation Pipeline 

LLMs have already served as scalable and cost-efficient data annotators. However, 

their outputs do not always align with human preferences and values. Integrating human 

feedback enhances LLM-generated content’s quality, diversity, and reliability. Thus, 

we propose a hybrid annotation pipeline to integrate the efficiency of LLM-based gen-

eration with the precision of human validation. The pipeline comprises three steps, as 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

shown in Fig. 2A. Given a table, the LLM Generator first produces queries, correspond-

ing table summaries, and relevant cell positions. Subsequently, the LLM Checker eval-

uates and refines queries lacking complexity or diversity using three table expansion 

strategies, as illustrated in Fig. 2B. Finally, the Human Annotators select high-quality 

annotations and provide feedback to improve the query generation iteratively. We uti-

lize GPT-4o as the backbone of the Generator and Checker. 

 

Fig. 2. A: Our proposed hybrid pipeline combines LLM-based annotation with human verifica-

tion and feedback. B: Three table expansion strategies enhance the LLM Checker’s ability to 

improve complexity and diversity. The example is a Chinese sample from the CQTS. 

4.3 Data Statistics and Analysis 

Key Statistics. Our dataset consists of 2,956 tables and 6,721 query-summary pairs. 

Detailed statistical information is provided in Table 1. 

Table 1. Basic statistics of CQTS dataset. 

Property Value 

Unique Tables 2,956 

Query-Summary Pairs 6,721 

Rows per Table (Median/Avg) 10/12.4 

Columns per Table (Median/Avg) 7/7.5 

Table Title Length (Median/Avg) 14/16.2 

Query Length (Median/Avg) 34/34.9 

Summary Length (Median/Avg) 79/84.8 

Training Set Size (Table/Summary) 2,070/4,710 (70%) 

Validation Set Size (Table/Summary) 443/1,004 (15%) 

Test Set Size (Table/Summary) 443/1,007 (15%) 



Dataset Domains. Fig. 3 illustrates the distribution of domains within the CQTS da-

taset. The visualization highlights the dataset’s diversity, capturing a wide array of do-

mains that reflect various real-world scenarios. 

 

Fig. 3. Domain distribution of CQTS tables. 

Comparison with Existing Datasets. Table 2 presents a comparison of CQTS with 

existing Chinese table datasets. 

Table 2. Comparison between CQTS and existing table datasets in Chinese. 

Dataset Table Source #Tables #Queries Answer Format 

Text-to-SQL 

TableQA [4] Reports, Spreadsheets 6,029 64,891 SQL 

CSpider [18] Spider [19] 876 9,691 SQL 

CRUDSQL [16] TableQA 625 10,000 SQL 

Table Question Answering 

FewTUD [20] Baidu Baike, E-commerce website 108 2,200 Short Text 

IM-TQA [5] Reports, Baidu Baike 1,200 5,000 Short Text 

RETQA [17] Real Estate Reports 4,932 20,762 Short Text, SQL 

Query-Focused Table Summarization 

CQTS (Ours) TableQA, IM-TQA 2,956 6,721 Paragraph-long Text 

5 DeCA Framework 

5.1 Overview 

DeCA comprises four key components, as illustrated in Fig. 4. Given a query Q over a 

table T, the Table Schema Extractor analyzes table information and extracts the schema 

Tschema. Utilizing Tschema, the Query Decomposer splits Q into a sequence of sub-queries. 

Each sub-query is evaluated by the Sub-query Checker to ensure non-repetition, rele-

vance, and appropriate dependencies. Checked sub-queries are recursively decomposed 

by the Query Decomposer until further decomposition is no longer feasible. Upon com-

pleting the decomposition and checking process, a decomposition directed acyclic 

graph (Decomposition DAG) is formed, containing all sub-queries and their relation-

ships. Finally, the Decomposition DAG is input into the Answer Generator to generate 

the final summary. 
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Fig. 4. The DeCA framework. Given a query over a table, DeCA first extracts the table schema. 

It then recursively decomposes the query and checks sub-queries’ quality. Finally, a Decompo-

sition DAG is constructed to generate the summary. 

5.2 Table Schema Extractor 

The objective of the Table Schema Extractor is to convert the implicit metadata in titles 

and headers of tables to explicit descriptions. We employ In-Context Learning (ICL) to 

prompt the LLM with a demonstration. The demonstration includes a table and a hu-

man-annotated table schema comprising column descriptions and example cells. Based 

on the provided demonstration, the LLM generates a short description and selects cells 

as examples for each column in a given table T. The resulting collection of metadata 

descriptions and example cells constitutes the table schema Tschema, which serves as a 

condensed representation of the original table T. 

5.3 Query Decomposer 

Given the original query Q and the table schema Tschema, the Query Decomposer recur-

sively decomposes Q until it meets termination conditions. To ensure the sub-queries 

are non-repetitive, relevant, and organized in a dependency-aware order, we introduce 

the Sub-query Checker (Section 5.4) to check candidate sub-queries at each decompo-

sition step. These candidate sub-queries can be further decomposed if they pass the 

checking. During the entire process, a Decomposition DAG is maintained to represent 

the structure among queries. 



Termination Conditions. The following three termination conditions govern the query 

decomposition process: 

• LLM-based judgment: We prompt the Query Decomposer to determine whether 

the decomposition is necessary for q. If required, q is broken down into a set of sub-

queries. Otherwise, the decomposition process is ceased. 

• Maximum decomposition attempts: If the sub-queries fail to pass the checking, q 

must be re-decomposed. To prevent excessive attempts, we define a threshold THat-

tempt to limit the number of decomposition attempts. The decomposition is retried if 

fewer than two sub-queries pass the checking in an attempt. The decomposition is 

terminated if no set of sub-queries passes the checking after THattempt attempts. 

• Maximum decomposition depth: To avoid infinite recursion, we define a maxi-

mum recursive depth, THdepth. The depth of the original query Q is initialized as 0, 

and the depth of sub-queries is incremented by one within each decomposition step. 

The decomposition of q is stopped once the depth of q reaches THdepth. 

Decomposition DAG Construction. In the Decomposition DAG, nodes represent que-

ries. Edges denote queries’ relationships, as shown in Fig. 5. At each decomposition 

step, checked sub-queries are added to the DAG and sequentially assigned identifiers. 

Two types of relationships are then established: (1) decomposition relationships, which 

link each sub-query to its parent query, and (2) dependency relationships, which cap-

ture dependencies among sub-queries. The dependency relationships are obtained from 

the result of checking dependency in the Sub-query Checker. Based on the relation-

ships, the queries associated with a given query q can be categorized into three types: 

• Children queries (Sub-queries) are decompositions of q, providing fine-grained 

support for constructing the summary. 

• Dependency queries represent queries with which q has dependency relationships, 

ensuring logical consistency in the reasoning process. 

• Ancestor queries consist of (1) the dependency queries of q’s parent query and (2) 

ancestor queries inherited from q’s parent query, offering broader contextual 

knowledge. 

As illustrated in Fig. 5, query Q0,1,1 is an example to demonstrate the three types of 

related queries in the Decomposition DAG. 

Retrieval of Context in the Decomposition Prompt. We adopt a tree structure to re-

trieve the context for the decomposition prompt. Before decomposing any query q, we 

extract a Decomposition Tree from the current Decomposition DAG. The Tree retains 

all existing queries as nodes while preserving only decomposition relationships as 

edges. Taking the original query Q as the root node, we traverse the Tree to obtain the 

current leaf nodes. These leaf nodes are sorted in dictionary order by their identifiers, 

and the associated queries collectively form the Current Decomposition Plan. The Plan 

is used as contextual input in the prompt for decomposing q. As shown in Fig. 5, when 

decomposing Q0,0, the current leaf nodes are {Q0,0, Q0,1, …, Q0,i} with Q0 as the root. 
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Fig. 5. An example of the Decomposition DAG. 

5.4 Sub-query Checker 

We introduce the Sub-query Checker to evaluate the quality of sub-queries in each de-

composition step, guided by three criteria: non-repetition, relevance, and dependency. 

• Non-repetition: To reduce semantic repetition, we compute BLEU scores [21] to 

measure similarity (1) between each sub-query and its parent query and (2) among 

sub-queries within the same decomposition step. A sub-query q is removed if its 

similarity to the parent query exceeds a predefined threshold. Additionally, if two 

sub-queries are overly similar, one is discarded. 

• Relevance: We input the table schema, the query, and corresponding sub-queries 

into the LLM and prompt it to evaluate whether the sub-queries capture the intent of 

the original query. Irrelevant sub-queries identified by the LLM are deleted. 

• Dependency: For each sub-query q, we prompt the LLM to identify dependency 

relationships, specifying which sub-queries need to be answered before q in a given 

set of sub-queries. Based on these dependency relationships, we apply a topological 

sort to arrange the sub-queries in a logical answering order. 

After completing these checking steps, we obtain a set of distinct and semantically 

faithful sub-queries along with their dependency relationships. 

5.5 Answer Generator 

After completing the decomposition and checking process, we utilize the constructed 

Decomposition DAG to generate a summary for the original query Q. The summary 

generation process follows a depth-first search (DFS) on the Decomposition DAG. For 

each unanswered query q, we first retrieve available answers as hints from related que-

ries in the DAG, including q’s children, dependency, and ancestor queries. The col-

lected hints, along with the query q and table T, are provided to the LLM to generate a 

paragraph-long answer as the summary for q. In contrast to the forward-driven decom-

position process, the summary generation adopts a backtracking strategy. The final gen-

erated answer serves as the summary of the original query Q. 



6 Experiments 

6.1 Experiment Setting 

We utilize three datasets: our proposed Chinese dataset, CQTS, and two English da-

tasets, QTSumm [1] and FeTaQA [10]. We conduct extensive experiments to answer 

the following research questions: 

• RQ1: How do fine-tuning and LLM prompting methods perform on our proposed 

CQTS dataset? 

• RQ2: How effective is our proposed DeCA framework across multiple datasets, in-

cluding CQTS, QTSumm, and FeTaQA? 

• RQ3: Does the quality of query decomposition impact the quality of summaries? 

6.2 Baselines 

Existing baselines for the query-focused table summarization task can be primarily cat-

egorized into fine-tuning methods and LLM prompting methods: 

• Fine-tuning: We fine-tune two representative text generation models, BART [22] 

and mT5 [23], using the training set of the CQTS dataset. 

• LLM Prompting: We evaluate both open-source and closed-source LLMs using 

various prompting methods. Open-source models include the Llama-3.1 series1 (8B, 

70B) and the Qwen-2.5 series2 (7B, 14B, 32B). Closed-source models3 include GPT-
3.5-turbo-1106 and GPT-4o-0806. The following prompting methods are em-

ployed across these LLMs: Zero/One-shot Direct Prompting, Chain-of-Thought 

(CoT) [24], Blueprint [25], ReFactor [1], Dater [13], and TaPERA [3]. 

6.3 Evaluation Metrics 

In addition to widely used automatic natural language generation (NLG) metrics, we 

employ LLM-based evaluation for a more comprehensive assessment. We evaluate the 

entire test set for automatic metrics, while for G-Eval, we randomly select 200 samples. 

• Automatic Evaluation: We utilize SacreBLEU [21], ROUGE-L [26], METEOR 

[27], BERTScore [28] and PARENT [29] to evaluate the quality of summaries. 

• LLM-based Evaluation: We leverage the G-Eval [9] to assess the faithfulness and 

comprehensiveness of summaries. We also conduct a pairwise comparison to assess 

the quality of query decomposition, prompting GPT-4o to select the better result 

based on non-repetition and relevance. 

 
1  https://huggingface.co/meta-llama/Llama-3.1-{size}B-Instruct 
2  https://huggingface.co/Qwen/Qwen2.5-{size}B-Instruct 
3  https://openai.com/api/ 

https://huggingface.co/meta-llama/Llama-3.1-%7bsize%7dB-Instruct
https://huggingface.co/Qwen/Qwen2.5-%7bsize%7dB-Instruct
https://openai.com/api/


 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

6.4 Implementation Details 

• Fine-tuning methods: We utilize the large version of models, conducting training 

on two NVIDIA Tesla V100 32GB GPUs. Each model is trained for 20 epochs. We 

set the batch size to 4 for BART-large-Chinese4 and 2 for mT5-large5. 

• LLM prompting methods: We use the instruct version for all open-source 

LLMs. The hyperparameters of LLMs are set with the temperature to 0.7, Top P to 

1.0, and maximum output length to 512. Following the previous works, tabular data 

is represented in Markdown format. 

• Settings in DeCA: Due to budget constraints, we set the maximum decomposition 

attempts THattempt to 3 and the maximum depth THdepth to 4 for DeCA. 

6.5 Main Results 

RQ1: How do fine-tuning and LLM prompting methods perform on our proposed 

CQTS dataset? We assess the CQTS dataset using fine-tuning and LLM prompting 

methods. As shown in Table 3, models fine-tuned on the CQTS consistently underper-

form relative to LLM prompting methods, particularly under G-Eval evaluation. For 

LLM prompting methods, reasoning-enhanced prompting (CoT, Blueprint, and DeCA) 

performs better than few-shot prompting (zero-shot and one-shot). These findings em-

phasize that explicit reasoning guidance substantially enhances model performance for 

the query-focused table summarization task. 

RQ2: How effective is our proposed DeCA framework across multiple datasets, 

including CQTS, QTSumm, and FeTaQA? We compare the performance of DeCA 

against other LLM prompting methods on CQTS, QTSumm, and FeTaQA. As shown 

in Tables 3, 4, and 5, few-shot prompting is not consistently beneficial. The perfor-

mance of reasoning-enhanced methods, including CoT and Blueprint, is also unstable. 

In contrast, our proposed DeCA consistently improves G-Eval scores across all da-

tasets, indicating that DeCA is highly effective and generalizable. 

RQ3: Does the quality of query decomposition impact the quality of summaries? 

We compare the sub-queries generated by Blueprint and DeCA. For an original query, 

Blueprint’s sub-queries are extracted from its QA-plan, while DeCA’s are derived from 

the Current Decomposition Plan. Given a table and two decomposition results, we 

prompt the LLM to select the superior decomposition based on criteria of non-redun-

dancy and relevance. As shown in Fig. 6, DeCA consistently generates higher-quality 

sub-queries than Blueprint. While the summary quality generated by Blueprint varies 

across different models, DeCA consistently achieves higher G-Eval scores, as presented 

in Tables 3, 4, and 5. These results confirm that high-quality query decomposition is 

critical in improving summary generation. 

 
4  https://huggingface.co/fnlp/bart-large-chinese 
5  https://huggingface.co/google/mt5-large 

https://huggingface.co/fnlp/bart-large-chinese
https://huggingface.co/google/mt5-large


 

Fig. 6. The pairwise comparison results between the Blueprint and DeCA framework. We ran-

domly select 200 samples for each category of results. 

Table 3. Results on the CQTS. The best results are highlighted in green, while the second best 

are in blue.  

Model Method 
Automatic Metrics G-Eval 

SacreBLEU ROUGE-L METEOR BERTScore PARENT Faith. Compre. 

BART-large-Chinese 
fine-tuning 

30.03 44.21 41.40 79.97 24.06 2.25 2.36 

mT5-large 32.88 44.38 42.14 80.85 25.88 2.72 2.74 

Llama-3.1-8B 

0-shot 24.53 39.46 49.91 78.10 30.74 3.86 3.78 

1-shot 26.71 40.74 48.25 78.86 29.99 3.84 3.74 

CoT 22.84 37.79 49.05 77.53 30.44 3.87 3.82 

Blueprint 17.95 34.18 47.63 76.16 32.31 3.88 3.84 

DeCA 27.04 41.10 49.18 79.25 30.58 3.94 3.83 

Llama-3.1-70B 

0-shot 36.05 48.55 54.87 81.75 33.15 4.54 4.27 

1-shot 38.09 49.38 54.60 82.28 32.69 4.42 4.24 

CoT 35.49 48.37 54.90 81.72 32.80 4.53 4.31 

Blueprint 39.62 48.64 52.02 81.53 31.43 4.34 4.17 

DeCA 35.04 48.85 55.55 82.12 34.09 4.57 4.34 

Qwen-2.5-7B 

0-shot 27.53 43.78 54.36 80.37 34.18 4.06 4.10 

1-shot 31.78 46.68 55.02 81.57 34.72 4.27 4.17 

CoT 25.12 42.18 54.83 79.83 34.89 4.21 4.13 

Blueprint 24.95 41.76 53.86 79.58 34.35 4.26 4.12 

DeCA 25.55 43.01 55.41 80.38 36.49 4.30 4.20 

Qwen-2.5-14B 

0-shot 31.11 47.61 58.89 81.99 35.11 4.63 4.47 

1-shot 32.56 48.52 59.24 82.36 35.91 4.64 4.45 

CoT 28.85 45.75 58.56 81.28 35.23 4.64 4.49 

Blueprint 29.13 46.14 57.81 81.14 35.27 4.70 4.47 

DeCA 29.30 46.02 58.53 81.20 36.56 4.65 4.54 

Qwen-2.5-32B 

0-shot 27.39 44.95 58.06 81.23 36.00 4.73 4.58 

1-shot 29.64 46.88 59.13 81.92 36.50 4.77 4.60 

CoT 26.06 44.30 58.17 80.84 36.05 4.72 4.61 

Blueprint 27.02 44.28 58.23 80.55 37.00 4.79 4.53 

DeCA 29.54 46.94 58.95 81.67 36.58 4.81 4.63 

GPT-3.5-turbo 

0-shot 29.58 44.13 53.19 80.11 32.01 4.25 4.10 

1-shot 34.85 47.22 53.77 81.54 31.83 4.16 4.02 

CoT 27.57 42.36 52.87 79.54 32.60 4.27 4.17 

Blueprint 30.73 45.02 52.05 80.63 31.82 4.28 4.15 

DeCA 31.75 45.31 52.92 81.11 32.26 4.24 4.19 

GPT-4o 

0-shot 29.73 46.81 61.03 81.95 37.54 4.78 4.68 

1-shot 34.49 50.64 62.36 83.32 37.95 4.78 4.59 

CoT 29.16 46.71 61.21 81.86 37.77 4.81 4.58 

Blueprint 28.44 46.21 59.81 81.50 37.42 4.80 4.62 

DeCA 33.45 51.01 62.34 83.32 38.88 4.84 4.67 
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Table 4. Results on the QTSumm. The best results are highlighted in green, while the second 

best are in blue. Methods marked with * are referenced from the original papers. 

Model Method 
Automatic Metrics G-Eval 

SacreBLEU ROUGE-L METEOR BERTScore PARENT Faith. Compre. 

Llama-3.1-8B 

0-shot 17.90 37.20 46.46 90.32 26.78 4.27 4.24 

1-shot 16.83 34.47 43.98 89.74 24.23 4.05 3.96 

CoT 17.94 36.70 46.87 90.18 26.58 4.19 4.19 

Blueprint 11.30 28.19 44.28 87.40 24.20 4.00 4.00 

DeCA 21.59 39.10 45.69 90.58 26.14 4.32 4.26 

Llama-3.1-70B 

0-shot 18.84 38.89 50.30 90.83 28.87 4.73 4.72 

1-shot 20.32 40.26 49.83 91.05 28.92 4.76 4.70 

CoT 19.28 39.36 50.21 90.84 29.35 4.76 4.67 

Blueprint 15.55 35.14 49.01 89.71 28.18 4.77 4.69 

DeCA 22.18 41.39 49.59 91.11 29.74 4.80 4.75 

Qwen-2.5-7B 

0-shot 18.98 37.22 45.34 90.37 26.48 4.14 4.15 

1-shot 19.40 38.44 46.38 90.52 28.45 4.09 4.17 

CoT 18.50 36.99 45.77 90.32 26.89 4.24 4.21 

Blueprint 16.84 35.75 46.865 90.06 27.40 4.20 4.28 

DeCA 18.46 38.17 47.37 90.38 28.48 4.22 4.27 

Qwen-2.5-14B 

0-shot 14.48 33.13 46.75 89.92 25.84 4.66 4.65 

1-shot 16.01 35.27 47.67 90.21 27.04 4.59 4.56 

CoT 15.05 33.80 47.42 90.05 26.36 4.64 4.56 

Blueprint 13.47 31.58 46.97 89.54 27.31 4.67 4.66 

DeCA 21.65 41.47 50.09 91.14 30.31 4.74 4.67 

Qwen-2.5-32B 

0-shot 16.76 35.87 48.73 90.39 28.12 4.78 4.72 

1-shot 16.85 36.26 49.25 90.46 28.40 4.75 4.74 

CoT 16.74 35.66 48.50 90.34 27.40 4.84 4.81 

Blueprint 14.46 32.97 48.07 89.76 28.41 4.78 4.77 

DeCA 21.29 41.28 50.54 91.17 30.19 4.85 4.80 

GPT-3.5-turbo 

0-shot 20.06 37.91 46.64 90.69 26.94 4.39 4.29 

1-shot 19.98 38.37 47.84 90.74 28.30 4.43 4.30 

CoT 19.95 37.57 46.59 90.65 26.92 4.26 4.17 

Blueprint 14.07 30.31 44.61 89.31 25.38 4.26 4.18 

ReFactor* 19.90 39.50 48.80 91.20 - - - 

Dater* 16.60 35.20 35.50 82.90 - - - 

TaPERA* 14.60 33.00 33.20 88.70 - - - 

DeCA 21.26 40.21 47.49 90.91 27.48 4.48 4.41 

GPT-4o 

0-shot 16.68 36.65 50.63 90.54 29.70 4.84 4.85 

1-shot 19.09 39.71 51.58 91.03 29.83 4.91 4.86 

CoT 17.07 37.47 51.14 90.64 29.97 4.92 4.91 

Blueprint 12.66 30.74 47.58 89.41 28.01 4.86 4.85 

DeCA 20.38 42.38 52.86 91.27 32.22 4.95 4.90 

 



Table 5. Results on the FeTaQA. The best results are highlighted in green, while the second 

best are in blue. Methods marked with * are referenced from the original papers. 

Model Method 
Automatic Metrics G-Eval 

SacreBLEU ROUGE-L METEOR BERTScore PARENT Faith. Compre. 

Llama-3.1-8B 

0-shot 27.10 51.45 58.81 92.33 27.76 4.65 4.55 

1-shot 24.99 49.09 57.18 91.90 26.66 4.51 4.37 

CoT 27.09 51.51 59.04 92.39 27.94 4.59 4.46 

Blueprint 12.61 34.54 51.29 87.76 22.15 4.54 4.40 

DeCA 25.28 50.71 57.83 92.15 26.77 4.68 4.56 

Llama-3.1-70B 

0-shot 27.09 52.75 61.63 92.62 29.63 4.86 4.79 

1-shot 28.01 53.19 62.15 92.70 30.47 4.86 4.82 

CoT 27.88 53.15 61.10 92.59 29.32 4.88 4.80 

Blueprint 14.66 44.07 54.68 90.36 25.06 4.85 4.73 

DeCA 25.58 52.09 62.54 92.47 29.95 4.89 4.84 

Qwen-2.5-7B 

0-shot 29.47 51.73 58.81 92.40 28.42 4.65 4.56 

1-shot 29.16 51.98 59.00 92.46 28.99 4.63 4.60 

CoT 29.46 51.76 59.01 92.44 28.54 4.66 4.57 

Blueprint 19.32 40.27 38.87 88.94 19.08 4.46 4.42 

DeCA 27.64 51.86 58.48 92.35 28.52 4.68 4.59 

Qwen-2.5-14B 

0-shot 28.10 52.21 59.95 92.59 28.40 4.84 4.68 

1-shot 28.92 52.96 60.57 92.63 28.85 4.84 4.69 

CoT 28.09 52.26 60.04 92.56 27.30 4.86 4.73 

Blueprint 25.81 51.47 60.21 92.23 28.43 4.78 4.74 

DeCA 27.12 52.27 60.05 92.45 28.22 4.89 4.75 

Qwen-2.5-32B 

0-shot 28.78 53.63 61.06 92.68 29.18 4.84 4.72 

1-shot 29.80 54.19 61.35 92.75 29.62 4.87 4.75 

CoT 28.90 53.53 60.80 92.67 29.04 4.88 4.79 

Blueprint 25.70 51.69 60.86 92.42 29.95 4.85 4.82 

DeCA 27.98 53.05 60.58 92.57 28.98 4.90 4.81 

GPT-3.5-turbo 

0-shot 28.27 52.15 58.17 92.40 26.85 4.62 4.41 

1-shot 27.53 52.52 59.87 92.49 28.19 4.73 4.49 

CoT 28.51 52.28 58.02 92.41 27.12 4.62 4.40 

Blueprint 26.32 49.26 54.52 91.53 24.01 4.38 4.05 

ReFactor* 26.20 53.60 57.20 87.40 - - - 

Dater* 29.80 54.00 59.40 88.20 - - - 

TaPERA* 29.50 53.40 58.20 86.10 - - - 

DeCA 25.07 51.57 59.90 92.32 27.61 4.71 4.55 

GPT-4o 

0-shot 27.31 53.79 63.47 92.75 30.67 4.92 4.88 

1-shot 29.87 54.63 63.08 92.89 30.34 4.91 4.86 

CoT 27.14 53.81 63.48 92.73 31.00 4.93 4.86 

Blueprint 25.45 52.65 61.35 92.41 29.33 4.89 4.79 

DeCA 29.34 55.82 63.22 92.91 30.55 4.95 4.90 

6.6 Analyses of the Decomposition DAG 

For an original query Q, DeCA constructs a Decomposition DAG to represent the gen-

erated sub-queries. The structure of the DAG offers insights of Q’s complexity. To 

determine the nature of queries across datasets, we analyze the Decomposition DAGs 

generated from CQTS, QTSumm, and FeTaQA. Specifically, we report two metrics: 

Avg Sub-Queries and Max Depth (≥95%). Avg Sub-Queries reflects the average number 

of sub-queries per decomposition step. Max Depth (≥95%) indicates that the maximum 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

decomposition depth for at least 95% of the queries in the dataset does not exceed this 

value. As shown in Table 6, the CQTS and QTSumm datasets exhibit higher Avg Sub-

Queries and Max Depth (≥95%) compared to FeTaQA across all evaluated models. 

These findings suggest that queries in CQTS and QTSumm are generally more complex 

and require further decomposition. 

Table 6. Statistics of Decomposition DAG in different datasets. 

Model 

CQTS QTSumm FeTaQA 

Avg 

Sub-queries 

Max Depth 

(≥95%) 

Avg 

Sub-queries 

Max Depth 

(≥95%) 

Avg 

Sub-queries 

Max Depth 

(≥95%) 

Llama-3.1-8B 2.64 3 2.90 3 2.50 3 

Llama-3.1-70B 2.80 3 3.14 3 2.60 2 

Qwen-2.5-7B 2.77 3 3.05 3 2.60 2 

Qwen-2.5-14B 3.39 3 3.92 3 2.85 2 

Qwen-2.5-32B 3.45 3 3.95 3 3.02 2 

GPT-3.5-turbo 2.32 1 2.86 2 2.72 1 

GPT-4o 3.72 3 4.12 2 3.33 1 

7 Conclusion 

In this paper, we propose DeCA, a novel query decomposition framework based on 

LLMs to address the challenges of complex query-focused table summarization. Com-

bining the table schema extractor, the query decomposer, the sub-query checker, and 

the answer generator, DeCA effectively utilizes sub-queries as informative hints to en-

hance the quality of the generated summaries. Furthermore, we introduce CQTS, the 

first Chinese dataset for query-focused table summarization. We conduct extensive ex-

periments across three datasets, CQTS, QTSumm, and FeTaQA, utilizing seven LLMs. 

The results demonstrate that DeCA consistently outperforms existing approaches re-

garding summary faithfulness, comprehensiveness, and the quality of sub-query de-

composition. In future work, we plan to extend DeCA to support tables with diverse 

structures and address a broader range of table-centric tasks. 
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