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Abstract. Aiming at the significant variability of cotton leaf pests and diseases 

in terms of shape, size, and location distribution in the natural environment, as 

well as the shortcomings of the existing detection models in terms of parameter 

optimization and detection efficiency, this paper proposes an algorithm for de-

tecting cotton pests and diseases based on enhanced multi-scale feature sensing 

and improved feature extraction, named SDRM-YOLO. First, to improve the 

model's ability to perceive pest and disease feature information and spatial local-

ization accuracy, we propose a Multi-Scale Cross-Space Perception Attention 

(MCPA), which is a mechanism that effectively enhances the model's ability to 

focus on key target areas by fusing spatial information at multiple scales. Second, 

to improve the feature extraction quality of the model, we design the C2f-DCN-

RCSOSA (C2f-DR) module, which enables the model to capture the foreground 

features of the target flexibly and, at the same time, strengthens the focus on the 

key regions to enhance the feature expression capability. Finally, to reduce the 

computational complexity of the model and improve the detection speed, we in-

troduce a lightweight network, ShuffleNetv2-RC, into the backbone network to 

optimize the computational efficiency and maintain a high detection accu-

racy. The experimental results show that SDRM-YOLO outperforms other state-

of-the-art target detection algorithms on both the Cotton Disease Dataset and 

Cotton Pest Detect Dataset datasets. Compared with the benchmark model 

YOLOv8n, the mAP50 metrics were improved by 7.3% and 2.5%, significantly 

enhancing cotton pest detection's accuracy and robustness. 

 

Keywords: Pests and diseases, target detection, feature extraction, multi-scale 
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1 Introduction 

As global agriculture has expanded, crop pest and disease monitoring and management 

have become critical to agricultural output. A lucrative crop essential to the financial 

systems of many countries worldwide is cotton [1]. Yet, it is regularly subjected to 

various pests and illnesses during its growth [2], notably impairing cotton quality and 

output [3]. Traditional pest and disease detection methods primarily depend on manual 

visual inspection, which is often time-consuming, laborious, and difficult to achieve in 

large-scale real-time monitoring. In addition, traditional recognition means having dif-

ficulty performing manual identification and extraction of features, which increases la-

bor costs and the computational process's complexity. Therefore, intelligent, rapid, and 

accurate detection of cotton pests and diseases is crucial for disease prevention and 

pesticide management strategies. 

With the rapid progress of deep learning technology, target detection techniques 

achieve automatic extraction of key features from images and effectively solve the clas-

sification and localization challenges of multiple targets in a single image [4]. Target 

detection methodologies can primarily be categorized into two distinct types: two-stage 

detection algorithms and single-stage detection algorithms. Two-stage target detection 

algorithms are represented by R-CNN [5], Fast R-CNN [6], and Faster R-CNN [7], 

which first generate candidate regions in an image and then subsequently classify and 

bounding-box regression on these regions [8]. Although such methods excel in detec-

tion accuracy, they increase computational complexity and significantly affect the in-

ference speed of the model. In contrast, one-stage target detection algorithms, such as 

SSD [9], RetinaNet [10], and YOLO [11-14], perform the task of localizing and classi-

fying targets directly on the image. Although these algorithms may be slightly inferior 

to the two-stage algorithms in detection accuracy, they significantly improve model 

inference speed. They are more suitable for applications on resource-constrained de-

vices. 

In recent years, deep learning technology has made remarkable achievements in im-

age recognition, especially the application of convolutional neural networks, which pro-

vide a new solution for automatically detecting crop pests and diseases. As a prominent 

figure in the realm of object detection, the YOLO series of algorithms has a fast detec-

tion speed and reasonable accuracy. YOLOv8n [15] represents one of the latest itera-

tions within its algorithmic series, building upon and refining the strengths of its prior 

versions. It achieves superior precision in detection and quicker computational perfor-

mance. However, based on current research findings, particular notable challenges per-

sist when applying YOLOv8n to detect cotton pests and diseases: 

(1) In cotton pest and disease detection scenarios, targets appear at different scales, 

ranging from tiny localized lesions to larger-scale plant damage. The traditional single-

scale convolutional kernel is limited to a fixed receptive field, making it difficult to 

adapt to targets at different scales. It may weaken the accuracy and robustness of de-

tection, especially when the target distribution is complex, or the size varies greatly 

[16]. 
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(2) In the field of cotton pest and disease detection, it is difficult for the model to 

accurately capture spots or pests with different shapes and variable locations. The tra-

ditional feature extraction paradigm is prone to introducing irrelevant contextual infor-

mation when extracting features, failing to focus on key areas, thus affecting the detec-

tion accuracy and model performance. 

(3) Despite YOLOv8n's effective trade-off between detection speed and accuracy, 

its considerable parameter count and substantial computational demands present diffi-

culties for devices with limited resources. 

To address these challenges, this study proposes an algorithm for cotton pest and 

disease detection based on enhanced multiscale feature sensing and improved feature 

extraction, and the contributions of this paper are as follows: 

(1) To solve the problems of insufficient robustness of model spatial localization 

perception and the inability of single-scale convolution to adapt to multi-scale targets, 

we propose the MCPA module. This module significantly improves the model's detec-

tion accuracy of pest and disease targets in farmland by introducing convolution kernels 

of different sizes to extract multi-scale features. 

(2) To solve the problems of traditional convolutional sensory field fixation and poor 

quality of feature extraction, this paper proposes DCNv2 deformable convolution to 

improve the C2f module and combines it with the RCS-OSA module to enhance the 

critical region focus. This method improves the match between features and target 

shape [17]. 

(3) In order to develop a lightweight backbone for feature extraction, we utilize the 

ShuffleNetv2-RC architecture. This particular network enhances the precision of pest 

detection and substantially decreases the quantity of model parameters [18]. 

2 Related work 

YOLO algorithm directly predicts object classification at each position in the feature 

map, which has obvious advantages in time efficiency and recognition rate and is more 

suitable for real-time object detection of crop pests and diseases. Hu et al. [19] proposed 

InterImage as the core operator with deformation convolution. Unlike the traditional 

CNN scheme, deformation convolution has an effective sensory field and can input and 

task adaptive spatial domain aggregation. Huang et al. [20] proposed a lightweight Van-

YOLOv8 model using a lightweight MobilenetV2 [21] and convolutional block atten-

tion modules. Although this method significantly trims down the model's parameter 

count and lowers its computational demands, it might simultaneously cause a decline 

in detection accuracy. Chen et al. [22] introduced the Asymptotic Feature Pyramid Net-

work AFPN [23] (AFPN) into YOLOv8 to solve the feature loss problem in multi-scale 

fusion to address the issue of significant differences in the scales of the detection tar-

gets, etc. In addition, the network's feature extraction capability is further improved by 

replacing the base module in the AFPN with an efficient aggregation network module. 

However, the improved network is computationally intensive and unsuitable for real-

time detection. Vasanthi et al. [24] replaced some of the convolutional layers of 



YOLOv8 with the phantom convolution Ghostconv [25]. They introduced a global at-

tention module to effectively capture the global context information of the input feature 

maps. This enhancement significantly increased detection accuracy; however, the im-

proved model still contains a large number of parameters. Qi et al. [26] improved 

YOLOv5 by introducing a visual attention model, enhancing feature extraction, and 

modifying the loss function to account for the overlapping inclusion of the predicted 

and actual frames. This makes the network converge faster, but the model detection 

accuracy is not high. Li et al. [27] proposed an enhanced C2f module by integrating the 

concepts of DenseBlock [28] and the DCF module, thereby improving the extraction of 

low-level features within the YOLOv8 model. They finally replaced the CBS activation 

function with the Mish activation function, which effectively solved the problem of 

gradient disappearance during the training process. 

In summary, although the YOLO algorithm and its improved versions have demon-

strated significant advantages in crop pest and disease detection, there are still chal-

lenges in its application. The models cannot capture features at different scales in the 

spatial dimension and perform poorly in identifying critical regions. The feature extrac-

tion quality of existing models is not high when facing complex disease features. This 

affects the detection performance to some extent as the complexity of the model in-

creases. 

3 Method 

3.1 SDRM-YOLO network architecture 

The network framework proposed in this study is built on the foundation of YOLOv8n, 

as shown in Fig.1. Firstly, we integrate a multi-scale cross-spatial perceptual attention 

mechanism (MCPA) between the neck network and the prediction head, which utilizes 

convolutional kernels of different sizes and combines spatial information to enhance 

the channel attention to improve the model's perceptual effect and spatial localization 

of multi-scale features. Second, aiming to enhance the precision and effectiveness of 

feature extraction, we reengineered the original C2f module and incorporated the C2f-

DCN-RCSOSA module as a substitute for the original module in the neck network. 

Second, to elevate the quality and accuracy of feature extraction, we redesigned the 

original C2f module and introduced the C2f-DCN-RCSOSA module to replace the 

original C2f module in the neck network. This enhancement notably boosts the model's 

ability to extract features from target objects that exhibit significant variations in shape 

and position, while directing greater attention toward critical information-rich areas. 

Ultimately, we utilize the upgraded ShuffleNetV2-RC network as the core framework. 

This choice helps alleviate the issue of gradient vanishing while maintaining the mod-

el's lightweight structure. 
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Fig. 1. Overall Structure of SDRM-YOLO Model 

3.2 Multi-Scale Cross-Space Perception Attention (MCPA) 

In the complex environment of actual farmland cotton leaves, disease areas usually vary 

significantly in size and often shade each other. In addition, the traditional single-scale 

convolutional kernel is too complex to adequately capture the features of targets at dif-

ferent scales due to the fixity of its receptive field, especially when the target distribu-

tion is complex or the size changes are variable, which may affect the accuracy and 

robustness of the detection. To address this challenge, we propose the MCPA module 

and apply it between the neck network and the prediction head to enhance the model's 

ability to capture the spatial localization perception of features with long-range depend-

encies. 

MCPA is shown in Fig.2. Specifically, the mechanism performs a global averaging 

pooling operation in both directions on the input feature graph X (size c×h×w). First, 

the features of each channel are encoded along the horizontal and vertical directions by 

pooling 𝑥𝑐; two feature mappings, 𝑍ℎ and 𝑍𝑤, for the c channel at height h and width 

w, are obtained, respectively, which enables the model to get the feature information of 

the target more accurately. Where i and j denote the horizontal and vertical directions, 

respectively. The formula is: 

 𝑍𝑐
ℎ(ℎ) =

1

𝑤
∑ 𝑥𝑐

𝑤
0≤𝑖<𝑤 (ℎ, 𝑖) (1) 

 Zc
w(w) =

1

H
∑ xc(j, w)H

0≤j<H  (2) 

Next, these two feature mappings are merged to obtain a representative feature rep-

resentation. This tensor is then subjected to a 1 × 1 convolutional layer 𝐹1for feature 



mapping nonlinear learning and processed by a nonlinear activation function σ, which 

ultimately generates an intermediate feature mapping 𝑓1×1. The formula is： 

 𝑓1×1 = 𝜎(𝐹1×1([𝑍ℎ , 𝑍𝑤]) (3) 

Subsequently, the feature mappings after 3x3,5x5 and 7x7 convolution operations 

are concatenated and summed to generate the final intermediate feature mappings f. 

Since convolutions of different sizes are able to capture feature information at various 

scales. Among them, the 3×3 convolution can capture local detailed features, while the 

5×5 and 7×7 convolutions can enhance the capture of contextual information and ex-

tract a broader range of contextual information. This multi-scale feature extraction can 

better adapt to diverse pest targets and enhance the model's ability to adapt to complex 

scenes. The formula is. 

 𝑓 = 𝜎(𝐹3×3([𝑍ℎ , 𝑍𝑤]) + 𝐹5×5([𝑍ℎ , 𝑍𝑤]) + 𝐹7×7([𝑍ℎ , 𝑍𝑤])  (4) 

Then, the intermediate feature map f is divided into two separate feature tensors, 𝑓ℎ 

and 𝑓𝑤, based on spatial dimensions. These tensors are then passed through 1×1 con-

volutional layers to match the channel count of the original input X, resulting in the 

feature tensors 𝐹ℎ(𝑓ℎ) and 𝐹𝑤(𝑓𝑤). Ultimately, these tensors undergo a Sigmoid acti-

vation function to produce the attention weights gh and gw for the height and width 

dimensions, respectively. The formula is as follows： 

 𝑔ℎ = 𝜎(𝐹ℎ(𝑓ℎ)) (5) 

 𝑔𝑤 = 𝛿(𝐹𝑤(𝑓𝑤)) (6) 

Finally, the original input feature map X is weighted by element-by-element multi-

plication with the channel attention weights to obtain the weighted feature map output 

after processing by the MCPA module, Eq: 

 𝑦𝑐(𝑖, 𝑗) = 𝑥𝑐(𝑖, 𝑗) × 𝑔𝑐
ℎ(𝑖) × 𝑔𝑐

𝑤(𝑗)x + y = z (7) 

The MCPA attention structure is shown in Fig. 2. 
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Fig. 2. MCPA module structure diagram 

Through this process, the multi-scale features output from the feature extraction module 

can be adaptively enhanced and fused to generate highly discriminative feature repre-

sentations. These representations provide richer semantic information and spatial de-

tails for the prediction header, ultimately realizing more accurate pest and disease de-

tection in complex farmland environments. 

 

3.3 C2f-DCN-RCSOSA module (C2f-DR) 

Since the receptive field of the traditional convolutional kernel is fixed, it is difficult 

for the model to flexibly adjust the receptive field when dealing with irregular shapes 

and geometrical variations of objects. In addition, for targets to be detected with differ-

ent sizes and shapes of cotton leaf diseases, the target features extracted by the static 

convolution kernel often contain a large amount of irrelevant contextual information, 

affecting the detection accuracy. Conversely, deformable convolution enhances tradi-



tional convolution by incorporating a learnable offset mechanism. This enables the con-

volution kernel to dynamically adjust its sampling positions based on the target's unique 

geometry and spatial configuration. Consequently, the convolution operation becomes 

more attuned to the object's outline, resulting in more accurate and robust feature rep-

resentation. 

To address the limitations of standard convolution operations, we incorporated the 

DCNv2 layer [30] into the C2f module to boost its capabilities. Specifically, we created 

the C2f-DCNv2 module by replacing a key convolutional layer in the Bottleneck with 

the DCNv2 layer.Given that deformable convolution offers substantial flexibility in 

sampling positions, we believe it is particularly well-suited for application in the neck 

of the network. By integrating deep and shallow features, the neck network ensures that 

the output feature maps possess detailed information and abundant semantic content 

while eliminating unnecessary noise. This process facilitates learning more rational de-

formation paths by the deformable convolution. 

Traditional convolution involves a two-stage process: initially, a convolution kernel 

K with a defined size is applied to sample the input feature map x; second, a weighted 

summation of the sampled values and the convolution kernel parameter w is performed. 

Through this process, the value of the convolution result at any position 𝑃0 on the re-

sultant feature map y is: 

 𝑦(𝑝0) = ∑ 𝑤(𝑃𝑛). 𝑥(𝑃0 + 𝑃𝑛)𝑃𝑛∈𝑅   (8) 

Among them, 𝑃𝑛 is an enumeration of positions in K. 

 Conversely, the deformable convolution introduces a positional offset ∆Pnto Eq. (8), 

and for each position in K, an offset 𝑃0 is learned. 

 𝑦(𝑝0) = ∑ 𝑤(𝑃𝑛). 𝑥(𝑃0 + 𝑃𝑛)𝑃𝑛∈𝑅   (9) 

The deformable convolution is sampled at position P = P0 + Pn + ∆Pn, where the offset 

pn is obtained by learning and is usually fractional, so x(p) is obtained by bilinear in-

terpolation: 

 𝑥(𝑃) = ∑ 𝐺(𝑞, 𝑝). 𝑥(𝑞)𝑞  (20) 

Where q denotes an integer position in the feature map and G denotes a bilinear 
interpolation operation. 

The C2f-DCNv2 module can more precisely capture features that correspond to the 

object's shape by dynamically adjusting its sampling strategy. This adjustment allows 

the module to better align with the object's geometry, enhancing the network's overall 

robustness to object deformation. In addition, to further enhance the model's focus on 

key areas of cotton leaf diseases, we use the high-quality features extracted by DCNv2 

as inputs to the Reduced Channel Spatial Object Attention (RCSOSA) module [31]. 

The RCSOSA module leverages a spatial attention mechanism to compute the signifi-

cance weights for each location, allowing the model to concentrate on areas that are 

most likely to hold crucial information and disregard irrelevant background details. In 

addition, RCSOSA aggregates spatial information from multiple directions through the 

spatial attention mechanism, ensuring that the model comprehensively understands the 
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target and its surroundings. This mechanism further enhances the model's attention to 

critical areas. In both mechanisms, DCNv2's offset learning adapts the receptive field 

to the target contour, while RCSOSA further strengthens the semantic key points 

through orientation-sensitive attention.The structure of C2f DR module is shown in the 

following fig. 3: 

 

Fig. 3. (a) shows the C2f-DR model improvement location map, (b) shows the sampling location 

comparison between traditional convolution (1) and deformable convolution (2), and (c) shows 

the structure of the RCSOSA model 

3.4 Residual-Mixed scrubbing cooperative network（Shufflenetv2-RC） 

In the context of crop cultivation, continuous surveillance of cotton diseases is essential 

for both field and laboratory settings. These scenarios usually face a major challenge: 

mobile devices have limited computational resources to support the efficient operation 

of complex models. Although the traditional ShuffleNetV2 is lightweight through chan-

nel segmentation and depth-separable convolution, its linear stacking structure has a 

fundamental flaw in building deep networks. When the network depth exceeds 50 lay-

ers, the gradient decays exponentially in backpropagation, resulting in gradient degra-

dation rather than mere disappearance. 

This study proposes the ShuffleNetv2-RC module to address this bottleneck, as 

shown in Fig. 4 below. ShuffleNetv2-RC further proposes a dual-path feature interac-

tion architecture, which innovatively combines the advantages of channel attention and 

spatial convolution and solves the gradient vanishing and exploding problems in deep 

network training by introducing residual connectivity. Specifically, the primary path 

adopts a “compression-excitation” optimization structure. Firstly, the channel is com-

pressed by 1×1 convolution. After swish nonlinear activation, 3×3 depth-separable con-

volution is used for efficient spatial feature extraction, and finally, the dimensional re-

construction is achieved by 1×1 convolution. A batch normalization layer is introduced 

to optimize the gradient flow. The auxiliary path, on the other hand, is designed with 



an adaptive gating mechanism, and when the dimensionality of the input and output 

channels do not match, grouped convolution (groups=4) is used to realize efficient fea-

ture projection, which effectively reduces the computational overhead compared with 

the standard 1×1 convolution. 

 

Fig. 4. (a) is the basic unit, (b) is the downsampling unit 

4 Experiment 

4.1 Data sets and evaluation indicators 

This paper uses two datasets for experiments: the Cotton Disease Dataset and the Cot-

ton Pest Detect Dataset. 

Cotton Disease Dataset: The photos of cotton leaf pests and diseases are from the 

China Agricultural Pests and Diseases Research Image Library. The format is.jpg, and 

after re-annotation, the length and width of the photos are 320 pixels. The disease sam-

ples in the data set include Alternaria Leaf Spot, Curl Leaves, Red Spot, bacterial blight, 

foliar disease, and herbicide, which are common in Xinjiang, China. The dataset was 

split using a script into 1094 training, 143 validation, and 285 testing photos.  

Cotton Pest Detect Dataset: This dataset contains 2319 photographs in 6 categories: 

blight, curl, grey mildew, healthy, leaf spot, and wilt. The images are divided according 

to 7:1:2, where the training set is 1585, the validation set is 235, and the test set is 499 

sheets.   

Precision indicates the proportion of detected targets that are proper targets. Recall 

measures the proportion of all actual targets that have been correctly detected. Paramet-

ric quantity denotes the total count of all trainable parameters within the model. 

GFLOPs serve as a metric for assessing the model's computational complexity. mAP is 

another key evaluation metric, representing the mean of average precision (AP). For 

each category, the AP value can be calculated as the area under the precision-recall 

curve for all samples in that category across different thresholds. The mapped value is 

then obtained by averaging the AP values of all categories, and it is computed as fol-

lows: 
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 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (31) 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (42) 

 𝐴𝑃 = ∫ 𝑃(𝑅) 𝑑𝑅
1

0
 (53) 

 𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

1
𝑖=1  (64) 

 𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑂(∑ 𝑀𝑖
2 ∗ 𝐾𝑖

2 ∗ 𝐶𝑖−1 ∗ 𝐶𝑖
𝑛
𝑖=1 ) (75) 

 𝐺𝐹𝐿𝑂𝑃𝑠 = 𝑂(∑ 𝐾𝑖
2 ∗ 𝐶𝑖−1

2 ∗ 𝐶𝑖
𝑛
𝑖=1 + ∑ 𝑚2 ∗ 𝐶𝑖

𝑛
𝑖=1 ) (86) 

False positives (FP) represent the number of samples where annotation frames were 

generated but were either in the wrong position or had incorrect category labels. True 

positives (TP) denote the number of lesion regions that were accurately detected. False 

negatives (FN) refer to the number of samples without annotation frames generated 

within the lesion regions. Additionally, K indicates the size of the convolution kernel, 

C represents the number of channels, M signifies the size of the input image, O stands 

for the number of constant orders, N represents the number of defects, and I denotes 

the number of iterations. AP is the area under the precision-recall curve, while mAP is 

the mean of AP values across different categories. 

4.2 Experimental environment 

The server operating system used for the experiments is Ubuntu 20.04.5 LTS. The com-

puting resources are a single NVIDIA GeForce RTX 4090 (24G) graphics card. The 

compiler platform is PyCharm, with Python 3.8.10, PyTorch 2.0.0, and CUDA 11.8 as 

the deep learning framework. 

4.3 Ablation experiment 

An ablation study was performed on the Cotton Disease Dataset to assess the effective-

ness of the SDRM-YOLO model introduced in this paper for detecting cotton pests and 

diseases. 

First, to evaluate the effectiveness of the proposed MCPA, it was benchmarked 

against SE, CBAM, and CA attention mechanisms. The results of these experiments 

are presented in Table 1. The MCPA module demonstrated a notably higher mAP50 

index compared to the other attention modules. 

Table 1. Ablation experiments of MCPA module 

 P R mAP50 GFLOPs Params 

SE 76.1 73.7 79.1 7.9 3.01 

CBAM 82.3 72.5 79.8 8.2 3.02 

CA 83.2 70.9 79.5 7.9 3.02 

MCPA 71.0 75.2 80.1 8.1 3.16 

 



Then, Initially, the DCNv2 and the C2f module in the neck network were integrated, 

resulting in a 0.5% increase in the model's mAP50 index. Subsequently, incorporating 

the RCSOSA attention mechanism further enhanced the module's performance. Ulti-

mately, compared to the original model, the mAP50 index was improved by 1.1%. The 

detailed experimental results are presented in Table 2. 

Table 2.  Ablation experiment of C2f-DR module 

Neck P R mAP50 GFLOPs Params 

YOLOv8n 77.5 73.7 79.1 8.1 3.00 

C2f-DCNv2 76.6 74.1 79.6 8.2 3.06 

C2f-DCN-RCSOSA 74.0 75.5 80.2 8.5 3.49 

Finally, the backbone network part is improved by introducing the ShuffleNetv2 mod-

ule, which utilizes the channel rearrangement mechanism and the depth-separable con-

volution technique to enhance the model detection accuracy, resulting in a 1.1% in-

crease in its mAP50 metric. Later, residual connection and new activation function 

Swish is introduced to optimize the design, and it is verified that the improved Shuf-

fleNetv2-RC module improves the mAP50 by 0.5% compared with the original Shuf-

fleNetv2 module. The experimental results are shown in Table 3 below. 

Table 3.  Ablation experiment of ShuffleNetv2-RC module 

Backbone P R mAP50 GFLOPs Params 

YOLOv8n 77.5 73.7 79.1 8.1 3.00 

Shufflenetv2 82.8 69.3 80.2 8.1 2.79 

ShuffleNetv2-RC 80.8 74.5 80.7 7.8 2.79 

After independently performing ablation tests on each design module individually, we 

plan to incorporate these newly designed modules into the model framework to assess 

their contribution to the overall model performance. Using YOLOv8n as the baseline 

model, we verified the effect of the modules on the model performance by adding the 

MCPA, C2f-DR, and ShuffleNetv2-RC modules, respectively, and kept all hyperpa-

rameters consistent in the experiments, the results of which are shown in Table 4 below. 

First, the innovative MCPA module was introduced between the neck and the predic-

tion head, demonstrating excellent efficiency in multi-scale disease feature fusion and 

achieving a 5% improvement in mAP50 performance. Then, we incorporated the C2f-

DR module in the network's neck (Neck) region. This improved the model to more 

accurately recognize the contours and boundaries of complex targets, resulting in a 

1.1% improvement in mAP50 performance. Finally, we enabled the mAP50 to achieve 

the highest accuracy of 86.4% by integrating the optimized ShuffleNetv2-RC module 

into the backbone network. Compared to the baseline model, SDRM-YOLO achieves 

a 7.3% performance improvement in the key metric of mAP50 and minimizes the quan-

tity of model parameters and computational intensity. 
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Table 4. Ablation experiments of SDRM-YOLO model 

ShuffleNetv2-

RC 

C2f-DR MCPA P R mAP50 GFLOPs Params 

   77.5 73.7 79.1 8.1 3.00 

√   80.8 74.5 80.7 7.8 2.79 

 √  74.0 75.5 80.2 8.5 3.49 

  √ 71.0 75.2 80.1 8.1 3.16 

√  √ 82.5 76.1 83.8 7.9 2.98 

√ √  81.2 76.5 82.3 8.1 3.28 

 √ √ 82.6 76.8 84.1 8.4 3.62 

√ √ √ 85.2 78.7 86.4 7.8 2.92 

 

4.4 Comparative experiment 

To fully evaluate the performance of the SDRM-YOLO model proposed in this study, 

we conducted extensive comparative experiments on two different datasets. In these 

experiments, we selected a variety of state-of-the-art including SSD, Faster R-CNN, 

YOLOv5n, YOLOv6n, YOLOv7-tiny, Efficient [32], YOLOv8n (as a benchmark 

model), DETR [33], YOLOv10n [34], and YOLOv11n [35] target detection models are 

analyzed competitively. The experimental outcomes presented in Table 5 demonstrate 

that SDRM-YOLO exhibits superior performance on the Cotton Disease Dataset com-

pared to other models included in the comparison across several critical evaluation met-

rics. Particularly in the three core assessment indicators of precision (P), recall (R), and 

mAP50, the SDRM-YOLO model's performance outstrips the latest state-of-the-art 

YOLOv11 series models. This finding fully validates the outstanding capabilities of 

SDRM-YOLO in object detection. Fig. 5 illustrates the detection results of the 

YOLOv8n and SDRM-YOLO models when applied to six different pests within the 

Cotton Disease Dataset. As demonstrated by the experimental data, the improved model 

possesses an excellent ability to recognize partially occluded targets, thus significantly 

reducing the number of undetected category samples. 

Table 5. Comparative experiments on Cotton Disease Dataset 

Model P R mAP50 GFLOPs Params 

SSD 80.1 69.2 70.5 62.8 27.12 

Faster R-CNN 81.8 71.4 70.9 136.2 40.35 

YOLOv5n 82.4 76.8 72.2 4.5 2.02 

YOLOv6n 81.9 73.6 73.2 9.1 4.24 

YOLOv7-tiny 78.0 67.3 72.7 3.2 6.07 

EfficientDet 80.4 76.6 83.8 5.1 11.10 

YOLOv8n 77.5 73.7 79.1 8.1 3.00 

DETR 81.1 76.8 82.1 98.6 8.15 

YOLOv10n 82.3 77.0 82.8 6.8 2.73 

YOLOv11n 83.7 77.3 84.9 7.2 9.42 

SDRM-YOLO 85.2 78.7 86.4 7.8 2.92 



 

 

Fig. 5. Visual test results on the Cotton Disease Dataset ，the rows from bottom to top represent 

the SDRM-YOLO detection result graph, YOLOv8n detection result graph, and original graph, 

respectively. Results of disease detection for each category: （a)：herbicide  (b):Red Spot (c): 

Alternaria Leaf Spot (d):bacterial blight (e): Curl Leaves (f):foliar disease 

Table 6. Comparative experiments on Cotton Pest Detect Dataset 

Model P R mAP50 GFLOPs Params 

SSD 80.2 65.3 71.5 62.8 27.12 

Faster R-CNN 82.6 65.9 73.0 136.2 40.35 

YOLOv5n 84.5 66.3 74.1 4.5 2.02 

YOLOv6n 76.8 66.4 75.2 9.1 4.24 

YOLOv7-tiny 78.0 67.3 74.7 3.2 6.07 

EfficientDet 82.1 68.7 76.5 5.1 11.10 

YOLOv8n 83.6 69.3 75.5 8.1 3.00 

DETR 81.6 68.6 75.9 98.6 8.15 

YOLOv10n 83.4 69.6 76.1 6.8 2.73 

YOLOv11n 84.4 70.0 76.6 7.2 9.42 

SDRM-YOLO 86.7 71.7 78.0 7.8 2.92 

 

To further examine the generalization performance of the SDRM-YOLO model, we 

implemented additional comparison experiments on the Cotton Pest Detect Dataset. 

The results of the experiments are detailed in Table 6 below.6 In the comparison of 

SDRM-YOLO with the models SSD, Faster R-CNN, YOLOv5n, YOLOv6n, YOLOv7-

tiny, Efficient, YOLOv8n (as the benchmark model), DETR, YOLOv10n, and 

YOLOv11n, the key metric of mAP50 metric achieves significant improvements of 

6.5%, 5%, 3.9%, 2.8%, 3.3%, 1.5%, 2.5%, 2.1%, 1.9% and 1.4%, respectively. In ad-

dition, SDRM-YOLO demonstrated significant enhancement in three other evaluation 
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metrics. These results further confirm the ability of SDRM-YOLO to generalize on 

different datasets. Fig. 6 presents the results of the visualization and analysis of 

YOLOv8n with the enhanced SDRM-YOLO model on the Cotton Pest Detect Dataset 

for six categories of pests and diseases. As can be seen from the figure, the improved 

model shows significant recognition accuracy advantages, surpassing the original mod-

el's performance. 

 

Fig. 6. Comparison chart of thermal effects on Cotton Pest Detect Dataset, where (a) is the 

original image, (b) is the YOLOv8n detection thermal map, and (c) is the SDRM-YOLO detec-

tion thermal map 

5 Conclusions 

In this study, we propose an improved SDRM-YOLO model to increase cotton pest and 

disease detection accuracy in complex contexts. We achieve significant performance 

improvements by optimizing the YOLOv8n model in multiple ways. Specifically, first, 

we integrated an innovative multi-scale cross-spatial perceptual attention mechanism 

(MCPA) between the neck network and the prediction head of the model, which utilizes 

three different-sized convolutions to strengthen the channel attention, thus improving 

the model's ability to capture multi-scale features and the accuracy of spatial localiza-

tion. Next, we introduce the C2f-DR module to replace the original C2f layer, and this 

optimization improves the feature extraction efficiency of the model when dealing with 

targets with significant variations in shape and location and enhances attention to criti-

cal regions. Finally, we adopt the optimized ShuffleNetv2-RC as the backbone network, 

which not only reduces the model parameters but also effectively mitigates the phe-

nomenon of gradient vanishing and improves the training efficiency and performance 

of the model. With the above improvements, the new model has more obvious perfor-



mance improvement on both the Cotton Disease Dataset and Cotton Pest Detect Da-

taset, and the model complexity is reduced compared to the benchmark model. How-

ever, the C2f-DR module in this study is characterized by a high parameter count. Fu-

ture research endeavors will concentrate on developing target detection algorithms that 

aim to reduce the module's parameter quantity while preserving the model's detection 

accuracy. 
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