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Abstract. Ultrasound imaging plays a key role in breast cancer screening and 

diagnosis due to its advantages of non-invasive, real-time and low cost. This pa-

per proposes an intelligent breast cancer diagnosis method based on Multi-modal 

Hierarchical Fusion Network (MHFNet), aiming to fully integrate complemen-

tary information from B-mode image, Doppler image and clinical semantic fea-

tures. In MHFNet, a Semantic-augmented ResNet (SAR) was constructed to 

achieve the deep fusion of image and semantic features. And Hierarchical Se-

mantic Fusion (HSF) module and Semantic Integration Bottleneck (SIB) are de-

signed to enhance the interaction and fusion of Multi-modal information layer by 

layer. Finally, a unified Multi-modal feature representation was developed for 

breast cancer diagnosis. The experimental results show that the proposed Multi-

modal classification fusion method is superior to other comparison algorithms, 

which fully verifies the positive role of Multi-modal information complementa-

rity in improving the diagnostic performance of breast cancer. 

Keywords: Breast cancer, Ultrasound image, Deep learning, Clinical semantic 

features, Multi-modal. 

1 Introduction 

Breast cancer is a highly occurring and lethal cancer disease and is one of the leading 

causes of cancer death in women [1]. Improving the early detection and diagnosis rate 

of breast cancer and optimizing the treatment plan have become the key tasks in the 

medical field. In recent years, the intelligent diagnosis technology based on deep learn-

ing and medical image processing has provided a new opportunity to improve the early 

screening and diagnosis accuracy. Ultrasound is widely used in the preliminary screen-

ing, diagnosis and treatment of breast cancer due to its non-invasive, real-time, 



 

economic and non-radiation [2] [3]. Therefore, ultrasound imaging has an indispensa-

ble position in the prevention and treatment of breast cancer.  

In the early studies of breast ultrasound images, scholars often use manual feature 

extraction, combined with classifier such as Adaboost [4], random forest [5] or K-near-

est neighbor [6] for benign and malignant judgments. However, such methods rely 

heavily on the quality of manual features. Due to the complex noise and blurred bound-

ary of breast ultrasound images, manual features are difficult to fully capture potential 

key information, leading to limited diagnostic performance. In addition, with the rapid 

increase in the amount of image data, the process of relying on manual feature selection 

is becoming more complicated. 

Deep learning methods can automatically learn multi-level features from large-scale 

data [7]. Classical networks such as AlexNet [8], VGG, ResNet, etc. have achieved 

excellent results in natural image classification and demonstrated strong feature learn-

ing ability when migrating to the task of breast ultrasound diagnosis [9][10][11]. In 

addition, structures such as Attention mechanism [12] and U-Net [13] have also made 

positive progress in image segmentation and lesion localization.  

It is difficult for a single modal ultrasound image to provide sufficient information, 

especially in the face of complex lesions, the diagnostic accuracy may be insufficient. 

Multi-modal ultrasound, such as traditional B-mode and Doppler imaging can show the 

morphological structure and biological characteristics of tumors from different angles 

[14]. B-mode and Doppler imaging are common in equipment and procedure and are 

less expensive. The combination of B-mode images, which show structural features of 

breast tissue and tumors, and Doppler images, which provide information on blood flow 

dynamics, can improve breast cancer diagnostic accuracy.  

In Breast Image Reporting and Data System (BI-RADS) classification, doctors sum-

marize rationality criteria based on long-term diagnosis and treatment experience, and 

grade tumor morphology, boundaries, and internal echoes. Combining such semantic 

features with imaging features can provide a more comprehensive input to machine 

learning or deep learning models [15] [16]. For example, Hamyoon et al. [17] screened 

5 BI-RADS descriptors and then trained a tumor recognition model using support vec-

tor machine algorithm, whose diagnostic effect even exceeded the level of some clini-

cians. Since BI-RADS reflects the doctor’s experience judgment of the overall state of 

the lesion, the introduction of this high-level semantic information can partially make 

up for the lack of data and the limitations of model learning, so that the network can 

not only “rely on pixels”, but also “understand” key medical attributes. 

Therefore, a Multi-modal Hierarchical Fusion Network (MHFNet) is proposed in 

this paper to combined Multi-modal ultrasound images with clinical semantic features. 

MHFNet can not only automatically learn details of images, but also incorporate the 

“semantic experience” accumulated by clinicians over the years into the model to 

achieve information from “pixels” to “clinical logic” [18]. The main contributions of 

this paper are as follows:  

1. We designed a Semantic-Augmented ResNet, incorporating hierarchical seman-

tic fusion layers and semantic integration bottlenecks to effectively embed clin-

ical semantic information into ultrasound imaging data.  
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2. Multi-mode feature fusion of B-mode, Doppler ultrasound image and BI-RADS 

features is carried out to realize the information complementarity between dif-

ferent modes and improve the discriminating ability of benign and malignant. 

3. Our proposed MHSFNet has achieved significant improvement in multiple eval-

uation indicators such as AUC and accuracy, which verifies the important role 

of Multi-modal information complementarity in the diagnosis of breast cancer. 

2 Materials and Methods 

2.1 Data Preprocessing 

The pairs of B-mode, Doppler, and BI-RADS data are used as inputs for breast cancer 

classification. In order to ensure that the data of the two modes of Doppler ultrasound 

image and B-mode ultrasound image can be effectively input into the deep learning 

model and enhance the generalization ability of the model, all images were first ad-

justed to a fixed size of 224×224 pixels. Then, we introduced a variety of data enhance-

ment techniques in the pre-processing stage, mainly including random horizontal flip, 

random rotation and color jitter.  

The BI-RADS features provide many useful pathological information, containing 10 

term descriptions [19]. As shown in Table 1, for example, the location descriptors con-

tain five scoring levels, including “outer top”, “outer bottom”, “inner bottom”, “inner 

top” and “central region”. Figure 1(a)(b) is a representative sample of the benign pa-

tient, and Figure 1(c)(d) is a representative sample of the malignant patient. Table 2 

lists the scores of 10 BI-RADS descriptors corresponding to the two patients. 

Table 1. Classification of BI-RADS feature manifestations. 

ID 
BI-RADS 

features 
0 1 2 3 4 5 

1 Location - Outside on out-under 
Inside 

under 

Inside 

above 

Central 

area 

2 Shapes - Oval Round Irregular - - 

3 Azimuth - Parallel Non-parallel - - - 

4 Borders - Clarity 
Lack of local 

clarity 
Unsharpness - - 

5 Internal echoes - Evenness Uneven - - - 

6 Echo intensity - echoless Hyperecho Low echo Isoecho - 

7 Composition - Solid saccular Cysticular - - 

8 Rear echo - Unchanged Enhanced Attenuation - - 

9 Calcification no 
Coarse 

calcification 

Microcalcifi-

cation 
- - - 

10 Calcification site - 
Within the 

lump 

Outside the 

lump 
intraductal - - 

 



 

    
(a) B-mode of 

Benign patient 

(b) Doppler of 

Benign patient 

(c) B-mode of 

Malignant patient 

(d) Doppler of 

Malignant patient 

Figure 1. The examples of B-mode and Doppler ultrasound images of benign and malignant 

patients. 

Table 2. The scores of 10 BI-RADS descriptors corresponding to the two patients. 

BI-RADS Features 1 2 3 4 5 6 7 8 9 10 

Benign Patient 1 3 2 3 1 3 1 1 0 0 

Malignant Patient 2 3 1 2 2 3 1 1 2 1 

2.2 Overview of Multi-modal Hierarchical Fusion Network 
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Figure 2. Overview of Multi-modal Hierarchical Fusion Network (MHFNet). 

The overview of Multi-modal Hierarchical Fusion Network (MHFNet) is shown in Fig-

ure 2. Through the BI-RADS feature extractor, the BI-RADS features are sent to the 

Image Feature Extractor, and are fused in the extraction process of the Image Feature 

Extractor. Finally, the features of the three modes are concatenated and classified. 

BI-RADS feature extractor.  We employ 1D-CNN to extract BI-RADS features [20]. 

In the Input layer, let the original feature be  𝒯 ∈ ℝ𝑁×𝐷𝑇, 𝐷𝑇  represent the feature di-

mension, and 𝑁  is the batch size. Firstly, the input features 𝒯  are adjusted to 𝒯 ′ ∈

ℝ𝑁×1×𝐷𝑇. Then, the local patterns in  𝒯 ′ are extracted through two layers of convolution 

and pooling successively, and finally the features are flattened and mapped through the 

fully connected layer to finally get the semantic representation: 𝒯feat ∈ ℝ𝑁×2048. 
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Image feature extractor. The specific structure of image feature extractor is described 

in detail in Section 2.3. In the specific implementation method, we use the Semantic -

Augmented ResNet to independently process two image modes: B-mode and Doppler. 

Image feature extractor for each mode receives semantic representation 𝒯feat in forward 

propagation and fuses with image features at all levels of the network.  

2.3 Image-Clinical Feature Hierarchical Fusion Network 

The idea of our network is to embed the clinical features into each residual module of 

the image extraction network. The whole design is mainly composed of three key com-

ponents: Semantic-Augmented ResNet (SAR), Hierarchical Semantic Fusion (HSF) 

module and Semantic Integration Bottleneck (SIB).  

Convolutional 
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Batch 

normalization

ReLU 

activation Pooling 

layer

Preprocessed image

Output

Extracted BI-

RADS Features

Input from the 

previous layer

Extracted BI-

RADS Features
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connection

Output
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Figure 3. The structure of Semantic-Augmented ResNet (SAR). 

Semantic-Augmented ResNet (SAR). Based on the modular design, we built SAR, 

which combines semantic representation and image features in each residual layer to 

achieve deep integration of Multi-modal information. The structure of SAR can be 

found in Fig. 3. SAR includes four designed HSF layers, which is encapsulated by SIB 

units. Let the input image be 𝒱 ∈ ℝN×3×H0×W0and the clinical feature be 𝒯feat, and the 

forward propagation process is as follows: 

After convolution (Cov), batch normalization (BN) and ReLU activation, we get 

 𝑭0
′ = ReLU(BN(Conv(𝒱))) (1) 



 

Downsampling by maximum pooling layer is applied to 𝑭0
′  

 𝑭0 = MaxPool(𝑭0
′ ) (2) 

Sequentially through four HSF layers, 𝑭0 is fused with clinical features 𝒯feat. The out-

put of each HSF layer can be denoted as 

 𝑭𝑙 = HSF𝑙(𝑭𝑙−1, 𝒯feat), 𝑙 = 1,2,3,4 (3) 

Finally, the output 𝒚̂ of SAR is obtained through global average pooling (GAP) 

 𝒚̂ = 𝛔(𝑾*GAP(𝑭𝟒) + 𝒃) (4) 

where 𝛔() is the sigmoid activation function, W is the learnable weight vector, b is the 

bias vector. 

Hierarchical Semantic Fusion Module (HSF). The HSF module ensures that the se-

mantic representation 𝒯feat is permeated and fully utilized layer by layer throughout the 

residual layer by modularistically cascading multiple SIB units. Let the initial input of 

SIB be 𝒙0, for the i-th SIB unit, we get its output 𝒙𝑖: 

 𝒙𝑖 = SIB𝑖(𝒙𝑖−1, 𝒯feat), 𝑖 = 1,2, … , 𝑛 (5) 

In the same HSF layer, the final output of the SIB unit can be defined as 𝒙𝑛, which is 

also the output of the corresponding HSF layer. 

Semantic Integration Bottleneck (SIB). The core of SIB unit is to map the semantic 

features to the same dimension as the convolutional layer output channel number C 

through the fully connected layer, and then fuse with the convolutional output. Let the 

original semantic feature be 𝒯feat. Define a full join feature map 𝑓fc(𝒯feat) = 𝑾𝒯feat + 𝒃. 

Then, the mapping result is adjusted to a four-dimensional tensor 𝑻proj ∈ ℝ𝑁×𝐶×1×1 

with the unsqueeze operation: 

 𝑻proj = unsqueeze(𝑓fc(𝒯feat)) (6) 

Let the output of the convolutional layer be ℱ ∈ ℝ𝑁×𝐶×𝐻×𝑊 (The upper branch of SIB 

Unit in Fig.3), and the mapped semantic features are added to the convolutional features 

by using the addition fusion strategy:  

 ℱ′ = ReLU(ℱ + 𝑻proj) (7) 

Finally, the original residual connection mechanism is maintained. Let the input from 

the previous layer be 𝒙, and the output which incorporates the image feature of the text 

feature is:  

 𝑶 = ReLU(𝒙 + ℱ′) (8) 
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2.4 Multi-modal Fusion 

Assume that the two image semantic representations obtained separately through the 

image feature extractor are 𝒱1 ∈ ℝ𝑁×1024 𝑎𝑛𝑑 𝒱2 ∈ ℝ𝑁×1024, and the semantic repre-

sentations obtained separately through the BI-RADS feature extractor are 𝒯feat ∈
ℝ𝑁×2048 . We use the concatenation operation to integrate these three parts of features 

into a unified representation ℱfusion in dimension: 

 ℱfusion = Concat(𝒱1, 𝒱2, 𝒯feat) ∈ ℝ𝑁×4096 (9) 

The fused Multi-modal features ℱfusion are fed into a subsequent fully connected net-

work for classification.  

3 Materials and Methods 

3.1 Experimental Dataset 

This study obtained informed consent from all patients for their information to be used 

in the study without violating patient privacy. The data set used in this chapter was 

provided by Zhejiang Cancer Hospital, including 437 benign images and 251 malignant 

images, as well as clinical semantic features corresponding to all patients. The breast 

images in the dataset had corresponding diagnostic labels.  

3.2 Experimental Setup 

In this study, the network was trained and evaluated on a server system with 64GB 

memory, NVIDIA 3090 24GB GPU, Python3.12, and Pytorch2.3.0 cuda12.1. We ap-

plied 5 fold cross validation and each fold trained 40 epochs. Binary cross entropy loss 

is taken as a loss function and Adam optimizer with an initial learning rate set to 0.001 

is used in the experiment. To improve the training process, we also dynamically used 

the learning rate scheduler, deciding whether to reduce the learning rate by 10% every 

5 epochs.  

3.3 Experimental Results and Analysis 

Comparison of experimental results under different modality conditions. In this 

section, we compare the results of our MHFNet on single-modality, dual-modality, and 

three-modality conditions. The experimental results are shown in Table 3. Overall, the 

experimental results indicate that the results of three-modality condition outperform 

single-modality and dual-modality across all metrics. Compared to dual-modality, 

three-modality not only enhances predictive performance but also exhibits a lower 

standard deviation, reflecting greater stability and consistency, thereby fully demon-

strating the superiority of Multi-modal learning.  



 

Table 3. Comparative experimental results under different modal conditions. 

Modal AUC Accuracy(%) F1-score(%) Recall(%) Precision(%) 

Clinical 0.9028±0.0237 84.01±1.34 87.74±1.29 90.35±3.50 85.38±1.26 

B-mode 0.8289±0.0297 75.45±5.47 81.10±4.29 83.12±5.98 79.36±4.00 

Doppler 0.8650±0.0209 76.90±2.94 82.19±2.78 84.39±4.99 80.28±2.83 

Clinical+ 

B-mode 
0.9053±0.0237 84.45±1.08 87.98±1.08 89.87±3.49 86.34±2.56 

Clinical+ 

Doppler 
0.9082±0.0214 84.74±2.23 88.17±1.89 89.89±4.25 86.69±2.47 

B-mode+ 

Doppler 
0.8597±0.0234 77.91±2.16 82.98±2.05 85.11±4.58 81.22±3.33 

Clinical+ 

B-mode+ 

Doppler 

0.9163±0.0141 86.05±0.54 89.25±0.56 91.30±1.40 87.34±1.52 

Comparison results of different algorithms. We compared our MHFNet with other 

algorithms. In terms of traditional vision algorithms, we compare ResNet50 and 

VGG16. About Transformer, we compared Swin Transformer [21] and ViT-B/16[22]. 

On Multi-modal algorithms, we compare CLIP[23] and ViLT[24]. In addition, due to 

our use of hierarchical fusion, we also compared the results under the Late Fusion strat-

egy [25]. According to the experimental results in Table 4, our MHFNet has achieved 

the highest or close to the highest values in the indexes of AUC, Accuracy, F1-score, 

Recall and Precision.  

Table 4. Comparative experimental results under different modal conditions. 

Methods AUC Accuracy(%) F1-score(%) Recall(%) Precision(%) 

Swin Trans-

former 
0.9047±0.0254 84.88±0.53 88.23±0.82 89.41±3.64 87.25±2.23 

Resnet50 0.9013±0.0234 83.28±0.65 87.01±0.78 88.28±3.23 85.91±1.92 

Vgg16 0.6614±0.1979 58.41±10.67 62.25±31.14 80.00±40.00 50.96±25.52 

Vit-B/16 0.9011±0.0258 84.45±2.03 87.89±2.01 89.40±4.17 86.56±1.68 

CLIP 0.8151±0.0236 63.52±1.38 77.68±1.03 100.00±0.00 63.52±1.38 

ViLT 0.8978±0.0145 82.56±2.16 86.65±1.75 89.24±4.08 84.43±3.32 

Late Fusion 0.9035±0.0207 81.40±3.25 85.55±3.11 87.54±6.50 83.97±2.81 

MHFNet 0.9163±0.0141 86.05±0.54 89.25±0.56 91.30±1.40 87.34±1.52 

4 Conclusion 

This paper proposed a novel deep learning method, named as Multi-modal Hierarchical 

Fusion Network (MHFNet), for breast cancer diagnosis. Specifically, we designed Se-

mantic-Augmented ResNet, Hierarchical Semantic Fusion Layer and Semantic Integra-

tion Bottleneck modules to improve classification performance. Experimental results 

show that the proposed MHSFNet has achieved significant improvement in multiple 
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evaluation indicators such as AUC, accuracy, F1-score and Recall, which verifies the 

important role of Multi-modal information complementarity in the diagnosis of breast 

cancer. The method provides a new technical path for the intelligent diagnosis of the 

combination of clinical semantics and ultrasound images. Future research work can be 

carried out from the data scale and modal expansion as well as the further optimization 

of network structure.  
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