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Abstract. Network traffic classification plays a vital part in network security and 

management. Facing the growing sophistication of encryption techniques, vari-

ous works focus to acquire underlying features and try to achieve more advanced 

identification. However, current methods mostly depend on pre-training or using 

large models to fit implicit relationship, which could cause imbalance unsuper-

vised learning due to long-tail distribution and may be impractical for intrusion 

detection because of large cost. Therefore, we propose a non-pretrained light-

weight framework, termed Contrastive Traffic Recognition with Lightweight net-

work (CTRL), to fully explore spatial-temporal features in traffic. Specifically, 

two-stream architecture is adopted to decouple the mixed feature extraction while 

lightweight encoder is further improved to avoid weak representation. By em-

ploying contrastive loss, single model can grasp common knowledge from dif-

ferent views, which realizes better traffic recognition. Extensive experiments 

conducted on six public traffic datasets from various tasks validate the more su-

perior performances of our CTRL which maintains the fewest parameters, com-

pared to state-of-the-art approaches with an average improvement of 7.5%. 

Keywords: Traffic classification, Lightweight model, Spatial-temporal fea-

tures, Contrastive learning. 

1 Introduction 

Efficient network traffic recognition is essential for managing networks, ensuring se-

curity, and improving user experiences. By accurately categorizing traffic from various 

services and applications, it also plays a pivotal role in threat detection and service 

optimization [1]. However, with the rise of encryption technologies (e.g., TLS) and 

anonymous networks (e.g., VPN, Tor), how to explore underlying features from traffic 

data has grown increasingly complicated [2], presenting significant challenges to tradi-

tional classification methods [3]. 

Confronted with the problem mentioned above, several studies, like ET-BERT [6], 

YaTC [7], and NetMamba [8], have applied self-supervised pre-training to probe com-

mon features from large volumes of unlabeled traffic. However, the predominance of 
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normal traffic in unlabeled data limits the understanding of malicious flows with few 

scale at pre-training stage. Additionally, unsupervised representation models generally 

require substantial parameters, posing challenges for resource-limited gateway devices. 

It is believed that traffic contains spatial and temporal features [25], thus focusing on 

relationships between different views can reveal deeper insights. For instance, Seydali 

et al. [9] employed 1D-CNN, Attention-Bi-LSTM as well as SAE to extract and aggre-

gate features for classification. Hu et al. [10] enhanced the performance by cascading 

CNN and LSTM. But spatial and temporal models both need to participate in the eval-

uation period, which may cause inference delays and storage costs. 

Through the above analysis, large models may be impractical for embedded devices, 

but lightweight networks are also struggling to fit sophisticated relationships within 

traffic flow, which is crucial for intrusion detection. Therefore, we propose Contrastive 

Traffic Recognition with Lightweight network (CTRL) to achieve real-time recognition 

with less memory cost while extract generalized features to ensure high accuracy [4]. 

To be specific, standard input is built by segmenting and recombining the packet pay-

load of raw flow and transformed into diverse formats with different views. Original 

single feature extractor is decoupled to lightweight spatial and temporal encoders while 

each stream fully extracts single view features, avoiding weak representation by disen-

tangled feature learning [21]. In order to achieve the fusion of both features, we redefine 

the problem as an alignment issue and adopt contrastive loss to transfer knowledge in 

the training process. When evaluating, we only employ the spatial model for traffic 

classification, which realizes to apply lightweight network with fully learned common 

spatial-temporal knowledge for better recognition. 

In short, our contributions are summarized as follows: (1) We provide a ground-

breaking perspective, which firstly transform the spatial-temporal fusion problem into 

an alignment issue and design a novel framework for traffic recognition termed CTRL. 

(2) We propose a lightweight spatial encoder and introduce NetMamba as temporal 

encoder with full considerations of mobile adaptation as well as efficiency. (3) We con-

duct extensive experiments in various tasks and prove the advantages of our proposed 

CTRL. 

2 Related Works 

Multimodal alignment. Multimodality enhances understanding and decision-making 

by integrating information from multiple sensory modalities [38]. Thereinto, ALBEF 

[39] aligns visual and language representations, using momentum distillation to im-

prove multimodal embeddings. FLAVA [40] enhances multitask and cross-modal 

learning by jointly pre-training text and images. ALIGN [41] jointly trains language 

and image encoders, significantly enhancing performance across various vision and text 

benchmarks. In recent years, research around CLIP has further optimized computa-

tional efficiency and model representation capabilities. For instance, FLIP [42] brings 

lower computation and faster training times by randomly removing a large number of 

image patches during training process while SoftCLIP [43] applies fine-grained interior 

self-similarity as a softening target to alleviate the strict mutual exclusion problem. 
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Moreover, latent diffusion models generate reliable text embeddings as condition by 

using pretrained text encoder of CLIP and CLIPSelf [44] enhances region-level repre-

sentation through self-distillation from CLIP’s image encoder, which proves the pow-

erful effects of CLIP. 

Encrypted traffic classification based on deep learning. Encrypted traffic classifica-

tion plays a crucial role in information security, and with the rise of deep learning, deep 

learning-based encrypted traffic classification has emerged as the mainstream ap-

proach. Qu et al. [45] presents an input-agnostic hierarchical deep learning framework 

for traffic fingerprinting that abstracts heterogeneous traffic features into homogeneous 

vectors. Zhang et al. [46] proposes a byte-level traffic graph construction approach and 

the Temporal Fusion Encoder with Graph Neural Networks (TFE-GNN), which uses 

dual embedding, GNN-based encoding, and cross-gated feature fusion. DE-GNN [47] 

introduces a dual embedding layer for separate encoding of packet header and payload, 

develops PacketCNN for feature extraction, and employs Graph Neural Networks for 

flow-level analysis. YaTC [7] introduces a masked autoencoder (MAE) based traffic 

transformer with hierarchical flow representations and multi-level attention mecha-

nisms, significantly improving classification accuracy across real-world datasets. To 

further tackle inefficiencies in model architectures and representation quality, 

NetMamba [8] proposes a linear-time state space model tailored for networking, along-

side a refined traffic representation scheme that mitigates bias and preserves essential 

information. 

3 Methodology 

3.1 Overview of Framework 

It is essential to develop generic traffic analysis algorithm through non-pretrained ap-

proach rather than two-stage methods which may lead to huge consumption and unbal-

anced learning. Therefore, we propose CTRL to explore more information from traffic 

data for better classification and the conceptual overview is shown in Fig. 1. It is be-

lieved that traffic implicitly contains spatial and temporal information, hence we de-

couple the traditional single feature extractor and apply two-stream network for acquir-

ing spatial-temporal representation more adequately. To be specific, original traffic is 

converted to spatial and temporal format with corresponding labels as supervised guid-

ance. Each stream includes an encoder network 𝐹𝑖(⋅), 𝑖 ∈ {𝐒, 𝐓}, a MLP layer 𝐿𝑖(⋅), 𝑖 ∈
{𝐒, 𝐓} for classification, and a projection head H𝑖(⋅), 𝑖 ∈ {𝐒, 𝐓} which is used to map the 

data from original space into the latent space for fusion. Lightweight backbone is 

adopted with training from scratch and each single stream extracts feature with different 

views. The models and training paradigm will be described below in detail. 



 

Fig. 1. The overall framework of CTRL. Traffic representation module handles the raw traffic to 

generate corresponding spatial and temporal items while N denotes the batch size. Decoupling 

feature extraction network can fully explore disentangled information and spatial-temporal fusion 

is reframed as an alignment issue. Contrastive loss is employed to realize the integration of partial 

knowledge and cross-entropy guarantees proper learning direction. 

3.2 Traffic Representation 

An effective traffic recognition approach necessitates a robust representation frame-

work with appropriate granularity to differentiate diverse application scenarios or trans-

mission intents for precise traffic analysis. Building upon the design principles pro-

posed by Wang et al. [8], we derive hierarchical representations from raw traffic data 

and construct comprehensive flow-level characterizations. While traffic inherently con-

tains spatial and temporal attributes, existing methods predominantly capture entangled 

features rather than pursuing disentangled representations. Specifically, the spatial per-

spective emphasizes localized patterns by structuring flow representations into matri-

ces, which are then processed through convolutional encoders to extract spatial fea-

tures. Meanwhile, the temporal perspective captures sequential dependencies within 

flows by converting representations into one-dimensional sequences, enabling temporal 

modeling via architectures like BERT [35] or Mamba [36]. This dual-view processing 

allows thorough exploitation of decoupled features [20], empowering individual feature 

extractors to capture richer knowledge from distinct perspectives through subsequent 

spatial-temporal fusion mechanisms. 

 

3.3 Spatial and Temporal Encoder 

Due to insufficient storage and computing resources, deploying high-performance 

models with high computational requirements on gateway devices is unpractical. 

Therefore, lightweight feature extractors are necessary for traffic classification and 

each single stream is supposed to focus on only one view to avoid underfitting because 

of the little scale of model. 

For spatial encoder, we design a effective lightweight network to learn structural 

information of traffic data, enabling accurate identification of various classes. Specifi-

cally, our proposed spatial encoder adopts ShuffleNet v2 0.5 × architecture [18] which 
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could balance recognition accuracy as well as the lightweight performance. 0.5 × indi-

cates the channel numbers shrinks to 0.5 times compared with the original model, which 

leads to smaller size. To further reduce computation cost and enhance the model, we 

leverage advanced techniques and redesign the basic module in ShuffleNet v2 0.5 × . 

We find that the 1×1 convolution in the middle stages of ShuffleNet v2 still result 

in significant computational overhead, as also demonstrated in the work by S. Han et 

al. [32]. Inspired by GhostNet [5], we adopt a series of cheap linear operations to re-

place all 1 × 1 convolutions in stage 3 of original network to ulteriorly reduce operands 

while keep valuable information. Specific operation is according to the following func-

tion: 

yij = Φi,j(yi
′), ∀i = 1, … , m j = 1, … , s                          (1) 

where yi
′ is the i-th intrinsic feature map and Φi,j indicates the j-th linear operation for 

generating the j-th ghost feature map yij. Through applying cheap operation on the 3-

rd stage, we can further decrease the FLOPs of model while maintain the classification 

performance at the same time. 

To better capture global information and address convolutional limitations, we in-

corporate Agent-Attention [34] behind the Global Pool layer of spatial model. Com-

pared with Self-Attention [14], it has a lower time complexity with almost linear com-

plexity while it performs better than Linear-Attention [15]. Moreover, placing this mod-

ule in the final layer allows to acquire global receptive field while only increase little 

computational load due to fewer input dimensions for Agent-Attention [29]. The for-

mula of is shown as follows: 

𝑂𝐴 = Attn𝑆(𝑄, 𝐴, Attn𝑆(𝐴, 𝐾, 𝑉))                                    (2) 

where Attn𝑆 represents Softmax attention and 𝑄, 𝐾, 𝑉 ∈ ℝ𝑁×𝐶 denote query, key, and 

value matrices. A ∈ ℝ𝑁×𝐶 is defined as agent tokens. 𝑁is batch size with feature di-

mension as C while n indicates agent numbers far less than N. 

For temporal encoder, the architecture of NetMamba encoder is adopted due to liner-

time state space module and notable performance. By jointly trained with spatial en-

coder, it is suitable to learn common patterns within flows. 

 

3.4 Objective Loss 

Spatial-Temporal Contrastive Learning. Different from previous approaches that 

cascade models to extract the mixing spatial-temporal features, our single stream only 

focuses on spatial or temporal information. In order to acquire more generalized and 

comprehensive representation, these fully learned single features need to be integrated, 

which leads one stream to learn knowledge from the other perspective, enhancing the 

ability to understand common information respectively from both views [23,31]. For 

better realizing the fusion of disentangled features, we innovatively transform this prob-

lem as an alignment issue and the representations from separated views are explicitly 



pulled into the same embedding space [30]. Concretely, corresponding spatial and tem-

poral items are treated as matched pairs. Contrastive loss ℒCL is employed to maximize 

the representation similarity between matched pairs while minimize the similarity be-

tween negative pairs [22]. The format of this loss is shown as follows: 

ℒCL = −
1

2N
∑ (N

i=1 log
exp(𝒮(ui,vi)/τ)

∑ expN
j=1 (𝒮(ui,vj)/τ)

                  +log
exp(𝒮(vi,ui)/τ)

∑ expN
j=1 (𝒮(vi,uj)/τ)

)  
                           (3)   

where 𝑁 denotes batch size and 𝑢𝑖 as well as 𝑣𝑖 are representations in latent space re-

spectively from two different views. 𝜏is a learnable temperature parameter and 𝒮(⋅,⋅) 

indicates cosine similarity. Through contrastive learning, each single network can also 

acquire information from the other fully explored view and get more generalized rep-

resentation [24]. 

Supervised Classification Guidance. Contrastive loss could integrate information 

from multiple views. However, the poor understanding of traffic data, especially in 

early process of training, can also propagate between the two streams, which brings 

troubles for extracting valuable features. Hence, we require new loss function to inject 

supervised information to ensure proper optimization direction [33]. The formula of 

supervised objective is displayed as follows: 

ℒCE−k = − ∑ ∑ 𝑦𝑖𝑐
𝑀
𝑐=1

𝑁
𝑖=1 log𝐿𝑘(𝐹𝑘(𝑥𝑖))

𝑐
, 𝑘 ∈ {𝐒, 𝐓}                     (4) 

where 𝑁 denotes batch size and 𝑀 indicates the number of classes. The calculation of 

this loss in each stream is similar. 𝑥𝑖 indicates spatial or temporal sample coordinated 

with 𝑘 and 𝑦𝑖𝑐 is one-hot encoding corresponding to the label. Through the guidance of 

ground truth, models can extract spatial and temporal features associated with the cat-

egory and no longer keep an eye on the redundant information, which realizes beneficial 

fusion between these features rather than negative effects of noises from each stream. 

The Overall Loss. In order to enlarge the view of model with labels as optimization 

supervision for generalized classification, we combine the above objectives and seek to 

minimize the overall loss functions simultaneously: 

min 
𝜃

𝛼ℒCL + 𝛽ℒCE−S + 𝛽ℒCE−T                                     (5) 

where 𝜃denotes all learnable parameters of CTRL while 𝛼 and 𝛽 are hyper-parameters 

used to control the impacts of different objectives. CTRL adopts single-stage joint train-

ing strategy with end-to-end optimization. Furthermore, in the initial stage of training 

process, 𝛼 employs small value, which reduces noises from bad representations to guar-

antee correct training direction. With the development of training, each stream can fully 

extract features from single view, hence the weight of contrastive loss is increased to 

provide abroad receptive field. In the evaluation process, we only launch spatial model 

for inference, result from the reason that spatial model is taught how to extract common 

temporal features during training. Through combining these losses, front layers of each 
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stream can focus on separated features from different views while the back layers may 

pay attention to the common information, which realizes sufficient feature extraction 

and fusion while avoids inertia due to coupled learning from mixed features. 

4 Experiments 

4.1 Experimental Datasets 

To assess the effectiveness and generalization of CTRL, our experiments are con- 

ducted on four classification tasks with six available real-world traffic datasets. 

Encrypted Communication Classification.  This task expects to distinguish en-

crypted communications by analyzing encrypted traffic. We use ISCXTor2016 [11] 

with Tor traffic data across 8 categories and VPN traffic data from 7 categories in the 

ISCXVPN2016 [12] as evaluation datasets. 

Encrypted Application Classification. The task aims to identify the type of applica-

tion based on network traffic under various encryption protocols. The CrossPlat-

form(Android) [13] and CrossPlatform(iOS) [13] as evaluation datasets respectively 

include 254 and 253 applications categories. 

Attack Traffic Classification. The objective of this task is to detect potential attack 

traffic. Following Wang et al. [8], we employ the partial CICIoT2022 [16] with 6 cat-

egories to verify the performance of different approaches on this task.  

Malware Traffic Classification. This task focuses on identifying traffic associated 

with malware activities. USTC-TFC2016 [17] with 20 categories is applied for this 

task, aiding in proactive threat detection. For above datasets, the encryption target is 

the payload, while the protocol header remains unencrypted. 

 

4.2 Implementation Details 

In our experimental setup, we utilize 4 NVIDIA GeForce RTX 4090 GPUs to train the 

models with a batch size of 128. The learning rates are set to 0.005 for spatial model 

and 0.002 for temporal model alongside a linear learning rate scaling policy. Adam is 

employed to facilitate the training process and the training process lasts for 300 epochs. 

 

 

 

 

 

 

 



Table 1. The comparison results on ISCXVPN2016, ISCXTor2016 and USTC- TFC2016.     

AC and F1 respectively denotes accuracy and F1-score. 

Method ISCXVPN2016 ISCXTor2016 USTC-TFC2016 

AC        F1 AC        F1 AC         F1 

AppScanner 0.7643 0.7256 0.4034  0.2113 0.6998   0.6633 

FlowPrint 

FS-Net 

0.9666 0.9681 

0.6660 

0.1316  0.0306 

0.7020  0.6999 

0.7992   0.4381 

0.7755   0.2672 0.7023 

DF 0.6287 0.2540 0.3324  0.0700 0.5845   0.4915 

Deeppacket 0.8021 0.8017 0.3681  0.2681 0.8849   0.8883 

2D-CNN 0.8126 0.8064 0.3462  0.3366 0.9226   0.9205 

3D-CNN 0.8109 0.8079 0.3489  0.3396 0.9155   0.9116 

TFE-GNN 0.8428 0.8447 0.7692  0.7618 0.9747   0.9734 

CTRL(Ours) 0.9883 0.9877 0.9986 0.9941 0.9963  0.9952 

 

4.3 Comparison Evaluation 

We conduct extensive experiments on various tasks to validate the efficacy of CTRL 

while the results of comparison experiments are shown in Table 1 and Table 2. AC 

and F1 respectively represent classification accuracy and F1-score while results of pre-

vious works are from [6], [7] and [8]. 

It is evident that CTRL brings impressive and stable performances across all datasets 

over existing non-pretrained models. Specifically, for encrypted communication clas-

sification on ISCXVPN2016 and ISCXTor2016, our model achieves a notable im-

provement, especially in ISCXTor2016, compared to the previous state-of-the-art 

methods. For encrypted application classification on CrossPlatform(Android) and 

CrossPlatform(iOS), CTRL surpasses all baseline methods and outperforms the state-

of-the-art models (Deeppacket [26] and FlowPrint [27]) by more than nearly 5% with 

all evaluation metrics. For malware traffic classification on USTC-TFC2016, the pro-

posed approach realizes an enhancement over 2% than TFE-GNN [28] regardless of 

accuracy or F1-score. Moreover, compared with pre-trained models with more data for 

training, CTRL is still outstanding and the comparison results are displayed in Fig. 2. 

Thereinto, x-coordinate represents the parameter quantity of model while y-coordinate 

denotes the classification accuracy on CrossPlatform(iOS). The point size indicates the 

volume of data for training. As non-pretrained approach, only employing labeled data, 

CTRL which maintains the fewest parameters transcends ET-BERT and YaTC in ac-

curacy while is slightly weaker than NetMamba. 

We highlight the noteworthy on how to realize a generalized traffic recognition 

scheme. A appropriate data preprocessing is essential, which incorporates both header 

and payload data with less information loss. Meanwhile,a well-designed potential light-

weight network plays a crucial role in exploring underlying features [19] and contras-

tive loss can lead single model to acquire common knowledge from different views, 

enhancing encrypted traffic analysis capabilities. 
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Table 2. The comparison results on CrossPlatform(Android) and CrossPlatform(iOS).               

AC and F1 respectively denotes accuracy and F1-score. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Visualized comparison on CrossPlat-       Fig. 3. Ablation results on various encrypted  

form(iOS) with point size as training set scale.    traffic datasets to figure out the effects of ℒCL. 

 

4.4 Ablation Study 

In order to figure out how contrastive loss influence the final performance; we make 

ablation experiments on several datasets and Fig. 3 displays the results. 

Obviously, contrastive loss brings benefits in any condition, particularly an im- 

provement of 2.5% on CrossPlatform(Android). Thus, we announce that model can ex-

tract more spatial-temporal features from fusion view when adding contrastive loss 

while the launched spatial model may not actively explore temporal information with-

out this loss. As for the mechanism, it is claimed that employing different losses could 

reconstruct the classification boundary when model reaches sufficient volume. Specif-

ically, lightweight spatial model may only generate coarse-grained boundary by just 

applying Cross-Entropy loss [37]. Yet with joint optimization of diverse objectives, 

model could get fine-grained boundary, which might be helpful for classification. 

Method CrossPlatform(Android) CrossPlatform(iOS) 

 AC               F1 AC           F1 

AppScanner 

FlowPrint 

FS-Net 

DF 

GraphDApp 

TFE-GNN 

Deeppacket 

0.1626 

0.8739 

0.0147 

0.3862 

0.4031 

0.8141 

0.8805 

0.1413 

0.8700 

0.0034 

0.2527 

0.2703 

0.8067 

0.8138 

0.1718 

0.8712 

0.0293 

0.3106 

0.3245 

0.8241 

0.9204 

0.1283 

0.8603 

0.0025 

0.2140 

0.2297 

0.8130 

0.9034 

CTRL(Ours)     0.9432        0.9405 0.9671       0.9583 



5 Conclusions 

In this paper, we employ two-stream networks to extract disentangled characteristics 

and reframe feature fusion as an alignment issue, proposing a novel approach named as 

CTRL. Through contrastive loss for knowledge transfer with cross-entropy keeping the 

proper learning direction, launched lightweight model could acquire common spatial-

temporal information to realize better classification. Compared with different methods 

on various datasets, our approach is ahead of the other non-pretrained methods while 

also competitive with pretrained approaches, which can demonstrate the superiority of 

proposed CTRL. 
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