

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Learning to Adaptively Incorporate External Syntax

through Gated Self-Attention

Shengyuan Hou1[0000-0001-7031-8688]

1 Shanghai Jiao Tong University, Shanghai Minhang Dongchuan Road 800, China
hsyhwjsr@sjtu.edu.cn

Abstract. Transformers are known to be able to implicitly learn syntax from data

during training, albeit their quality depends heavily on the data size and quality.

However, introducing structured syntactic information into the sequential Trans-

former is not trivial. Previous analytical studies have shown that Transformers

learn more abstract representations through layers, with their lower layers being

more related to syntactic information. In accordance, to provide extra flexibility

and interpretability along with the utilization of constituency syntax, we propose

an architecture that allows different layers of the Transformer to control the in-

corporating weights of external syntax adaptively through a gating mechanism.

Experimental results of our learned syntactic gating weights reveal that Trans-

former tends to utilize constituency syntax hierarchically, which nicely aligns

with previous findings, showcasing the interpretability of our architecture. More-

over, experimental results on five machine translation datasets across various lan-

guage pairs also show that our model outperforms the vanilla Transformer by

1.12 BLEU score on average, and it is competitive against other latest syntax-

aware models. Also, only a few additional hyperparameters are required, allevi-

ating the burden of searching for the best syntax incorporation location.

Keywords: Gating Mechanism, Constituency Syntax-aware Architecture, Ma-

chine Translation.

1 Introduction

Previous studies [26, 11, 5, 3, 9] have shown that Transformer [27] inherently learns

syntax from training data in its lower layers. However, the effects rely heavily on the

size and quality of the training data. Rather than relying solely on training data, inte-

grating syntactic information from external parsers is advantageous, particularly for

small- to medium-scale datasets. Many studies [25, 33, 31, 2, 15, 32, 28, 30, 10, 23, 12,

7, 16, 29, 6] have thus been proposed. For dependency syntax, some methods [15, 30]

mask attention scores of tokens that are too distant in the syntax tree. Others [25, 33, 2]

utilize parental or ancestral relationships to constrain each token’s attention range. For

constituency syntax, some methods [31] introduce additional encoder to induce the in-

put syntax structure, and others [16] propose to fuse it into the positional embedding.

By far, many latest works [12] exploit both syntactic structures, while others [29, 6]

extend the induction of syntactic structure to more general natural language tasks.

More recently, some studies [15, 8] have found that Transformers are sensitive to

the location when introducing syntactic structures. The constituency syntax could en-

hance the Transformer model substantially in lower layers but instead hinder its perfor-

mance in deeper layers [8]. In contrast, dependency syntax tends to be uniformly uti-

lized in all layers [33, 2]. Therefore, it is crucial to determine which layer or attention

head the syntactic information should be incorporated into. However, most existing

methods integrate syntactic structures in a hard manner, lacking interpretability since

the way that Transformer utilizes syntactic information remains unclear. Worse still,

the 0-1 hard incorporation entails less flexibility while enduring a higher hyperparam-

eter searching burden of exponential complexity. Given 𝐿 layers each with ℎ attention

heads, there are totally (ℎ + 1)𝐿 possible choices for hard incorporating locations.

To address the deficiencies mentioned above, in this work, we adopt syntax-aware

attention proposed previously [8], namely syntactic local range (SLR), to integrate con-

stituency syntax into Transformer. Then we develop a gating mechanism that enables

the architecture to self-adaptively learn the amount of syntactic guidance for each at-

tention head. The gating mechanism alleviates extensive hyperparameter searches for

the best syntactic incorporating locations and brings extra performance gain due to bet-

ter distribution of syntactic guidance through layers and attention heads. By integrating

syntactic structure adaptively with soft weights, our method also entails larger flexibil-

ity and more interpretability. Furthermore, to alleviate the self-reinforcing problem [4,

1, 21] caused by the gating network during training, we also design several regulariza-

tion methods to ensure the stability of gating weights.

Compared with previous fundamental work [8], our key contributions are:

• We propose a novel adaptive syntax-aware architecture that leverages a gating

mechanism instead of hard incorporation to dynamically control the integration of

external syntactic information across different layers and attention heads of the

Transformer, thereby enhancing both flexibility and interpretability while reducing

the requirement for extensive hyperparameter searches to identify the best syntactic

integration locations.

• We validate the effectiveness of our approach on multiple machine translation da-

tasets. Our model consistently outperforms the vanilla Transformer and other syn-

tax-aware models. Most importantly, further analysis on learned gate values show

that the Transformer tends to utilize constituency syntax mostly in lower layers and

progressively alters to its own self-attention in deeper layers, which aligns nicely

with previous findings on the location sensitivity of constituency syntax, validating

our model’s interpretability. Moreover, only few additional hyperparameter searches

for the gating network are required, which can be accomplished in linear complexity.

2 Related Work

2.1 Syntactic Attention Mask

Compared with global attention, the syntactic attention mask could prohibit the atten-

tion from overweighting syntactically distant tokens over close ones. However,

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

inherently constituency and dependency syntax are both tree structures, which makes

it hard to generate a tensorized attention mask. Previously, many methods [25, 33, 31,

2, 15, 28, 30, 23, 12, 7, 8] try to construct syntax-aware local attention patterns for not

only machine translation but also other language understanding and generation tasks

[29, 6].

For dependency syntax, parent-child relationships and distance among nodes in the

syntax tree are frequently considered. SLA [15] restricts each token to only attend to

its neighborhoods whose distance is below some threshold. PASCAL [2] builds up a

Gaussian weight distribution, which is centered on the parent token’s position, in each

attention matrix row. SG-Net [33] restricts each token to attend to only all of its ances-

tral nodes. SEPREM [30] filters out distant token pairs based on the uni-directional

distance from the head node to the dependent node in the syntax tree. For constituency

syntax, the height of two nodes’ smallest common subtree or tree slices at some depth

are often considered. ST-NMT [31] constructs a sentence template by keeping the node

in some fixed depth of the tree and incorporate another encoder to learn how to predict

it. Distance-Transformer [8] builds up an attention mask based on the syntactic local

range defined by the constituency syntactic distance. Some methods [23, 12] utilize

both syntactic structures. Structformer [23] proposes to utilize both the syntactic dis-

tance generated from the constituency tree and syntactic heights generated from the

dependency tree to vectorize syntactic structures. Inspired by this, Syntaxformer [12]

learns syntactic vector structure unsupervisedly, where the syntactic induction and in-

corporation are fused during training. Although these diversified syntax-aware archi-

tectures enhance the language tasks, few of them explore how to incorporate syntactic

structures adaptively, constraining their flexibility and interpretability.

2.2 Syntactic Attention Incorporation

There are three common manners to utilize a syntactic attention mask. LISA [25] takes

the syntactic attention mask as a label and introduces the squared L2 distance between

the label and computed attention as an auxiliary loss. ST-NMT [31] utilizes the gener-

ated template sequence as a label and then introduces a new Transformer encoder to

learn it. Other latest methods [33, 2, 15, 28, 30, 12, 7] perform element-wise operations,

or weighted linear combinations between the mask and attention weights. Unfortu-

nately, most of them rely on grid searches or heuristics for where to incorporate syntax,

suffering from extensive hyperparameter tuning and lacking flexibility.

3 Preliminaries

3.1 Syntactic Distance

Syntactic Distance is firstly proposed in [22] which can be used to represent the con-

stituency tree as a list of distance values. Given a sentence 𝑆 = [𝑡1, 𝑡2, . . . , 𝑡𝑛] with

length 𝑛, the syntactic distances of 𝑆 is notated as 𝐷 = [𝑑1, 𝑑2, . . . , 𝑑𝑛−1], in which 𝑑𝑖

is the height ℎ𝑖 of the sub-tree rooted by token 𝑡𝑖 and 𝑡𝑖+1’s least common ancestor

(LCA). In practice, we set the final distance to be ℎ𝑖 − 1 so that the smallest distance

is 1 and syntactic distance is a list of integers ranging from 1 to ℎ𝑇 − 1, where ℎ𝑇 is

the height of the tree. This is optional since the downstream calculation depends on the

ranking of syntactic distances rather than their values. A larger distance indicates a

more distant relationship between neighborhood constituents.

For example, in Fig. 1(b), the LCA of ’I’ and ’have’ is node ’S’, whose height is 4

in the syntax tree, so the first syntactic distance is 4 − 1 = 3, and the latter ones can be

derived likewise. Accordingly, node ’S’ has children ’I’, ’VP’, and’.’, where ’VP’ is a

subtree in which the maximum distance is 2, so the distance between ’I’ and ’VP’ as

well as ’VP’ and ’.’ is 2 + 1 = 3.

3.2 Syntactic Local Range

The syntactic local range (SLR) [8] defines the influence of a given node on other

tokens in a sentence based on the constituency tree, which can be well introduced in

deep learning structures as syntactic guidance [13]. Given a syntax tree 𝑇, the SLR of

one leaf node 𝑡 can be decomposed into two directions: left-range and right-range,

which are called pre-text and post-text SLR. Given one token 𝑡 and its parent node 𝑡𝑝,

the pre-text local range meets:

• If 𝑡 is not the leftmost child of 𝑡𝑝, then 𝑡’s SLR on the pre-text direction starts at 𝑡𝑝’s

leftmost child, and stops at 𝑡.

• If 𝑡 is the leftmost child of 𝑡𝑝, back-trace its ancestors to find a nearest constituent 𝑣

where 𝑣 is not the leftmost child of its parent 𝑣𝑝. Then 𝑡’s SLR starts at 𝑣𝑝.’s left-

most child and stops at 𝑡.

On post-direction, SLR can be computed similarly. In Section 4, we leverage a fast

algorithm utilizing syntactic distance to compute the SLR, which is equivalent to the

definition mentioned above. Detailed illustrations and proof can be found in [8].

4 Methods

The overall architecture is shown in Fig. 1. In particular, we firstly parse the input using

an external parser. Then the syntactic distance is calculated from the constituency tree

and utilized to construct a syntactic attention mask with soft SLR proposed by [8]. The

mask is then multiplied element-wisely with the Transformer’s original attention

(named as global attention since it doesn’t constrain attention ranges) to get syntactic

attention. Finally, we linearly combine the syntactic and global attention with a gating

network.

4.1 Syntactic Attention

Given the hard SLR illustrated in section 3.2, a method based on the syntactic distance

could be utilized to effectively calculate it. Then the hard SLR evolves into the soft

SLR [8], which performs well in multi-head self-attention.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 1. Overview of gating-distance Transformer. (a) Each layer entails a gating module, which

takes current hidden states as input, then performs max-pooling along text to integrate represen-

tations, next pass it to a 2-layer FFN with normalization, and finally use sigmoid to generate h

gating signals (h is head number). (b) Given constituency tree, syntactic distance is pre-computed

and is utilized to calculate attention mask with soft syntactic local range. (c) Syntax attention is

calculated at first and combined linearly with global attention by the weights from gating mod-

ules.

Generating SLR from Syntactic Distance The gap between SLR and syntactic dis-

tance can be bridged by an algorithm proposed previously [8] to compute SLR effec-

tively using only the syntactic distance of a given sentence. The process of generating

the SLR matrix 𝐌, where each line of 𝐌 represents the SLR of a token, could be for-

mulated by introducing α𝑖
𝑗
 as syntactic distance variance. Equation (1) defines how [8]

calculates the pairwise ranking relationship of the syntactic distance by matrix opera-

tions at the first step.

 𝛼𝑖
𝑗

= I(𝑑𝑖 − 𝑑𝑗) (1)

In Equation (1), I(·) is the indicator function, with I(x) = 1 if x is positive, else

I(x) = 0. Apparently as 𝑑𝑖 > 𝑑𝑗, 𝛼𝑖
𝑗
 becomes 1 and alters to 0 conversely. Then 𝐌 can

be generated by Equation (2). This makes the computation of the SLR matrix highly

parallel.

 𝑚𝑖𝑗 = {

∏ 𝛼𝑡
𝑖−1

𝑗≤𝑡≤𝑖−1 𝑗 < 𝑖 − 1

∏ 𝛼𝑡
𝑖+1

𝑖+1≤𝑡≤𝑗 𝑗 > 𝑖 + 1

1 𝑜. 𝑤.

 (2)

Soft SLR In terms of soft SLR, it uses a smoothed difference of syntactic distance 𝑑𝑖

and 𝑑𝑗 in Equation (3), controlled by a temperature parameter τ . The 𝑓(𝑥) =

(tanh(𝑥) + 1)/2 is a smoothed version of indicator function I(·).

 𝛼𝑖
𝑗

=
tanh ((𝑑𝑖−𝑑𝑗)/τ)+1

2
 (3)

Equation (3) yields 0 when 𝑑𝑖 ≪ 𝑑𝑗 and gradually increases to 1 as 𝑑𝑖 increases. It

is a soft version of (1), with more flexibility. The SLR matrix can be calculated using

(2) as well. To initiate the continued cumulative multiplications, mask values on the

two secondary diagonals in 𝐌 are set to 1, as shown in (2).

4.2 Gating Structure for Self-adaptive Weight

Initially, the gating network receives the hidden states of the current layer and applies

𝑙-dim max-pooling along the sequence to aggregate multiple representations. Equation

(4) formulates this mathematically and notates the input hidden state of 𝑙-th layer as

𝐇𝑙 = [𝐇1
𝑙 , … , 𝐇ℎ

𝑙], 𝐇𝑖
𝑙 ∈ 𝑅𝐵×𝑛×𝑑 , while ℎ is the number of heads, 𝑛 is the sequence

length, 𝐵 is the batch size and 𝑑 is the hidden dimension.

 𝐓𝑙 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙1𝐷(𝐇𝑙), 𝐓𝑙 ∈ 𝑅𝐵×𝑑 (4)

Then the aggregated hidden states 𝐓𝑙 are further fed into a 2-layer feed-forward net-

work in (5), where 𝐖1
𝑙 ∈ 𝑅𝑑×𝑑′

, 𝐛1
𝑙 ∈ 𝑅𝑑′

, 𝐖2
𝑙 ∈ 𝑅𝑑′×ℎ , 𝐛2

𝑙 ∈ 𝑅ℎ , 𝐎𝑙 ∈ 𝑅𝑑′×ℎ ,

and ’LayerNorm’ refers to layer normalization. We set a gating weight for each atten-

tion head, so the output dimension is ℎ.

 𝐎𝑙 = 𝐖2
𝑙 ∗ 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑅𝑒𝐿𝑈(𝐖1

𝑙 ∗ 𝐓𝑙 + 𝐛1
𝑙)) + 𝐛2

𝑙 (5)

Finally, the output is passed to the sigmoid function to generate gating signals, as

shown in (6). Before the output is fed into the logistic layer, the batch normalization

(’BatchNorm’) is performed to ensure distributional stability.

 𝐆𝑙 = 𝜎(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐎𝑙)) = [𝐆1
𝑙 , … , 𝐆ℎ

𝑙] (6)

4.3 Self-adaptive Incorporation of Syntactic Information

With the syntactic attention mask 𝐌 calculated by (4), a syntax-guided multi-head at-

tention can be generated by (7), (8), and (9).

 𝐀𝑟𝑎𝑤 = 𝐴𝑡𝑡𝑛(𝐐, 𝐊) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐𝐊𝑻

√𝑑𝑘
) (7)

 𝐀𝑠𝑦𝑛 = 𝑆𝑦𝑛𝐴𝑡𝑡𝑛(𝐐, 𝐊, 𝐌) = 𝐒𝑚(𝐌,
𝐐𝐊𝑻

√𝑑𝑘
) (8)

 [𝑆𝑚(𝐌, 𝐗)]𝑗,𝑖 =
𝑚𝑗𝑖𝑒

𝑥𝑗𝑖

∑ 𝑚𝑗𝑘𝑒
𝑥𝑗𝑘𝑛

𝑘=1

 (9)

In (9), 𝑆𝑚(·) represents the masked softmax, while 𝑚𝑗𝑖 and 𝑥𝑗𝑖 are the elements in

the 𝑗-th row and 𝑖-th column of the 𝐌 and 𝐗 matrices. [·]𝑗 = [1, … , 𝑛] corresponds ver-

tically stacking the elements yielded by the function inside it. Because of (7) and (8),

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

there are two attention score matrices generated totally. One is the raw attention score

matrix 𝐀𝑟𝑎𝑤 ∈ 𝑅𝑛×𝑛 without any inductive bias information, and the other is 𝐀𝑠𝑦𝑛 ∈

𝑅𝑛×𝑛 enhanced by syntactic relations.

Given the gating weight 𝐆𝑖
𝑙 for attention head 𝑖 on layer 𝑙, we linearly combine the

syntactic attention 𝐀𝑠𝑦𝑛,𝑖
𝑙 and global attention 𝐀𝑟𝑎𝑤,𝑖

𝑙 to get the final attention 𝐀𝑖
𝑙 ∈

𝑅𝑛/ℎ×𝑑, and the final output 𝐅𝑙 ∈ 𝑅𝑛×𝑑 is calculated with the attention 𝐀𝑙 ∈ 𝑅𝑛×𝑛 and

value 𝐕𝑙 ∈ 𝑅𝑛×𝑑, formulated in (10) and (11).

 𝐀𝑖
𝑙 = 𝐆𝑖

𝑙 ∗ 𝐀𝑠𝑦𝑛,𝑖
𝑙 + (1 − 𝐆𝑖

𝑙) ∗ 𝐀𝑟𝑎𝑤,𝑖
𝑙 (10)

 𝐅𝑙 = 𝐀𝑙𝐕𝑙 = [𝐀1
𝑙 , … , 𝐀𝑛

𝑙]𝐕𝑙 (11)

4.4 Over-reliance of Gating Value

A naive gating network encounters severe over-reliance towards syntactic attention dur-

ing training, as shown in Fig. 3(a). We think this is caused by the self-reinforcing prob-

lem [4, 1, 21]. During the training of two experts (SLR and global), since SLR restricts

the attention range, it eliminates token connections and helps model converge faster so

that it is trained more rapidly and thus selected more by the gating network [21], form-

ing a self-reinforcing process.

4.5 Regularization for Gating Structure

To tackle the problem of over-reliance on syntactic local attention, we propose several

simple yet effective regularization tricks, including three components.

Pre-warmup Training The syntactic attention is mathematically formulated from the

initiation of training, whereas the global attention is still random. Therefore, we want

to let them collaborate initially and compete against each other after the global attention

has converged better. Specifically, in the first 𝐾 epochs, the gating network is frozen,

yielding random weights around 0.5. After 𝐾 epochs, we unfreeze these weights to let

two types of attention compete. Subsequent paragraphs, however, are indented.

Batch Normalization Before outputting gate values, we incorporate a batch normali-

zation layer (6), whose function is like DMoE [4] that adds a soft constraint for each

gate to prevent extreme weights (0 or 1) from dominating.

Syntax Ignoring Previously, some studies explored incorporating random masking,

similar to Dropout [24], into syntactic mask to improve generalization since the external

parser could yield incorrect or ambiguous results, such as parent ignoring [2], which

randomly assigns some rows of the attention matrix to 0. Here we apply vanilla Drop-

out on the syntactic attention. It could help the gating network output weights for syn-

tactic attention less aggressively. If there is not such enhancement to introduce syntactic

attention somewhere, a few destructions on the syntactic attention will motivate the

gating network to drop it.

5 Experiments

In section 5.1, we discuss our experimental setup. In section 5.2, we compare the results

of our model with other dependency-based or constituency-based methods and the va-

nilla Transformer. In section 5.3, we analyze the location sensitivity of different syntax,

discussing the interpretability of our gating network, as well as the impact of τ . In

section 5.4, we conduct some ablation studies.

5.1 Experimental Setup

Datasets and Preprocessing We conduct experiments on 5 machine translation da-

tasets: IWSLT14-De-En, IWSLT14-En-De, NC11-De-En, NC11-En-De, and WMT18-

En-Tr. Their train/validation/test sizes are listed in Table 1. We use Moses [14] for

uncased word tokenization and Sub-word NMT [20] for BPE. The Stanford CoreNLP

parser [17] is used to parse the constituency tree.

IWSLT14 stems from Ted Talks with short text lengths. For preprocessing, we do

uncased word tokenization and then clean up the dataset by only keeping the pairs with

source-target length ratio within 1.5 and total length no longer than 175. Next, we per-

form BPE subword tokenization with a shared dictionary of size 10k. Finally, we ran-

domly select 5% of training data as the validation set, and merge dev2010, dev2012,

tst2010, tst2011, and tst2012 into the test set.

NC11, with medium text lengths, comes from news comments. For preprocessing,

we again perform uncased word tokenization. Then we clean up the dataset by only

keeping the pairs with source-target length ratio within 1 and total length within 80.

Next, we use the Subword NMT toolkit for BPE tokenization with a shared dictionary

of size 16k. The validation and test set are newstest2015 and newstest2016 respectively.

For WMT18-En-Tr, after uncased word segmentation, we keep sentence pairs with

a length of no more than 80 and a length ratio within 1. We continue to use the Subword

NMT for BPE segmentation, and the dictionary size is 16K. WMT18-En-Tr dataset is

used as the training set, newstest2016 is used as the validation set, and newstest2017 is

used as the test set.

Table 1. Train/validation/test sizes of different experimental datasets.

Datasets Train Valid Test

IWSLT14-De/En 160239 7283 6750

NC11-En/De 238843 2169 2999

WMT18-En-Tr 207373 3000 3007

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Hyperparameter We set the dimension for both encoder and decoder embeddings to

512, and the dimensions of hidden layers in both the encoder and decoder’s FFN are

set to 1024. Input and output sequences share the same embeddings. The number of

both encoder and decoder layers is set to 6, each with 4 attention heads. For pre-warmup

training, since batch normalization is entailed before gating output, all the gating values

come close to 0.5 before the gating module is unlocked. We apply dropout with a ratio

of 0.3 within the FFN layer, and we also apply attention dropout with a ratio of 0.2. As

for optimization, we adopt the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.98. We increase

the learning rate from 10−3 linearly until it reaches the initial learning rate of 7 × 10−3

for the first 4000 training updates. After the initial learning rate is reached, we decrease

it proportionally to the inverse square root of the update number. We use label smooth-

ing of value 𝜖𝑙𝑠 = 0.1 and weight decay of 10−4. All implementations are based on the

fairseq1 [18]. Most configurations are stemmed from previous work [8], except for the

learning rate which is tuned by exponential searches. For two gating-related hyperpa-

rameters, namely, locking epoch 𝐾 and ignore rate 𝑝, that are tuned by the greedy

search, our configurations are shown in Table 2.

Table 2. Configurations for regularization.

Datasets Ignore Rate Locking Epoch

IWSLT-De-En 0.4 80

IWSLT-En-De 0 50

NC11-De-En 0.2 60

NC11-En-De 0.2 80

WMT18-En-Tr 0.1 70

Evaluation The case-sensitive 4-gram BLEU score was calculated using Sacre-BLEU2

[19] as the evaluation metric, with a batch size of 128. For NC11-En-De, beam size and

length penalty are respectively set to 4 and 0.6, while for other datasets, these two val-

ues are 5 and 1. For evaluation, we select the checkpoint with the smallest validation

loss during inference. All results are averaged over 5 random seeds, and the improve-

ments have statistical significance (𝑝 < 0.01).

5.2 Results

For comparison, we re-implement the following precedent works.

• LISA [25] constructs a 0-1 attention mask label where in the i-th row only the col-

umn of token i’s dependency parent has value 1. It introduces an auxiliary L2 loss

to enforce one attention head to learn its syntactic pattern.

1 https://github.com/facebookresearch/fairseq
2 https://pypi.org/project/sacrebleu/

• PASCAL [2] constructs a syntactic attention mask where each mask value 𝑚𝑖,𝑗 is a

probabilistic weight of Gaussian distribution centered by token i’s parent position.

Each token’s position is fed into the Gaussian p.d.f. function.

• SLA [15] prevents each token from attending excessively distant token nodes out of

a distance boundary. The distance between two nodes is defined as their shortest

path length in the dependency tree. Additionally, SLA designs a naive gating net-

work controlling the combination of syntax and global attention at each attention

head of each layer. Without any regularization, its gating weights are mostly 0.5,

which is meaningless.

Detailed comparisons of the translation performance on five popular machine trans-

lation tasks are shown in Table 3. These results demonstrate the superior performance

of our model compared to the vanilla Transformer and other syntax-aware models in

terms of BLEU score. For instance, our model achieved a 1.12 BLEU score improve-

ment on average over the vanilla Transformer. For NC11-De-En and NC11-En-De da-

tasets, compared with the best syntax-aware benchmarks, our model wins 0.75 and 0.53

BLEU scores respectively, highlighting the effectiveness of our adaptive gating mech-

anism.

Table 3. The testing BLEU scores on the NC11-En/De, IWSLT14-De/En and WMT18-En-Tr

dataset. All results are averaged over 5 random seeds and the improvements have statistical sig-

nificance (p<0.01). Values with postfix * are from the original paper, models without * are our

implementations.

Models
IWSLT14

De->En En->De

NC11

De->En En->De

WMT18

En->Tr

LISA 34.97 29.06 27.51 25.65 -

LISA* - - 27.10 25.30 13.60

PASCAL 34.84 29.10 27.65 25.52 18.57

PASCAL* - - 27.40 25.90 14.00

SLA 34.59 28.71 27.29 25.03 17.94

Transformer 34.58 28.23 27.06 25.08 17.86

Transformer* - - 26.60 25.00 13.10

Our Model 35.58 29.33 28.40 26.43 18.65

5.3 Analysis

Location Sensitivity of Different Syntax Fig. 2(a) shows the variation of model per-

formance under different incorporating layers of the constituency syntax. According to

it, constituency grammar is sensitive to its incorporation location, with its guided per-

formance rapidly dropping from 35.63 to 34.43 from shallow to deep layers. This indi-

cates that constituency syntax information well aids model performance in the front

layers while having a negative impact when existing in the latter layers. To explore the

location sensitivity of different syntaxes, we conduct the same experiments on IWSLT-

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

De-En with PASCAL, which utilize dependency syntax. Table 4 displays the compar-

ison results mentioned above, from which it turns out that dependency syntax is not as

sensitive to incorporation locations, where the performance keeps around 34.6 which-

ever layer it is integrated. Therefore, the adaptive location matters more for constitu-

ency syntax than dependency syntax.

(a) (b)

Fig. 2. (a) The BLEU scores under the guidance of constituency syntax on different layers of

Transformer. (b) The testing BLEU scores under different values of 𝜏.

Table 4. The BLEU scores with different depths of dependency or constituency syntax-guided

layers. Results are gained by averaging the last 10 epochs. The constituency syntax is incorpo-

rated in the manner of syntactic distance as introduced in section 4, while the dependency syntax

is incorporated following PASCAL [2].

Syntax Layer
Constituency Syntactic

Distance

Dependency Syntactic

Distance

1 35.63 34.74

2 35.58 34.56

3 35.41 34.66

4 35.16 34.75

5 35.01 34.68

6 34.43 34.54

Effectiveness of Gating Network To validate the effectiveness of gating network, we

incorporate syntactic structures into the first two heads of each layer without any gating

on the IWSLT14-De-En dataset, and results are shown in Table 5. The model perfor-

mance declines with the rise of the layer’s index for single-layer incorporation, and

cumulative incorporation of syntax information performs well in the first 2 layers but

the performance declines from 35.65 to 35.52 as deeper layers are integrated with syn-

tax information, which nicely aligns with our gating weights that distribute more heav-

ily in the first two layers. Thus, our introduction of the gating network can well substi-

tute the manual search of incorporation location with stronger interpretability.

Table 5. The BLEU scores with different constituency syntax-guided layers (our model). Results

are gained by averaging the last 10 epochs.

Syntax Layer BLEU Syntax Layer BLEU

1 35.63 1 35.63

2 35.58 1-2 35.65

3 35.41 1-3 35.60

4 35.16 1-4 35.63

5 35.01 1-5 35.51

6 34.43 1-6 35.52

Soft Parameter 𝝉 Syntactic distance is represented by a sequence of natural numbers

that correspond with their rankings in computation, which results in 0-1 hard margins

in the attention mask. To increase the robustness of the syntactic mask, the alternation

can be smoothed in every row of attention masks by setting the scaling parameter 𝜏

larger than 1. The larger τ becomes, the smoother the attention mask will be. 𝜏 = 1

corresponds to the original hard margin attention mask. Fig. 2(b) shows results of the

BLEU score under different values of 𝜏 on the IWSLT14-De-En dataset, from which it

can be concluded that the performance rises with a smoother attention mask while drop-

ping again when it’s too smooth. The model performs best when 𝜏 = 10.

5.4 Ablation Study

Gating Network To verify the effectiveness of our gating network, we respectively try

pure syntactic attention (abbreviated as ’Pure’), syntax guided attention averaged with

raw attention (abbreviated as ’Avg’), and gating attention (abbreviated as ’Ours’) on 5

datasets, and results are recorded in Table 6. Comparisons indicate that our gating net-

work can consistently achieve the best BLEU score on all datasets compared with the

other two settings. For some datasets like the IWSLT-En-De and NC11-De-En, without

any gating weights, syntactic integrations by the simple average make performance re-

spectively degrade 0.02 and 0.12 on the contrary.

Table 6. The BLEU score under different manners of syntax incorporation on 5 datasets. Results

are gained by averaging the last 10 epochs on the same random seed.

Datasets Pure Avg Ours

IWSLT-De-En 35.48 35.65 35.66

IWSLT-En-De 29.44 29.42 29.51

NC11-De-En 27.89 27.77 28.40

NC11-En-De 25.02 26.20 26.56

WMT18-En-Tr 18.49 18.52 18.75

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Regularization of Gating Network We drop our three regularization tricks: batch nor-

malization, pre-warmup training, and syntax ignoring step by step, and the examples of

visualization results on IWSLT-De-En dataset are shown in Fig. 3, with their corre-

sponding performance comparisons in Table 7. When none of the regularization is

added, nearly all gating values converge to 0 or 1 finally. As our training tricks are

gradually introduced, the gating values tend to become smoother and stand out on two

attention heads in the first 2 layers. It can be concluded that our regularization tricks on

the gating structure can effectively conquer the self-reinforcing problem and help

achieve better results.

Table 7. The BLEU scores under different combinations of regularization tricks on the IWSLT-

DE-EN dataset.

Configuration BLEU

All 35.66

BatchNorm + Pre-warmup 35.64

BatchNorm 35.50

Nothing 35.53

(a) (b) (c) (d)

Fig. 3. Ablation results for various regularization tricks. Each value in the figure represents a

weight for incorporating SLR. 'H1' refers to the first attention head. "Layer1" refers to the first

layer of Transformer. Without any regularization, the self-reinforcing problem would dedicate to

completely SLR-filled attention weights. (a) Nothing. (b) Only batchNorm. (c) BatchNorm + pre-

warmup. (d) All.

5.5 Model Size and Training Efficiency

The number of parameters of our model as well as its GPU training time consumption

(in the unit of hours, abbreviated as ’GPU-hours’) on each dataset is listed in Table 8.

All trainings are conducted on NVIDIA GeForce RTX 3090 with CUDA version 12.0

and 8 CPU cores. The time consumption of our model on most datasets is around 2

hours.

Table 8. The model's capacity and its training time on all datasets.

Datasets Parameter GPU-Hours

IWSLT-De-En 36933680 1.8

IWSLT-En-De 36931632 1.8

NC11-De-En 40060976 2.5

NC11-En-De 40060976 2.5

WMT18-En-Tr 39991344 2.3

6 Conclusion

Building upon prior work that integrates constituency syntax into the Transformer by

modifying attention matrices using SLR, this study introduces a novel architecture that

adaptively learns the optimal amount of SLR guidance for each attention head across

different layers, enhancing its flexibility and interpretability while reducing the burden

of searching for the best incorporating locations. Experiments show that our model

achieves a significant improvement compared with the vanilla Transformer and com-

petitive results against other syntax-aware methods. Further studies disclose that con-

stituency syntax is appropriate for integrations in shallow layers, which is distinctive

from dependency syntax. Aligned with this finding, our adaptive gating weights yield

an interpretable interface, where most syntactic guidance happens in the first two layers.

There are also some limitations. Firstly, the effectiveness of syntax-aware self-attention

relies on the quality of external parser, which is missing for most low-resource lan-

guages. Secondly, a few hyperparameters for regularization are still required, even

though they can be accomplished in linear time complexity rather than the exponential

complexity of searching for syntactic incorporating layers and attention heads. We

would further dive into these problems.

References

1. Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural

networks for faster models. arXiv preprint arXiv:1511.06297 (2015)

2. Bugliarello, E., Okazaki, N.: Enhancing machine translation with dependency-aware self-

attention. In: Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics. pp. 1618–1627. Association for Computational Linguistics, Online (Jul 2020).

https://doi.org/10.18653/v1/2020.acl-main.147, https://aclanthology.org/2020.acl-main.147

3. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does BERT look at? an analysis

of BERT’s attention. In: Proceedings of the 2019 ACL Work-shop BlackboxNLP: Analyz-

ing and Interpreting Neural Networks for NLP. pp. 276–286. Association for Computational

Linguistics, Florence, Italy (Aug 2019). https://doi.org/10.18653/v1/W19-4828,

https://aclanthology.org/W19-4828

4. Eigen, D., Ranzato, M., Sutskever, I.: Learning factored representations in a deep mixture

of experts. arXiv preprint arXiv:1312.4314 (2013)

https://aclanthology.org/2020.acl-main.147
https://aclanthology.org/W19-4828

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5. Goldberg, Y.: Assessing bert’s syntactic abilities. arXiv preprint arXiv:1901.05287 (2019)

6. Hao, S., Zhou, Y., Liu, P., Xu, S.: Bi-syntax guided transformer network for aspect senti-

ment triplet extraction. Neurocomputing 594, 127880 (2024)

7. Harada, S., Watanabe, T.: Neural machine translation with synchronous latent phrase struc-

ture. Journal of Natural Language Processing 29(2), 587–610 (2022)

8. Hou, S., Kai, J., Xue, H., Zhu, B., Yuan, B., Huang, L., Wang, X., Lin, Z.: Syntax-guided

localized self-attention by constituency syntactic distance. In: Findings of the Association

for Computational Linguistics: EMNLP 2022. pp. 2334–2341. Association for Computa-

tional Linguistics, Abu Dhabi, United Arab Emirates (Dec 2022).

https://doi.org/10.18653/v1/2022.findings-emnlp.173, https://aclanthology.org/2022.find-

ings-emnlp.173

9. Htut, P.M., Phang, J., Bordia, S., Bowman, S.R.: Do attention heads in bert track syntactic

dependencies? arXiv preprint arXiv:1911.12246 (2019)

10. Huang, L., Sun, X., Li, S., Zhang, L., Wang, H.: Syntax-aware graph attention network for

aspect-level sentiment classification. In: Proceedings of the 28th International Conference on

Computational Linguistics. pp. 799–810. International Committee on Computational Lin-

guistics, Barcelona, Spain (Online) (Dec 2020). https://doi.org/10.18653/v1/2020.coling-

main.69, https://aclanthology.org/2020.coling-main.69

11. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure of language?

In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-

tics. pp. 3651–3657. Association for Computational Linguistics, Florence, Italy (Jul 2019).

https://doi.org/10.18653/v1/P19-1356, https://aclanthology.org/P19-1356

12. Kai, J., Hou, S., Huang, Y., Lin, Z.: Leveraging grammar induction for language understand-

ing and generation. arXiv preprint arXiv:2410.04878 (2024)

13. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st An-

nual Meeting of the Association for Computational Linguistics. pp. 423–430. Association

for Computational Linguistics, Sapporo, Japan (Jul 2003).

https://doi.org/10.3115/1075096.1075150, https://aclanthology.org/P03-1054

14. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., et al.: Moses: Open source toolkit for statistical machine

translation. In: Proceedings of the 45th annual meeting of the association for computational

linguistics companion volume proceedings of the demo and poster sessions. pp. 177–180.

Association for Computational Linguistics (2007)

15. Li, Z., Zhou, Q., Li, C., Xu, K., Cao, Y.: Improving BERT with syntax-aware local attention.

In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. pp. 645–

653. Association for Computational Linguistics, Online (Aug 2021).

https://doi.org/10.18653/v1/2021.findings-acl.57, https://aclanthology.org/2021.findings-

acl.57

16. Ma, C., Tamura, A., Utiyama, M., Sumita, E., Zhao, T.: Improving neural machine transla-

tion with neural syntactic distance. In: Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers). pp. 2032–2037. Association for Compu-

tational Linguistics, Minneapolis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-

1205, https://aclanthology.org/N19-1205

17. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stan-

ford corenlp natural language processing toolkit. In: Proceedings of 52nd annual meeting of

the association for computational linguistics: system demonstrations. pp. 55–60 (2014)

18. Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., Auli, M.: fairseq:

A fast, extensible toolkit for sequence modeling. In: Proceedings of the 2019 Conference of

https://aclanthology.org/2022.findings-emnlp.173
https://aclanthology.org/2022.findings-emnlp.173
https://aclanthology.org/2020.coling-main.69
https://aclanthology.org/P19-1356
https://aclanthology.org/P03-1054
https://aclanthology.org/2021.findings-acl.57
https://aclanthology.org/2021.findings-acl.57
https://aclanthology.org/N19-1205

the North American Chapter of the Association for Computational Linguistics (Demonstra-

tions). pp. 48–53. Association for Computational Linguistics, Minneapolis, Minnesota (Jun

2019). https://doi.org/10.18653/v1/N19-4009, https://aclanthology.org/N19-4009

19. Post, M.: A call for clarity in reporting BLEU scores. In: Proceedings of the Third Confer-

ence on Machine Translation: Research Papers. pp. 186–191. Association for Computational

Linguistics, Belgium, Brussels (Oct 2018), https://www.aclweb.org/anthology/W18-6319

20. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword

units. In: Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). pp. 1715–1725. Association for Computational Lin-

guistics, Berlin, Germany (Aug 2016). https://doi.org/10.18653/v1/P16-1162, https://aclan-

thology.org/P16-1162

21. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J.: Outra-

geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint

arXiv:1701.06538 (2017)

22. Shen, Y., Lin, Z., Jacob, A.P., Sordoni, A., Courville, A., Bengio, Y.: Straight to the tree:

Constituency parsing with neural syntactic distance. In: Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp.

1171–1180. Association for Computational Lin-guistics, Melbourne, Australia (Jul 2018).

https://doi.org/10.18653/v1/P18-1108, https://aclanthology.org/P18-1108

23. Shen, Y., Tay, Y., Zheng, C., Bahri, D., Metzler, D., Courville, A.: Structformer: Joint un-

supervised induction of dependency and constituency structure from masked language mod-

eling. arXiv preprint arXiv:2012.00857 (2020)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a sim-

ple way to prevent neural networks from overfitting. The journal of machine learning re-

search 15(1), 1929–1958 (2014)

25. Strubell, E., Verga, P., Andor, D., Weiss, D., McCallum, A.: Linguistically-informed self-

attention for semantic role labeling. In: Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing. pp. 5027–5038. Association for Computational

Linguistics, Brussels, Belgium (Oct-Nov 2018). https://doi.org/10.18653/v1/D18-1548,

https://aclanthology.org/D18-1548

26. Tenney, I., Das, D., Pavlick, E.: BERT rediscovers the classical NLP pipeline. In: Proceed-

ings of the 57th Annual Meeting of the Association for Computational Linguistics. pp.

4593–4601. Association for Computational Linguistics, Florence, Italy (Jul 2019).

https://doi.org/10.18653/v1/P19-1452, https://aclanthology.org/P19-1452

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,

Polosukhin, I.: Attention is all you need. Advances in neural information processing systems

30 (2017)

28. Wang, Y., Lee, H.Y., Chen, Y.N.: Tree transformer: Integrating tree structures into self-

attention. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP). pp. 1061–1070. Association for Computational Linguistics,

Hong Kong, China (Nov 2019). https://doi.org/10.18653/v1/D19-1098, https://aclanthol-

ogy.org/D19-1098

29. Xie, R., Ahia, O., Tsvetkov, Y., Anastasopoulos, A.: Extracting lexical features from dia-

lects via interpretable dialect classifiers. arXiv preprint arXiv:2402.17914 (2024)

30. Xu, Z., Guo, D., Tang, D., Su, Q., Shou, L., Gong, M., Zhong, W., Quan, X., Jiang, D.,

Duan, N.: Syntax-enhanced pre-trained model. In: Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers). pp. 5412–5422. Association for

https://doi.org/10.18653/v1/N19-4009
https://aclanthology.org/N19-4009
https://www.aclweb.org/anthology/W18-6319
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.18653/v1/P18-1108
https://aclanthology.org/P18-1108
https://aclanthology.org/D18-1548
https://aclanthology.org/P19-1452
https://aclanthology.org/D19-1098
https://aclanthology.org/D19-1098

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Computational Linguistics, Online (Aug 2021). https://doi.org/10.18653/v1/2021.acl-

long.420, https://aclanthology.org/2021.acl-long.420

31. Yang, J., Ma, S., Zhang, D., Li, Z., Zhou, M.: Improving neural machine translation with

soft template prediction. In: Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics. pp. 5979–5989. Association for Computational Linguistics,

Online (Jul 2020). https://doi.org/10.18653/v1/2020.acl-main.531, https://aclanthol-

ogy.org/2020.acl-main.531

32. Zhang, M., Li, Z., Fu, G., Zhang, M.: Syntax-enhanced neural machine translation with syn-

tax-aware word representations. In: Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Technol-

ogies, Volume 1 (Long and Short Papers). pp. 1151–1161. Association for Computational

Linguistics, Minneapolis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1118,

https://aclanthology.org/N19-1118

33. Zhang, Z., Wu, Y., Zhou, J., Duan, S., Zhao, H., Wang, R.: Sg-net: Syntax guided trans-

former for language representation. IEEE Transactions on Pattern Analysis and Machine

Intelligence 44(6), 3285–3299 (2020)

https://aclanthology.org/2021.acl-long.420
https://aclanthology.org/2020.acl-main.531
https://aclanthology.org/2020.acl-main.531
https://aclanthology.org/N19-1118

