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Abstract. With the increasing risk of facial privacy leakage during image trans-

mission, achieving both recognizability and privacy protection remains a major 

challenge. This paper proposes a novel diffusion-based framework for facial im-

age privacy, termed Diffusion-Driven Steganography and Recovery (DDSR). 

DDSR utilizes a prompt-guided dual-phase diffusion strategy: during the ste-

ganography phase, identity prompts guide latent perturbation, and reverse diffu-

sion under unrelated prompts generates semantically irrelevant stego images; 

during the recovery phase, the model re-encodes the stego image and reconstructs 

the original face under the guidance of the identity prompt. To enhance semantic 

alignment, we introduce a lightweight Prompt Consistency Regularization 

(PCR), which aligns recovered images and prompts in CLIP semantic space dur-

ing training. This regularization improves prompt controllability without adding 

inference overhead. DDSR is compatible with low-resolution data and small-

scale training, and does not rely on high-resolution inputs or large datasets. Ex-

tensive experiments demonstrate that DDSR achieves up to 98% face recognition 

accuracy on recovered images and outperforms prior methods by over 30% in 

resisting recognition attacks. Furthermore, DDSR provides improved robustness 

under image degradation while maintaining high visual quality and identity fi-

delity. 

Keywords: Deep learning, facial privacy protection, diffusion models, image 

steganography. 

1 Introduction 

With the rapid development of computer vision and deep learning, facial recognition 

has been extensively adopted in identity verification, social media, and intelligent sur-

veillance[1]. As a result, facial images have become highly sensitive personal data. 

However, most existing face recognition systems still transmit raw images or extracted 

features without sufficient encryption or obfuscation, leaving them vulnerable to inter-

ception and unauthorized recognition during transmission. Therefore, a critical 



challenge is how to enhance privacy protection during image transmission without de-

grading recognition performance. 

Existing face privacy protection methods can be broadly classified into two catego-

ries. The first is anonymization, which prevents identity recognition by modifying fa-

cial features through blurring, masking, or substitution, as seen in methods like Fawkes 

and Low-Key. The second is visual information hiding, which attempts to conceal iden-

tity features through adversarial perturbations, encryption, or embedding, while main-

taining the image’s natural appearance. However, these approaches are fundamentally 

contradictory: anonymization seeks to disable recognition, whereas information hiding 

relies on preserving it. As such, most current solutions require a trade-off between pri-

vacy and utility. A unified and controllable privacy-preserving framework that achieves 

concealment, naturalness, and identity recoverability remains a significant chal-

lenge[2]. 

To address this conflict, recent research has turned to image steganography[3], 

which aims to embed sensitive information into images in a way that is imperceptible 

to unauthorized receivers. In particular, coverless steganography[4], which generates 

visually unrelated images rather than embedding content into an existing one, has 

shown potential in improving concealment and transmission security. However, tradi-

tional steganography methods are mainly designed for bit-level message hiding and 

lack semantic-level representation capabilities, making them unsuitable for reversible 

face recovery. Even with generative models like GANs[5] and encoder-decoder mod-

els[6], existing methods still suffer from poor semantic controllability, limited realism, 

and weak robustness. 

Recently, diffusion models have emerged as a promising alternative for image syn-

thesis and privacy protection, due to their powerful generative capacity, symmetric 

noise modeling, and strong semantic guidance. Their inherent ability to progressively 

add and remove noise, guided by text prompts, offers new possibilities for building 

controllable and reversible privacy-preserving frameworks. 

In this paper, we propose DDSR (Diffusion-Driven Steganography and Recovery), 

a novel diffusion-based framework for secure facial image transmission. DDSR lever-

ages prompt-guided diffusion to convert identity images into semantically unrelated 

stego images, preventing recognition during transmission. At the receiver end, the orig-

inal image can be faithfully reconstructed using only the correct identity prompt.DDSR 

offers key advantages: Security, by restricting recovery to authorized prompts; Revers-

ibility, by preserving identity consistency; Robustness, under low resolution and lossy 

channels; and Controllability, through natural, style-flexible stego images. Extensive 

experiments on public face datasets demonstrate that DDSR outperforms existing meth-

ods in both image fidelity and privacy protection. 

1. We propose DDSR, a reversible framework for facial privacy protection. It trans-

forms facial images into semantically unrelated stego images and enables high-fi-

delity identity recovery via prompt-guided diffusion. 

2. We develop a dual-phase diffusion strategy for controllable identity transformation. 

By combining DDIM inversion and prompt switching, DDSR supports both effec-

tive identity obfuscation and precise restoration. 
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3. 王4We introduce Prompt Consistency Regularization (PCR) to enhance semantic 

alignment. PCR aligns image-text embeddings in the CLIP space during training, 

enabling prompt-controllable and semantically faithful recovery. 
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Fig. 1. The definition and composition of DDSR. 

2 Revated works 

2.1 Privacy protection in facial image data 

Several methods for facial privacy protection have been proposed, primarily imple-

mented through visual obfuscation, image generation, and adversarial perturbations. 

Mrityunjay et al.[7] introduced a system that reduces the recognizability of faces 

through filtering processes. Newton's K-Same method [8] computes an average facial 

image via rotation and cropping operations to obscure the original identity. TIP-IM [9] 

ensures privacy by overlaying adversarial identity masks on the face. With the advance-

ment of deep learning technologies, researchers in the field of facial privacy protection 

have increasingly focused on Generative Adversarial Networks (GANs).Adv-Makeup 

[10] achieves adversarial protection through makeup, while AMT-GAN [11] generates 

adversarial facial images with makeup applied. CLIP2Protect [12] optimizes adversar-

ial latent encoding by incorporating user-defined text prompts. The goal of these meth-

ods is to induce a loss of facial feature information, rendering the original facial data 

non-reusable. Haoxuan et all. [13] proposed a facial privacy enhancement method 

based on latent encoding optimization and facial masking, which maintains the usabil-

ity of facial recognition while protecting privacy. Yang Yang et all. [14] presented a 

facial privacy protection method based on an Invertible Mask Network (IMN), capable 

of generating privacy-protected facial images and restoring the original facial infor-

mation when necessary. However, due to the unnatural appearance of obscured faces, 

they are more easily detected by attackers. These methods fail to transmit facial images 

without raising suspicion. To address these issues, we draw on techniques from image 

steganography. 



2.2 Image steganography 

Image steganography [3] differs from traditional encryption techniques in that it aims 

to create an information carrier by embedding secret data within a host medium, thereby 

keeping the message concealed during transmission. Conventional image steganogra-

phy typically involves designating a cover image into which secret information is em-

bedded, making subtle modifications to render it difficult to detect. To achieve a more 

covert method of information hiding, coverless steganography [4] has emerged as a 

technique that avoids explicit alterations to the carrier image, thus reducing the risk of 

detection associated with traditional steganography. In recent years, Generative Adver-

sarial Networks (GANs) have been integrated into coverless steganography, using ad-

versarial training to generate images that make information hiding more discreet and 

harder to detect [15].However, coverless steganography still faces several challenges, 

such as limited steganographic capacity, difficulties in maintaining image quality, low 

robustness, and poor controllability. To address these issues, recent advances in gener-

ative models offer promising solutions. 

2.3 Diffusion models 

Diffusion models [16] are deep generative frameworks that progressively generate 

high-quality samples from random noise through a reverse denoising process, condi-

tioned on specific inputs. Starting from Gaussian noise, the model iteratively recon-

structs data that approximates the target distribution. Owing to their remarkable perfor-

mance, diffusion models have been widely adopted in image generation, restoration, 

and translation tasks. For instance, SSIE-For example, SSIE-Diffusion [17] introduces 

a personalized conditional generation model to produce theme-relevant content, while, 

DINO-ViT [18] proposes a multi-reference translation approach for high-quality style 

transfer.Compared to traditional steganography techniques, diffusion models not only 

enable conditional image synthesis with better privacy preservation, but also exhibit 

superior robustness and controllability. These properties make them well-suited for 

tasks involving both image hiding and high-fidelity recovery. 

3 Method 

3.1 Preliminaries 

Before introducing the DDSR framework, we first briefly review diffusion models and 

their latent-space extensions to establish the methodological foundation. Diffusion 

models [16] are a class of probabilistic generative models that aim to reconstruct the 

real data distribution by progressively denoising samples drawn from Gaussian noise. 

This process is typically formulated as a fixed-length Markov chain, where the forward 

process gradually adds noise to the original data until it becomes nearly pure noise, 

while the reverse process learns how to iteratively recover the original samples from 

noisy inputs. 
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In this work, we adopt the Stable Diffusion Model (SDM) [21] as the generative 

backbone, which performs diffusion and reverse diffusion in the latent space of images. 

Specifically, the input image 𝑥𝑖𝑑  is first encoded into a latent representation 𝑧0 using a 

pre-trained Variational Autoencoder (VAE). Noise is then added and removed within 

the latent space, and the image is finally reconstructed through the decoder. The for-

ward noise addition process is defined as: 

𝑧𝑡 = √𝛼𝑡 ⋅ 𝑧0 + √1 − 𝛼𝑡 ⋅ 𝜖,  𝜖 ∼ 𝒩(0, 𝐼)               (1) 

where 𝛼𝑡 is a time-dependent weighting coefficient. 

For the reverse process, we adopt the deterministic sampling strategy proposed in 

Denoising Diffusion Implicit Models (DDIM), which eliminates the randomness in 

traditional diffusion and improves the stability of recovery. The update rule is defined 

as: 

𝑧𝑡−1 = √𝛼𝑡−1 ⋅ (
𝑧𝑡

√𝛼𝑡

−
√1 − 𝛼𝑡

√𝛼𝑡

⋅ 𝜖𝜃(𝑧𝑡 , 𝑡, 𝐶)) + √1 − 𝛼𝑡−1 ⋅ 𝜖𝜃(𝑧𝑡 , 𝑡, 𝐶)     (2) 

where 𝐶 denotes the embedding of the conditional prompt, and 𝜖𝜃 is the learned de-

noising network. 

In addition, to enable reversible transformation between images and latent noise, 

we incorporate DDIM Inversion, which maps an image backward into a noisy latent 

variable 𝑧𝑇 at a chosen timestep. This serves as the basis for subsequent identity resto-

ration in our framework. 

3.2 Overview of the DDSR Framework.  

To achieve privacy-preserving and reversible face image transmission, we propose a 

diffusion-based steganographic framework, DDSR (Diffusion-Driven Steganography 

and Recovery). The core idea is to transform identity images into semantically unre-

lated stego images through prompt-guided diffusion, and enable identity recovery on 

the receiver side via prompt-based inversion. As shown in Fig. 1, DDSR comprises 

three stages: Steganography, Transmission, and Recovery. 

In the Steganography Phase, the sender encodes the input facial image 𝑥𝑖𝑑  into a 

latent representation 𝑧0  using a VAE. Under the guidance of the identity prompt 

prompt
id

 (serving as a private key), the model performs DDIM inversion [19] to diffuse 

𝑧0 into an intermediate noisy state 𝑧𝑡, embedding identity information into the diffusion 

trajectory. Then, switching to a disguise prompt prompt
stego

 (serving as a public key), 

the model reverses the diffusion process to generate a new latent variable 𝑧0
′ , which is 

decoded into the stego image 𝑥𝑠𝑡𝑒𝑔𝑜 . The result is visually unrelated to the original and 

semantically aligned with the disguise prompt (e.g., a landscape), making it suitable for 

open transmission. 

In the Transmission Phase, the stego image 𝑥𝑠𝑡𝑒𝑔𝑜  is transmitted through public 

channels. During real-world transmission, it may undergo slight degradation due to 

compression or noise, resulting in a modified version 𝑥′𝑠𝑡𝑒𝑔𝑜 .Without the correct 



identity prompt, it resists both human recognition and feature extraction by existing 

facial recognition models, thereby mitigating risks of privacy leakage and identity at-

tacks. 

In the Recovery Phase, the receiver provides 𝑥′𝑠𝑡𝑒𝑔𝑜  and the identity prompt 

prompt
id

. The model re-encodes 𝑥′𝑠𝑡𝑒𝑔𝑜  into 𝑧0
′ , performs DDIM inversion under 

prompt
stego

 to obtain 𝑧𝑡
′, and then applies reverse diffusion guided by prompt

id
 to recon-

struct the latent 𝑧̂0, which is finally decoded into the recovered image 𝑥𝑟𝑒𝑣 . 

Here, prompt
id

 can be considered a private key—it must be kept confidential to en-

able successful identity recovery. In contrast, prompt
stego

 functions as a public key that 

relates to the stego image’s appearance and can often be inferred from the image itself. 

3.3 Steganography based on diffusion models.  

This method is built upon a prompt-guided diffusion model, consisting of two main 

stages: a steganographic process and a recovery process. In our implementation, the 

two stages are respectively guided by an identity prompt and a disguise prompt, ena-

bling the hiding and reconstruction of facial information through controllable diffusion 

trajectories. The complete workflow is illustrated in Fig. 2. The following sections pro-

vide a detailed explanation of both stages. 

Steganography Phase: Prompt-Guided Identity Obfuscation.To enable identity 

hiding during image transmission, we propose a prompt-guided steganographic process 

in latent space. This phase aims to convert a facial image into a semantically irrelevant 

stego image, such that the identity is visually obfuscated while retaining semantic re-

coverability, as shown in Fig. 3. This stage consists of three key steps: image encoding, 

prompt-guided DDIM inversion, and denoising sampling with prompt switching 

Image Encoding. The input facial image 𝑥𝑖𝑑 ∈ ℝ3×𝐻×𝑊 is first encoded into the latent 

space using the pre-trained VAE encoder 𝐸(⋅) from the stable diffusion model: 

𝑧0 = 𝐸(𝑥i𝑑) (3) 

where 𝑧0 ∈ ℝ4×
𝐻

8
×

𝑊

8  serves as the starting point of the subsequent diffusion process. 

DDIM Inversion: Prompt-Guided Diffusion under prompt
id

.Under the semantic guid-

ance of an identity prompt prompt
id

 (e.g., “a smiling man”), we apply the DDIM inver-

sion technique to embed the latent variable 𝑧0 into the diffusion trajectory, generating 

an intermediate state 𝑧𝑡. The process is defined as: 

𝑧𝑡+1 = √
𝛼𝑡+1

𝛼𝑡

⋅ 𝑧𝑡 + (√1 − 𝛼𝑡+1 − √
𝛼𝑡+1

𝛼𝑡

⋅ √1 − 𝛼𝑡) ⋅ 𝜖𝜃(𝑧𝑡 , 𝑡, prompt
id

) (4) 
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where 𝛼𝑡 is the noise attenuation coefficient at timestep 𝑡, and 𝜖𝜃(𝑧𝑡 , 𝑡, prompt
id

) is the 

noise predicted by the U-Net under the condition of prompt prompt
id

. This step is iter-

atively applied up to a predefined timestep 𝑇, resulting in the intermediate state 𝑧𝑇. 

Semantically, this process encodes identity-relevant information into a noise trajectory. 
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Fig. 2. Overview of the DDSR Framework. 

Denoising Sampling with Prompt Switching. After obtaining the intermediate state 𝑧𝑇, 

we switch the prompt from prompt
id

 to a semantically irrelevant disguise 

prompt prompt
stego

 (e.g., “a landscape”), and perform DDIM reverse sampling to re-

construct the latent representation 𝑧̂0. Each update step is given by: 

𝑧𝑡−1 = √
𝛼𝑡−1

𝛼𝑡

⋅ 𝑧𝑡 + (√1 − 𝛼𝑡−1 − √
𝛼𝑡−1

𝛼𝑡

⋅ √1 − 𝛼𝑡) ⋅ 𝜖𝜃 (𝑧𝑡 , 𝑡, prompt
stego

) (5) 

where 𝜖𝜃 (𝑧𝑡 , 𝑡, prompt
stego

) denotes the noise prediction under the disguise prompt 

prompt
stego

. This step is applied iteratively from 𝑡 = 𝑇 down to 𝑡 = 0, resulting in the  

stego latent variable 𝑧̂0.Finally, 𝑧̂0 is decoded by the VAE decoder 𝐺(⋅) to obtain the 

stego image 𝑥𝑠𝑡𝑒𝑔𝑜: 

𝑥𝑠𝑡𝑒𝑔𝑜 = 𝐺(𝑧̂0) (6) 

The resulting image 𝑥𝑠𝑡𝑒𝑔𝑜 is a visually natural image (e.g., a landscape) that bears no 

apparent similarity to the original face image. However, the identity-relevant infor-

mation remains implicitly embedded in the latent representation, enabling reversibility. 
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Fig. 3. Noise addition and denoising process performed by the sender.  

Recovery Phase: Identity Restoration from the Stego Image.Given the identity 

prompt prompt
id

, the goal of the recovery phase is to reconstruct a high-fidelity facial 

image 𝑥𝑟𝑒𝑣 from the stego image 𝑥′𝑠𝑡𝑒𝑔𝑜. This process is structurally symmetric to the 

steganography phase, as illustrated in Fig. 4, and consists of three main steps: stego 

image encoding, DDIM inversion under prompt prompt
stego

, and reverse sampling 

guided by prompt
id

. 

Stego Image Encoding. First, the stego image 𝑥′𝑠𝑡𝑒𝑔𝑜 is encoded into its latent repre-

sentation using the VAE encoder: 

𝑧̂0 = 𝐸(𝑥′
𝑠𝑡𝑒𝑔𝑜) (7) 

where 𝑧̂0 serves as the initial latent variable for the recovery process. 

DDIM Inversion.We apply DDIM Inversion to 𝑧̂0  using the same disguise prompt 

prompt
𝑠𝑡𝑒𝑔𝑜

 that was used in the steganography phase, embedding the latent into a dif-

fusion trajectory to obtain an intermediate state 𝑧̂𝑇. The update step is given by: 

𝑧̂𝑡+1 = √
𝛼𝑡+1

𝛼𝑡
⋅ 𝑧̂𝑡 + (√1 − 𝛼𝑡+1 − √

𝛼𝑡+1

𝛼𝑡
⋅ √1 − 𝛼𝑡) ⋅ 𝜖𝜃 (𝑧̂𝑡, 𝑡, prompt

𝑠𝑡𝑒𝑔𝑜
) (8) 

This process is iteratively applied up to 𝑡 = 𝑇, resulting in the intermediate diffusion 

state 𝑧̂𝑇 under the guidance of prompt
𝑠𝑡𝑒𝑔𝑜

. 

Prompt Switching: Reverse DDIM Sampling with prompt
id

.Next, we switch the prompt 

back to the original identity prompt prompt
id

 and perform reverse DDIM sampling 

starting from 𝑧̂𝑇. Each update is defined as: 

𝑧
∼

𝑡−1 = √
𝛼𝑡−1

𝛼𝑡
⋅ 𝑧

∼

𝑡 + (√1 − 𝛼𝑡−1 − √
𝛼𝑡−1

𝛼𝑡
⋅ √1 − 𝛼𝑡) ⋅ 𝜖𝜃(𝑧

∼

𝑡, 𝑡, prompt
id

)                   (9) 

This process is applied iteratively from 𝑡 = 𝑇 to 𝑡 = 0, yielding the recovered latent 

variable 𝑧
∼

0, which is then decoded to reconstruct the final image: 
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𝑥𝑟𝑒𝑣 = 𝐺(𝑧
∼

0) (10) 

The recovered image 𝑥𝑟𝑒𝑣  contains identity features that are highly consistent with the 

original facial image, making it suitable for downstream tasks such as face recogni-

tion or verification. 

... ...

... ...
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Fig. 4. Noise addition and denoising process performed by the receiver. 

3.4 Prompt Consistency Regularization.  

Although DDSR achieves controllable and identity-preserving image recovery through 

prompt switching, the diffusion model itself does not explicitly guarantee semantic con-

sistency between the recovered image and the identity prompt 𝑝1. To address this issue, 

we introduce a lightweight, unsupervised auxiliary module called Prompt Consistency 

Regularization (PCR), which is used during training to enhance the semantic alignment 

of the recovered images. 

Specifically, we utilize a CLIP model [20] to extract the image embedding 𝑓(𝑥𝑟𝑒𝑣) 

from the recovered image 𝑥𝑟𝑒𝑣 , and the text embedding 𝜙(prompt
id

) from the identity 

prompt prompt
id

. We then compute the cosine similarity loss between them, defined as: 

ℒPCR = 1 −
⟨𝑓(𝑥𝑟𝑒𝑣), 𝜙(prompt

id
)⟩

∥ 𝑓(𝑥𝑟𝑒𝑣) ∥⋅∥ 𝜙(prompt
id

) ∥
(11) 

where 𝑓(𝑥𝑟𝑒𝑣) denotes the image features extracted by the CLIP image encoder, and 

𝜙(prompt
id

) denotes the semantic embedding of the identity prompt extracted by the 

CLIP text encoder. The denominator normalizes both embeddings to ensure a valid 

similarity measure. 

This loss is only applied during training, encouraging the model to generate images 

that are more semantically aligned with the identity prompt. Importantly, it does not 

introduce any additional computation during inference. Through training-time guid-

ance, the model implicitly learns this semantic constraint, enabling it to generate 

prompt-consistent recovered images at test time without requiring CLIP or loss com-

putation. 



4 Experiment 

4.1 Experimental Setting 

Experimental Setup. In our experiments, we use Stable Diffusion v1.5[21] as the train-

ing model and employ the deterministic DDIM sampling algorithm. Both the forward 

and reverse processes consist of 60 steps. All experiments were conducted on a GeForce 

RTX 3090 GPU. 

Data Preparation. To quantitatively and qualitatively evaluate our approach, we con-

ducted experiments using CelebA-HQ [22] , LADN [23], and LFW [24]. We selected 

a subset of 1,000 images from CelebA-HQ [22]. To assess the robustness of our 

method, we randomly selected 500 images from the public dataset for experimentation. 

4.2 Reversibility  

Fig. 5 presents the experimental results of face image hiding and recovery. From left 

to right, the images correspond to the secret image 𝑥𝑖𝑑 , container image 𝑥𝑠𝑡𝑒𝑔𝑜 , and 

recovered image 𝑥𝑟𝑒𝑣 , where each secret image is paired with a corresponding container 

image. In our experiments, the container images are all landscape images unrelated to 

faces, effectively concealing facial information in a visually imperceptible manner. As 

a result, the human eye cannot detect any facial features embedded within the container 

image. Moreover, adversaries find it challenging to infer the presence of facial privacy 

information from the transmitted container images, significantly reducing the risk of 

information interception and misuse during transmission.  
 𝑥𝑖𝑑             𝑥𝑠𝑡𝑒𝑔𝑜        𝑥𝑟𝑒𝑣                        𝑥𝑖𝑑              𝑥𝑠𝑡𝑒𝑔𝑜         𝑥𝑟𝑒𝑣                          𝑥𝑖𝑑           𝑥𝑠𝑡𝑒𝑔𝑜          𝑥𝑟𝑒𝑣  

                         

                         

                         

                         

                         

                         

                         

                         

Fig. 5. Visualization of the secret and recovered images generated by our method. 
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To further validate the reversibility of the proposed method, we analyze the similarity 

between the hidden images and the recovered images to determine whether the recov-

ered images retain characteristics similar to the original images in face recognition 

tasks. The detailed comparison results are presented in Fig. 6. 
𝑥𝑖𝑑                  𝑥𝑟𝑒𝑣                  𝑥𝑖𝑑              𝑥𝑟𝑒𝑣  

       
     

       
 

       

Fig. 6. Visualization of restored images compared with originals using our method. 

In the experiments, four classical face recognition models—IRSE50 [25], IR152 [26], 

FaceNet [27], and MobileFace [28], —and three commercial face recognition APIs, 

namely Tencent Cloud, Face++, and Aliyun, were selected. These models and APIs 

were used to recognize faces by returning a confidence score between 0 and 100, with 

a higher score indicating stronger similarity. It is important to note that the training data 

and model parameters for these proprietary face recognition models are undisclosed, 

which more realistically simulates real-world application scenarios, thus enhancing the 

credibility of the experimental results.Fig. 7 presents the evaluation results on the 

CelebA-HQ [22] and LADN [23] datasets.The experimental results demonstrate that 

the similarity confidence achieved by the proposed method exceeds 80% in most cases, 

reaching over 98% in some instances. This fully validates the reversibility of the pro-

posed method, i.e., the recovered images maintain a high level of recognizability in face 

recognition tasks. 

 

Fig. 7. Average confidence scores (higher is better) returned by commonly used face recognition 

models and real-world face verification APIs for evasion attacks. 
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To quantitatively evaluate the similarity between the original and recovered images, we 

report the PSNR and SSIM metrics in Table 1. We compare our method with recent 

noise-based and makeup-based facial privacy preservation techniques, including TIP-

IM [9], AMT-GAN [11] and CLIP2Protect [12].  As shown in the results, our method 

achieves the best performance in both PSNR and SSIM, outperforming all baseline 

methods. 

Table 1. Comparison of PSNR and SSIM for Different Methods 

Method PSNR SSIM 

TIP-IM[10] 33.21 0.92 

AMT-GAN[11] 19.50 0.79 

CLIP2Protect[12] 19.31 0.75 

ours 35.11 0.93 

4.3 Security 

To demonstrate the steganalysis resistance of our container images, we evaluate the 

robustness of the proposed method using the StegExpose [29] detector. In our experi-

ments, we generated container images based on the CelebA-HQ [22] and LADN [23] 

datasets,and plotted receiver operating characteristic (ROC) curves by adjusting vari-

ous thresholds. The experimental results, shown in Fig. 8, indicate that the ROC curves 

for our method are close to the diagonal of random guessing. This suggests that the 

method approaches the ideal detector-avoidance state and effectively conceals the orig-

inal image, thereby further verifying its steganographic and security performance. 

 

Fig. 8. ROC curves on CelebA-HQ (accuracy: 0.49, left) and LADN (accuracy: 0.43, right). 

To assess the effectiveness of our generated container images in resisting recognition 

by black-box face recognition systems, we performed face verification experiments on 

the LFW dataset. The comparison methods include TIP-IM [9], Adv-Makeup [10], 

AMT-GAN [11] ,CLIP2Protect [12], MI-FGSM [30] and TI-DIM [31]. The results, 

shown in Table 2, provide the evasion attack values for the face recognition task in an 

untargeted attack scenario. Our method shows significant improvements of 9.9% and 

30.9% in Rank-1 and Rank-5 evaluation metrics, respectively, compared to the 

0 0.2 0.4 0.6 0.8 1

False Positive Rate (FPR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

ROC Curve for StegExpose Detection (AUC = 0.49)

ROC curve

0 0.2 0.4 0.6 0.8 1

False Positive Rate (FPR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

ROC Curve for StegExpose Detection (AUC = 0.43)

ROC curve



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

CLIP2Protect method, demonstrating its clear advantage in resisting attacks on black-

box recognition systems. 

Table 2. Protection success rate (PSR %) for black-box dodging on the LFW dataset.  

 

Method 

IRSE50 IR152 FaceNet MobileFace Average 

R1-U R5-U R1-U R5-U R1-U R5-U R1-U R5-U R1-U R5-U 

Adv-Makeup [10] 45.2 38.5 40.9 35.3 41.2 35.9 43.5 36.7 42.7 36.6 

MI-FGSM [30] 70.2 42.6 58.4 41.8 59.2 34.0 68.0 47.2 63.9 41.4 

TI-DIM [31] 79.0 51.2 67.4 54.0 74.4 52.0 79.2 61.6 75.0 54.7 

TIP-IM [9] 81.4 52.2 71.8 54.6 76.0 49.8 82.2 63.0 77.8 54.9 

AMT-GAN [11] 83.7 55.6 72.0 54.8 78.9 50.1 83.6 64.9 79.6 56.4 

CLIP2Protect [12] 86.6 59.4 73.4 56.6 83.8 51.2 85.0 66.8 82.2 58.5 

ours 90.4 85.9 93.6 92.5 93.4 91.5 91.1 87.7 92.1 89.4 

We report the FID scores of our method in Table 3, which assess the naturalness of the 

generated container images. Adv-Makeup has the lowest FID score, as it only applies 

makeup to the eye region without altering the rest of the face. However, this limitation 

results in a poorer PSR for evading attacks. Compared to TIP-IM [9] and AMT-GAN 

[11], our method shows a lower FID score, suggesting that our container images exhibit 

stronger naturalness and can protect facial privacy in a more natural manner. 

Table 3. Comparison of FID and PSR gain (relative to AdvMakeup). 

Method FID 
PSR Gain 

R1-U R5-U 

Adv-Makeup [10] 4.23 0 0 

TIP-IM [9] 38.73 35.1 18.3 

AMT-GAN [11] 34.44 36.9 19.8 

CLIP2Protect [12] 26.62 39.5 21.9 

ours 32.96 49.4 52.8 

4.4 Robustness 

The secret images generated by our method are primarily transmitted over public chan-

nels, which are typically lossy. Therefore, the robustness of the coverless steganogra-

phy scheme directly impacts the receiver's ability to accurately extract the hidden secret 

information from the image. As a result, evaluating robustness becomes a crucial metric 

for assessing the effectiveness of the method. 

To evaluate the robustness of our approach, we conduct a series of degradation ex-

periments on the generated secret images, including the addition of Gaussian noise, 

JPEG compression, and pretzel noise. The specific parameter settings for each 



experiment are outlined in Table 4. We compare our method, with recent image ste-

ganography techniques,RIIS [32],HiNet [33], Baluja [34] , ISN [35] and CRoSS [36]. 

Table 4. Parameter Settings under Different Processing Conditions 

Gaussian noise JPEG compression Salt-and-pepper noise 

σ=10 σ=20 σ=30 Q=20 Q=40 Q=80 P=0.01 P=0.02 

Our experimental results are shown in Fig. 9. As can be seen from the figure, our 

method demonstrates excellent adaptability under various levels of degradation, with 

the smallest performance decline compared to other methods, whose fidelity signifi-

cantly decreases. Specifically, although our method did not achieve the best perfor-

mance when the container image was undamaged, it exhibited superior robustness as 

the degradation severity increased, remaining almost unaffected. In contrast, the PSNR 

values of other methods dropped significantly, with HiNet and RIIS showing the most 

pronounced decline. Ultimately, our method achieved the best PSNR in all experiments. 

 

Fig. 9. PSNR (dB) of DDSR and baselines under varying degradation levels. 

4.5 Ablation Study 

To evaluate the effectiveness of the Prompt Consistency Regularization (PCR) mod-

ule, we retrain the model with PCR removed and compare it against the full model in 

terms of semantic consistency and identity preservation of the recovered images. As 

shown in Fig. 10, removing PCR leads to a notable decrease in CLIP similarity be-

tween the recovered images and the identity prompts, along with a slight drop in face 

recognition similarity.  
Original                        w/o PCR                     w/ PCR      

                                            
 Prompt:    “a smiling woman with dark hair”  
 CLIP sim:       0.78 (w/o PCR)                         0.92 (w/ PCR) 

                                            
                                                                                             Prompt:     “a neutral-faced woman with blond hair” 
                                                                                                              CLIP sim:       0.70 (w/o PCR)                       0.90 (w/ PCR) 

                                            
                                                                                             Prompt:       “a smiling man with short hair” 
                                                                                                              CLIP sim:        0.65 (w/o PCR)                     0.95 (w/ PCR) 
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Fig. 10. Recovered image comparison with and without PCR. Rows: original, with-PCR, with-

out-PCR.  

In addition to the subjective comparison, Table 5 reports the quantitative evaluation of 

our method with and without the Prompt Consistency Regularization (PCR) module. 

Three widely used metrics—PSNR, SSIM, and FID—are employed to measure the fi-

delity and quality of the recovered images. As shown in the table, incorporating PCR 

significantly improves image quality: PSNR increases from 28 to 35.11, SSIM rises 

from 0.87 to 0.93, and FID decreases from 34 to 32.96. These results indicate that PCR 

effectively guides the model to generate more semantically aligned images with higher 

fidelity to the original identity and overall visual quality. This improvement highlights 

the positive impact of semantic consistency supervision on identity preservation and 

visual realism. 

Table 5. Quantitative results with and without PCR.  

Method PSNR SSIM FID 

Ours-w/o 28 0.77 34 

Ours-w 35.11 0.93 32.96 

5 CONCLUSION 

We propose a new method that combines a diffusion-based generative model with 

image steganography in order to achieve stealthy and effective protection during face 

image transmission while preserving the functionality of face recognition. Experi-

mental results show that the method is capable of generating high-quality protected 

images, is significantly resistant to recognition attacks during transmission, and exhib-

its superior performance in terms of robustness. Limitations of our approach include 

high computational time cost in generating protected images. 
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